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Background: Non-digestible oligosaccharides promote colonization of beneficial 
gut bacteria and have direct immunomodulatory effects. Apical exposure of intestinal  
epithelial cells (IECs) to short-chain galacto-oligosaccharides and long-chain fructo- 
oligosaccharides (scGOS/lcFOS) in a transwell co-culture model enhanced the CpG-
induced (TLR-9 ligand) T helper 1 (Th1) phenotype and regulatory IL-10 response of 
underlying peripheral mononuclear cells (PBMCs) of healthy donors. scGOS is derived 
from lactose and may pose risks in severe cow’s milk allergic patients, and scFOS/lcFOS 
may be an alternative. The goal of this study was to determine the immunomodulatory 
effects of scGOS/lcFOS and scFOS/lcFOS in an allergen-specific transwell co-culture 
model using PBMCs from peanut-allergic patients.

Methods: IECs cultured on transwell filters were apically exposed to CpG, either or 
not in combination with oligosaccharides. These IECs were co-cultured with basolateral 
PBMCs of peanut-allergic patients that were either activated with aCD3/28 or peanut 
extract. Basolateral cytokine production and T-cell polarization were measured and 
the con tribution of galectin-9 and the dectin-1 receptor in immune modulation were 
assessed.

results: IECs exposed to CpG increased IFN-γ, IL-10, and galectin-9 production 
by aCD3/28-stimulated PBMCs, whereas IL-13 decreased. Both scGOS/lcFOS and 
scFOS/lcFOS further enhanced IFN-γ and IL-10, while suppressing IL-13 and TNF-α. 
In the peanut-specific model, only scFOS/lcFOS further increased IFN-γ and IL-10 pro-
duction, coinciding with enhanced Th1-frequency. Expression of CRTH2 reduced after 
CpG exposure, and was further reduced by scFOS/lcFOS. Galectin-9 inhibitor TIM-3-Fc 
abrogated the additional effect of scFOS/lcFOS on peanut-specific IFN-γ production, 
while neutralization of the dectin-1 receptor was not effective.
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inTrODUcTiOn

Over the past decades, the prevalence of food allergies has 
increased in Western countries (1, 2). Harmless food proteins 
are recognized as being immunogenic by the immune cells of  
food-allergic patients, resulting in allergic sensitization. In sen- 
sitized individuals, these allergens can provoke a variety of sym-
ptoms when ingested, ranging from itching and swelling in the 
mouth to anaphylaxis. Next to eliminating these food proteins 
from the diet, there are currently no therapies available for treat-
ing food allergies that induce sustained oral tolerance. Several 
studies were able to induce desensitization in patients undergoing 
oral immunotherapy (OIT), hereby increasing the eliciting dose 
(ED) (3–5). However, inducing sustained non-responsiveness or 
tolerance remains difficult and is often combined with severe side 
effects (1, 4). Combining OIT with additional immunomodula-
tory agents, such as prebiotics as dietary adjuvant, may enhance 
safety and efficacy of immunotherapy, and support clinical toler-
ance induction (6).

The gastrointestinal (GI) tract plays an important role in the 
development of food allergies, and is constantly discriminating 
between harmful and harmless antigens (7, 8). A monolayer of 
intestinal epithelial cells (IECs) separates the intestinal contents 
from the underlying immune compartment and forms a barrier, 
hereby keeping away harmful bacteria or antigenic proteins.  
They can interact with innate and adaptive immune cells via the 
release of immune mediators, such as galectin-9, or via cell–cell 
contact (9, 10). Under inflammatory conditions these IECs exp-
ress pathogen recognition receptors, such as toll-like receptors  
(TLRs). These TLRs can recognize bacterial fragments from the 
gut microbiota or invading pathogens.

TLR-2 and TLR-9 have been described as important TLRs 
in recognition of certain probiotic strains (11). Ligation of 
TLR-9 by bacterial DNA rich in unmethylated CpG islands 
maintained intestinal homeostasis, and oral administration of 
a synthetic TLR-9 agonist was effective in both prevention and 
treatment of peanut allergy in mice by redirection of the immune 
response toward a T helper 1 (Th1) phenotype (12). In vitro, 
IECs apically exposed to synthetic CpG oligodeoxynucle otides 
(ODN) enhanced IFN-γ and IL-10 production by PBMCs in the 
basolateral compartment, while decreasing IL-13 (13). Therefore, 
targeting specific TLRs on IECs may be of interest in modulating 
immune responses (13).

Previous research showed that dietary intervention with 
specific mixtures of non-digestible oligosaccharides (prebiotics)  
and/or beneficial bacteria (probiotics) may help to prevent infants 
from developing allergic diseases (14–16). A prebiotic mixture 
containing short-chain galacto-oligosaccharides and long-chain 
fructo-oligosaccharides (scGOS/lcFOS) was able to reduce the  

incidence of atopic dermatitis in children at risk (15). The func-
tioning of these prebiotics is not fully elucidated, although it is 
known that they can improve intestinal tolerance and promote 
colonization of beneficial microbiota. Indeed, children receiving 
such a prebiotic mixture of scGOS/lcFOS, showed an increased 
presence of Bifidobacteria and Lactobacilli in the gut (17). Also, 
the addition of scFOS or inulin to the diet increased Bifidobac- 
teria counts (18–21). Beyond their effect on the microbiome, these 
prebiotics may suppress mast cell and basophil degranulation  
by enhancing galectin-9 levels amongst others secreted by IECs 
(22). Furthermore, they may induce polarization of Th1 and regu-
latory T cells (Tregs) when combined with CpG ODN (10, 22, 23).

Previously, in a transwell co-culture model using IECs and 
activated PBMCs, prebiotic mixture scGOS/lcFOS indeed enha-
nced galectin-9 levels secreted by IECs. Apical TLR-9 ligation of 
IECs in the presence of scGOS/lcFOS supported the production 
of IFN-γ and IL-10 by PBMCs, while IL-13 production was 
reduced (10). Since scGOS is produced from cow’s milk-derived 
lactose, it may pose risks in people with severe cow’s milk allergy 
(24). A synbiotic mixture of scFOS/lcFOS with Bifidobacterium 
breve was also able to reduce allergic manifestations in a murine 
model (25). This study will compare these two mixtures and their 
immunomodulatory effects.

Next to galectin-9, which was shown to contribute to these 
immunomodulatory effects, dectin-1 may play a role in the bind-
ing of these oligosaccharides. Dectin-1 is a C-type lectin receptor 
that is present on human IECs and the human IEC line HT-29. 
It can bind carbohydrates such as β-glucans, and may therefore 
be a possible candidate receptor for the oligosaccharides (26, 27). 
Dectin-1 is expressed at high levels at entry sites for pathogens, 
such as the intestine, therefore, it may play an important role in 
immune surveillance (28).

The aim of this study was to investigate the immunomodula-
tory effects and mechanism of action of the two prebiotic mixtures 
scGOS/lcFOS and scFOS/lcFOS in a transwell co-culture model 
simulating the crosstalk between IECs and activated PBMCs. 
IECs were exposed to scGOS/lcFOS or scFOS/lcFOS in combina-
tion with CpG ODN, and co-cultured with PBMCs of peanut-
allergic patients, either stimulated in an aspecific (aCD3/28) or 
peanut-specific manner.

MaTerials anD MeThODs

study Population
Fifteen peanut-allergic patients were recruited from the outpa-
tient clinic of dermatology/allergology at the University Medical 
Center Utrecht. This number was calculated based on previous 
experiments with healthy donors. Demographic data, severity 

conclusion: Epithelial exposure to scFOS/lcFOS enhanced the CpG-induced Th1 and 
regulatory IL-10 response in a peanut-specific co-culture model. These effects suggest 
scFOS/lcFOS as candidate for dietary adjunct in allergen-specific immunotherapy.

Keywords: allergen-specific, immunomodulation, non-digestible oligosaccharides, co-culture, epithelial cells, 
T cell polarization
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TaBle 1 | Patient characteristics.

Patient age (years) sex (M/F) Müller scoreb sPT peanut (mm) subjective eliciting dose (eD) (mg) Objective eD (mg) caP peanut (kU/l)

N01 41 F 2 3+ 10 – 1.7
N02 37 M 4 3+ 0.1 300 44
N03 45 M 2 4+ 100 – 1.8
N04 50 F 3 4+ 10 10 12
N05 35 F 4 4+ 0.1 – 85
N06a 27 F 2 4+ 4 40 12.8
N07a 42 M 3 5+ Not known 300 42.7
N08 24 M 1 4+ 100 >3,000 1.9
N09 24 F 3 3+ Not known >3,000 1
N10a 18 F 3 4+ 300 1,000 >100
N11 32 F 2 4+ 10 3,000 No data
N12a 27 M 3 5+ 0.1 1,000 66
N13 25 M 1 3+ 10 – 11.2
N14a 26 F 2 4+ 0.1 100 9.7
N15 34 F 2 4+ 40 12,000 1.55

Age, sex, Müller score, skin prick test (SPT), results of double-blind placebo-controlled food challenge (DBPCFC), and specific IgE per peanut-allergic subject.
aSubjects that visited a second time.
bMüller score 0: symptoms oral cavity, 1: symptoms of the skins and mucous membranes 2: gastro-intestinal symptoms, 3: respiratory symptoms, 4: cardiovascular symptoms.
SPT (mm). Diameter of 3 mm (3+) is considered positive. All patients underwent a DBPCFC, subjective, and objective effective doses are displayed.
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of symptoms [skin prick test (SPT) and Müller score], and the 
ED as established by double-blind placebo-controlled food 
challenge (DBPCFC) are displayed in Table 1. Inclusion criteria 
consisted of a type I allergic reaction to peanut, confirmed by a 
positive DBPCFC. Exclusion criteria were pregnancy or the 
continuous use of systemic immunosuppressants, such as pred- 
nisone. All patients gave written informed consent before enroll-
ment in the study. Five patients that responded best to the peanut 
extract were asked for a second visit for additional studies. The 
study was reviewed and approved by the Ethics Committee of  
the University Medical Center Utrecht (NL51606.041.15).

PBMc isolation
100  mL blood of peanut-allergic patients was withdrawn in 
heparin tubes. Blood was diluted 1:1 with 1× PBS (Sigma-Aldrich 
Chemie BV, the Netherlands), followed by isolation of PBMCs 
using a Ficoll–Paque PLUS (GE Healthcare Life Sciences, Sweden) 
density gradient centrifugation (2,400  rpm, 20  min). PBMCs 
were resuspended in RPMI 1640 (Gibco, Life Technologies, the 
Netherlands) with 2.5% pooled human AB serum and penicillin/
streptomycin (100×, Gibco, Life Technologies).

culture of iecs hT-29
Undifferentiated human colon adenocarcinoma HT-29 cells 
(ATCC, HTB-38; passages 144–149), were cultured in 75  cm2  
culture flasks (Greiner Bio-One B.V., the Netherlands) in McCoy’s 
5 A medium (Gibco, Life Technologies, the Netherlands) supp- 
lemented with 10% heat-inactivated FCS (Gibco, Life Techno-
logies, the Netherlands) and penicillin/streptomycin (100×, Gibco,  
Life Technologies). These cells are a representative model for 
crypt epithelium and can respond to bacterial stimuli (29). In the 
absence of an activating agent for the underlying immune cells, 
the HT-29 cells have very low background levels of cytokine that 
are being produced (13).

HT-29 cells were kept in an incubator at 37°C and 5% CO2. 
Cells were passaged once a week and medium was refreshed every 

3–4 days. Previous studies have shown that HT-29 in a similar 
manner as polarized T84 cells contribute to the immunomodula-
tory effects of CpG ODN in presence or absence of oligosaccha-
rides, and can be used as a model to mimic the cross-talk between 
IECs and underlying immune cells (10). Therefore, these cells 
were chosen for the current studies.

iec Transwell co-culture Model
One week prior to the experiment, HT-29 cells were seeded four 
times diluted in transwell inserts (12 well plates, 0.4 µm polyester 
membrane, Corning, NY, USA). After reaching confluence, IECs 
were apically exposed to 2.5 µM of CpG ODN (M362 ODN type 
C, Invitrogen) either or not combined with 0.5% w/v (5 mg/mL) 
of a 9:1 mixture of scGOS (Vivinal GOS syrup 45% pure, Borculo 
Domo, the Netherlands) and lcFOS (Raftiline HP, Orafti) or a 
0.5% w/v 9:1 mixture of scFOS (Raftilose P95, Orafti) and lcFOS. 
In the basolateral compartment, 3 ×  106 PBMCs from peanut-
allergic patients were either stimulated for 24 h with anti-CD3 
(PeliCluster CD3, CLB-T3/4.E, 1XE) and anti-CD28 antibodies 
(PeliCluster CD28, CLB-CD28/1, 15E8, both 1:10,000, Sanquin, 
the Netherlands) or 6 days with 50 µg/mL crude peanut extract 
(CPE) (Figure 1). CPE was made by blending peanuts, followed 
by extraction with Tris/NaCL buffer (20 mM Tris, 150 mM NaCL, 
pH 7.2) at room temperature. After extraction, supernatant was 
filtered twice and diluted to the desired concentration in 1× PBS. 
Incubation times for the peanut-specific and aspecific model 
were based on previous experiences (10, 30). Due to limitation 
of patient material, both the aspecific and peanut-specific model 
could be performed once per patient.

Part of the medium was refreshed every 2–3 days. After 24 h 
or 6  days, culture supernatants from the basolateral compart-
ment were stored at −20°C until cytokine measurement. After 
24  h of co-culture with aCD3/28 stimulated PBMCs, the IECs 
were washed and the insert was transferred to a new plate with 
fresh medium without PBMCs for another 24  h, to determine 
galectin-9 production by IECs. In the peanut-specific model, 
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FigUre 1 | Intestinal epithelial cells (IEC) transwell co-culture model HT-29 cells (IECs) cultured in transwells were apically exposed to synthetic CpG 
oligodeoxynucleotides in the presence or absence of either short-chain galacto-oligosaccharides and long-chain fructo-oligosaccharides (scGOS/lcFOS) or scFOS/
lcFOS. Simultaneously, 3 × 106 peripheral mononuclear cells (PBMCs) in the basolateral compartment were either stimulated aspecifically for 24 h with aCD3/CD28, 
or for 6 days with peanut extract. Basolateral cytokine production and T cell polarization were measured. After 24 h, the insert of the aspecific model was transferred 
to a new plate with fresh medium, to measure production of galectin-9 by IECs. The contribution of dectin-1 and galectin-9 in the peanut-specific model was 
investigated by either neutralizing dectin-1 with an antibody on the apical side, or by neutralizing galectin-9 with TIM-3-Fc on the basolateral side.
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galectin-9 was measured directly in the basolateral compartment 
after 6 days of culture.

To study the involvement of galectin-9 in immune modulation, 
1 µg/mL TIM-3-Fc fusion protein (Bio-Techne, USA) was added to 
the basolateral compartment of the peanut-specific model, to neu-
tralize galectin-9. Additionally, the role of dectin-1 as a candidate 
receptor for the oligosaccharides was investigated in the peanut-
specific model, by means of a neutralizing antibody applied in  
the apical compartment (3 μg/mL, Bio-Techne, USA (27, 31, 32)).

Flow cytometric analysis
After 24 h (aCD3/28) or 6 days (CPE), lymphocytes were collected 
from the basolateral compartment. Cells were stained with a 
panel of antibodies [CD3, CXCR3, CRTH2, CD25 (all Biolegend),  
CD127, FoxP3, CD4 (all eBioscience)] and CXCR5 (BD Biosciences)  
after which T  cell polarization of Th1 (CD3+CD4+CXCR3+),  
Th2 (CD3+CD4+CRTH2+), Tfh (follicular T helper) (CD3+CD4+ 
CXCR5+), and Treg (CD3+CD4+CD25highCD127−FoxP3+) was 
determined. FoxP3 staining was performed according to the 
manufacturer’s protocol (FoxP3 Transcription Factor Staining 
Buffer Set, Thermofisher, USA).

cytokine Production of PBMcs in the 
Basolateral compartment
In the basolateral supernatants, IFN-γ, TNF-α, IL-10, and IL-13 
and IL-4 were measured by means of ELISA, according to the 
manufacturer’s protocol (Ready-Set-Go, eBioscience). IL-4 was 
below the ELISA detection limit for both the aspecific and the 
allergen-specific co-culture supernatants. IL-13 and TNF-α 
production in the peanut-specific co-culture model was below the 

ELISA detection limit. In co-cultures using blood samples of four 
patients, PBMCs were restimulated with phorbol 12-myristate 
13-acetate (PMA, 10 ng/mL, Sigma-Aldrich, the Netherlands) and  
ionomycin (1 µg/mL, Sigma-Aldrich, the Netherlands) for 24 h 
which did yield detectable levels of IL-13. Galectin-9 production 
was analyzed using human-galectin-9 polyclonal and biotiny-
lated polyclonal antibodies (BioTechne). Data were analyzed by 
4-parametric curve fitting using Microplate Manager software.

statistical analysis
Data are expressed as mean ± SEM. The statistical significance 
of the data was analyzed using GraphPad Prism 7.0 software 
(GraphPad Software, San Diego, CA, USA). Normally distributed 
data were analyzed using a paired Student’s t-test or one-way 
repeated measures ANOVA followed by Bonferroni post  hoc 
analysis. Not normally distributed data were first transformed 
(square-root or LOG) before analysis. Data were considered 
significant at p < 0.05.

resUlTs

enhanced Production of il-10 and iFn-γ 
by aspecific or Peanut-specific activated 
PBMcs Upon combined exposure of iecs 
to cpg ODn and Oligosaccharides
For this study, PBMCs of 15 peanut-allergic patients (6 male 
and 9 female; age 18–50; Müller 1–4) were studied in an IEC 
transwell co-culture model, and the immunomodulatory effects 
of two prebiotic mixtures were assessed. Hereto, PBMCs of these 
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FigUre 2 | Comparison aspecific co-culture model between healthy donors and peanut-allergic donors. Apical exposure of intestinal epithelial cells (IECs) to 
non-digestible oligosaccharides in absence of CpG oligodeoxynucleotides (ODN) did not affect cytokine concentrations in the basolateral compartment  
(a–h). CpG exposure increased IFN-γ and IL-10 production (a,B) in healthy donors, which was further increased by the combined exposure to CpG ODN and 
oligosaccharides. In addition, IL-13 was decreased by CpG exposure alone (c) and TNF-α production decreased in the combined presence of oligosaccharides and 
CpG (D). Peanut-allergic donors showed similar results in terms of these response patterns upon exposure of IECs to CpG, oligosaccharides, or the combination of 
CpG and oligosaccharides (e–h).
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peanut-allergic patients were either stimulated aspecifically with 
aCD3/28 or peanut-specific by using a crude peanut extract. These 
PBMCs were co-cultured with IECs that were apically exposed to 
prebiotic mixtures in the presence of CpG ODN (TLR-9 ligand).

The peanut-allergic patients showed similar responses in this 
aspecific model as healthy donors (Figure 2). Apical exposure of 
IECs to oligosaccharides alone did not affect cytokine concentra- 
tions in the basolateral compartment, but modified CpG ODN-
induced immune responses in the aspecific co-culture model 
(Figure 2). To better appreciate these effects, the subsequent data  
of the CpG exposed IECs co-cultured with PBMCs of peanut-
allergic patients are represented as ratio’s compared to the intrinsic 
medium control (Figure  3). Exposure of IECs to CpG ODN 
resulted in increased basolateral IFN-γ and IL-10 release by PBMCs 
of both healthy and allergic donors in the aspecific co-culture 
model (Figures 2A,E,F and 3A,B). Both scGOS/lcFOS and scFOS/
lcFOS further significantly enhanced this CpG induced increase in  
IFN-γ and IL-10 in the aspecific co-culture model. In addition, 
IL-13 production was decreased by CpG ODN, and was further 
significantly decreased in the presence of the oligosaccharides 
in peanut-allergic patients (Figures  2C,G and 3C). Combined 
exposure of IECs to CpG ODN and scGOS/lcFOS or scFOS/lcFOS 
also resulted in a significant decrease in TNF-α, while CpG alone 
did not (Figures 2D,H and 3D). In previous studies, in absence 
of epithelial cells the CpG ODN did enhance IL-10 and reduced 
IL-13 secretion by activated PBMCs, but was unable to further 
enhance IFN-γ production compared to the control sample. Only  
in the presence of HT-29 cells CpG ODN increased IFN-γ pro-
duction of underlying immune cells and additional exposure to 
oligosaccharides further increased this (10, 13).

In the peanut-specific co-culture model, only scFOS/lcFOS was 
able to further significantly enhance the CpG mediated increase 
in basolateral IFN-γ and IL-10 production (Figures 3E,F). In the 
peanut-specific model, IL-13 was only detectable after restimula-
tion of the cells with PMA and ionomycin for 24 h, and shows 
a similar pattern as in the aspecific model (analyzed for n =  4 
donors, Figure 3G).

IFN-γ and IL-10 concentrations were positively correlated 
in both the aspecific and peanut-specific co-culture models 
(Figures 4A–C,F). In the aspecific co-culture model, two distinct 
populations were observed; population 2 consisted of four patients 
(N04, N06, N08, and N14) for all epithelial stimuli. This indicated 
that patients can respond differently in terms of cytokine pro-
duction pattern, however, this was not related to the demographic 
data from Table 1. In addition, in both populations this positive 
correlation was observed. In the aspecific model, IFN-γ and IL-13 
(Figure 4D) and TNF-α and IL-10 concentrations (Figure 4E) 
were negatively correlated.

increased galectin-9 Production by iecs 
Upon apical exposure to cpg ODn in 
Presence or absence of Oligosaccharides
Galectins are soluble-type lectins that have a binding specificity 
for β-galactoside sugars. Galectins among others are expressed 
and secreted by IECs, and contribute to immunomodulatory 
functions. Total galectin-9 concentrations were measured in the 
basolateral compartment after 24 h (aspecific model) and 6 days 
(peanut-specific model) (Figures  5A,C). Also, IEC-released 
galectin-9 was measured in the aspecific co-culture model 
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FigUre 3 | Continued
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FigUre 4 | Correlation of cytokine production. IFN-γ and IL-10 concentrations were positively correlated in both the aspecific and peanut-specific co-culture 
models (a–c,F). In the aspecific model, a clear distinction could be made into two populations (B,c). Population 2 was comprised of four patients for all data 
points. A negative correlation existed between IFN-γ and IL-13 concentration (D) and TNF-α and IL-10 concentration (e). Data represent n = 12–13 peanut-allergic 
patients. Correlation was tested with Spearman’s rank correlation coefficient.

FigUre 3 | Enhanced production of IL-10 and IFN-γ by aspecific or peanut-specific activated peripheral mononuclear cells upon combined exposure of intestinal 
epithelial cells (IECs) to CpG oligodeoxynucleotides (ODN) and oligosaccharides. Exposure of IECs to CpG ODN in combination with short-chain galacto-
oligosaccharides and long-chain fructo-oligosaccharides (scGOS/lcFOS) (GF) or scFOS/lcFOS (FF) enhanced basolateral IFN-γ and IL-10 production in the  
aspecific model (a,B). IL-13 production was decreased in the aspecific model upon exposure of IECs to CpG ODN and was further decreased by oligosaccharides 
(c). TNF-α production was decreased in the combined presence of scGOS/lcFOS and scFOS/lcFOS (D). Only scFOS/lcFOS was able to enhance basolateral IFN-γ 
and IL-10 production induced by CpG ODN in the peanut-specific model (e,F). IL-13 was measured after restimulation in four peanut-allergic patients (g). Data are 
represented as ratio’s compared to the medium control and represent n = 12–13 peanut-allergic patients, mean ± SEM, *P < 0.05, **P < 0.01, ***P < 0.001 by 
one-way ANOVA.
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(Figure 5B). Since the IECs in the peanut-specific model were 
already cultured for 6 days, we did not measure galectin-9 levels 
of these IECs separately.

Exposure of IECs to oligosaccharides alone did not influence 
galectin-9 concentrations, and data are shown as ratio of the 
intrinsic medium control. No difference in basolateral galectin-9 
concentration was observed after 24 h in the aspecific co-culture 
(Figure  5A), while IECs after another 24  h of culture without 
PBMCs showed an increased galectin-9 production when exposed 
to CpG ODN (Figure 5B). This was further significantly enhanced 
by combined exposure of IECs to both CpG and scGOS/lcFOS. 
In the peanut-specific co-culture model, combined exposure to 
CpG and both oligosaccharide mixtures significantly enhanced 
galectin-9, while CpG exposure alone showed a similar tendency.

increased Percentage of Treg and Tfh 
subsets in the Peanut-specific co-culture 
Model Upon exposure of iecs to cpg ODn
Allergy is caused by a combination of overactivation of Th2 
cells and impaired active suppression mediated by Treg and 
regulatory cytokines or anergy induction (33). Therefore, T cell 

polarization was assessed to determine whether this could be 
affected by the oligosaccharide mixtures. The Treg population 
(CD4+CD25highCD127−FoxP3+, Figure  6A) remained stable in 
the aspecific co-culture model (Figure 6B), while it significantly 
increased in the peanut-specific model upon exposure of IECs to 
CpG ODN (Figure 6C). In addition, the Tfh subset (Figure 6D) 
in the aspecific model was significantly increased (Figure  6E), 
and a similar trend in the peanut-specific model was observed 
(Figure  6F). Tfh can produce IL-21, which can inhibit class 
switching to IgE (34). Intracellular IL-21 was measured in the 
aspecific co-culture model after restimulation with PMA and 
ionomycin, and was increased after CpG exposure in presence or 
absence of oligosaccharides (data not shown).

increased Th1 subset in a Peanut-specific 
co-culture Model Upon exposure of iecs 
to cpg, While crTh2 is Downregulated
Similar to the Treg population, no changes were observed in the 
Th1 or Th2 subset (gating Figure 7A) in the different IEC expo-
sure conditions of the aspecific co-culture model (Figure 7B, Th2 
data not shown). However, in the peanut-specific model, IECs  
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FigUre 5 | Increased galectin-9 production by intestinal epithelial cells (IECs) upon apical exposure to CpG oligodeoxynucleotides in the presence or absence of 
oligosaccharides. In the aspecific co-culture model, no differences in basolateral galectin-9 were observed after 24 h (a). Exposure of IECs to oligosaccharides 
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exposed to CpG ODN in the apical compartment enhanced the 
percentage of basolateral Th1 cells (Figure 7C). This Th1 polariza-
tion was further significantly enhanced when IECs were exposed 
to both CpG ODN and scFOS/lcFOS, but not with scGOS/lcFOS.

The Th1 subset comprised a significantly lower percentage 
in peanut-specific stimulated PBMCs compared to aspecifically 
activated PBMCs; by contrast the Th2 subset was increased up 
to twofold (Figures 7D,E). This indicates that the stimulation 
with the peanut extract induced a peanut-specific Th2 response. 
Although this response is higher in the peanut-specific model, no 
changes were observed in percentages of Th2 cells in the separate 
conditions of the peanut- or aspecific co-culture model (data not 
shown). However, the CRTH2 expression significantly decreased 
in the peanut-specific PBMC fraction when IECs were apically 
exposed to CpG ODN (Figure 7F). This was further significantly 
decreased by scFOS/lcFOS. CRTH2 is a prostaglandin D2 recep-
tor, and is a surface marker that is selectively expressed on, for 
instance, Th2 cells, but also on other cells involved in allergy, 

such as basophils and eosinophils (35, 36). This reduction in 
CRTH2 corresponded with a decrease in a recently described 
new subset, a Lin−CD123+CD127low population (Figure  7G) 
which shares some markers with both basophils and ILCs (37).

neutralization of galectin-9 abrogates 
iFn-γ Production in the Peanut-specific 
co-culture Model
Previous research in our group indicated that the neutralization 
of galectin-9 by TIM-3-Fc in an aspecific co-culture model with 
CpG ODN and scGOS/lcFOS abrogated the increase in IFN-γ 
and IL-10 production by PBMCs (10). To examine the contribu-
tion of galectin-9 in the immunomodulatory effects of scFOS/ 
lcFOS in the peanut-specific co-culture model, basolateral galectin- 
9 was inhibited by TIM-3-Fc. In these donors, scFOS/lcFOS 
tended to increase IFN-γ further than CpG ODN alone, this 
effect was abrogated with TIM-3-Fc (Figure 8A). This indicates  
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that galectin-9 is involved in the scFOS/lcFOS induced increase 
of IFN-γ when added together with CpG ODN in the peanut-
specific co-culture model. Although combined exposure to 
both scGOS/lcFOS and CpG ODN did not further increase the 
IFN-γ concentration compared to CpG ODN, neutralization of 
galectin-9 by TIM-3-Fc reduced IFN-γ production, hereby also 
indicating the involvement of galectin-9 in the IFN-γ response in 
presence of scGOS/lcFOS. IL-10 concentrations were not further 
increased by scGOS/lcFOS or scFOS/lcFOS, and also no effects 
of TIM-3-Fc were observed (Figure 8B).

neutralization of the Dectin-1 receptor 
Does not affect iFn-γ and il-10 
Production in the Peanut-specific  
co-culture in Which iecs are exposed  
to Both cpg and Oligosaccharides
Since dectin-1 is a C-type lectin receptor and can bind carbo-
hydrates, it may be a possible candidate receptor for oligosac-
charides to exert their functions. Neutralization of the dectin-1 
receptor (nDectin) showed varying results in the patient samples. 
IFN-γ and IL-10 production were not affected by neutralization 
of the dectin-1 receptor on HT-29 cells (Figures 8C,D).

DiscUssiOn

This research explored and compared the immunomodula-
tory capacities of oligosaccharide mixtures scGOS/lcFOS and 
scFOS/lcFOS to gain insight in the underlying mechanisms of 
the observed allergy-reducing effects. To our knowledge, the 
immunomodulatory capacities of scFOS/lcFOS in in vitro models 
have not been investigated previously. In addition, this study 
was performed with cells of peanut-allergic patients instead of 
healthy donors. In the aspecific co-culture model with PBMCs 
of peanut-allergic patients, both oligosaccharide mixtures were 
effective in significantly enhancing IFN-γ and IL-10, while 
decreasing IL-13 and TNF-α production. By contrast, in presence 
of TLR-9 ligation with CpG ODN, the combination with scFOS/
lcFOS rather than scGOS/lcFOS was effective in enhancing this 
Th1 and regulatory IL-10 response in a peanut-specific model. 
This correlated increase in both IFN-γ and IL-10 production was 
described previously (13), and depended on the presence of the 
IECs in the co-culture model. These IECs can modulate immune 
responses, and under the influence of TLR9 ligand CpG ODN, 
both IFN-γ and IL-10 were upregulated and this was further 
enhanced by oligosaccharides. Although the IL-13 production in 
the peanut-specific model could only be determined in a small 
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sample size, it showed a similar trend as the aspecific model.  
In addition, a significant decrease in prostaglandin receptor CRTH2 
expression was observed in the peanut-specific model when IECs 
were exposed to both scFOS/lcFOS and CpG ODN. This receptor 
is associated with allergy and inflammation, since activation of 
this receptor can induce chemotaxis of Th2 cells, eosinophils, 
or basophils to sites of inflammation (38–40). Therefore, we 
can conclude that the overall cytokine balance of the observed 
effector response of CpG ODN combined with scFOS/lcFOS in 
a peanut-specific model is favored toward a Th1 and regulatory 
IL-10 response, driving away from the inflammatory allergic 
phenotype. The latter is supported by the observed decrease of 
TNF-α and the negative correlation between IL-10 and TNF-α.

In the aspecific model of both healthy as well as peanut-allergic 
donors, scGOS/lcFOS and scFOS/lcFOS significantly enhanced 
the effect of CpG ODN. Typically in the peanut-specific model, 
only scFOS/lcFOS was capable of enhancing the regulatory Th1 
response when combined with CpG ODN in terms of increased 
IFN-γ and IL-10 production and Th1 polarization. This may be 
related to structural differences between these oligosaccharides. 
scGOS is synthesized from lactose by β-galactosidase, and 
consists of galactose polymers in combination with a glucose 
moiety on the reducing terminus, with a degree of polymeriza-
tion (DP) of less than 10 monomers (41). In contrast, scFOS is 
derived from inulin, and consists of fructose polymers with a DP 
of 2–6 (41). Currently, it is not known why scGOS/lcFOS did not 
enhance CpG effects in the peanut-specific model; however, this 
may be related to the allergen-specific way of stimulation of the 
PBMCs. These differences in stimulation indicate the importance 
of confirming the effects in an allergen-specific model beyond 
the use of aspecific stimulation models. The differences between 
cytokine responses of scGOS/lcFOS and scFOS/lcFOS in this 
transwell co-culture model could be evaluated more in depth 
with a concentration-response study, however, due to the limited 
amount of PBMCs obtained from peanut-allergic patients, this 
was not possible in this study.

Although additional cytokine effects of the prebiotic mixtures 
in combination with CpG were observed in the aspecific co-cul-
ture model, these additional effects could not be directly linked 
to the Th1 cell polarization which was previously shown using 
PBMCs derived from healthy donor buffy coats (22). However, 
in the peanut-specific model the additional effect of scFOS/lcFOS 
on top of the CpG ODN effect on IFN-γ production could be 
linked to increased Th1 percentages. An explanation for missing 
this direct link between the additional cytokine production by the 
oligosaccharides and T cell polarization is that cytokines, IFN-γ 
and IL-10, can be produced by other cell subsets than Th1 cells or 
Tregs within the PBMCs. For instance, NK cells, CTLs and ILCs 
can produce IFN-γ (42), whereas monocytes and B-cells can also 
produce IL-10 (13, 43). The decrease in IL-13 was not associated 
with a reduction in the Th2 subset, but may be explained by the 
decrease in the total CRTH2 population, or the increase of IFN-γ. 
This cytokine is known to be able to inhibit Th2-type responses 
(44). It could be possible that the non-digestible oligosaccharides 
exert their functions not only on T cell level, but also influence 
other cells in the co-culture model, which should be further 
investigated. Cytokine production can also be influenced by age. 

This study depended on patients that voluntarily donated blood; 
therefore, the age of patients was not homogeneous. However, no 
correlations between age and cytokine production were observed 
(data not shown). The choice for using HT-29 cells in this study 
was based on previous research. For the future, it would be inter-
esting to validate these results with for instance primary epithelial 
material from (allergic) patients.

In the peanut-specific model, an additional increase in 
basolateral galectin-9 concentration was observed when IECs 
were exposed to the combination of oligosaccharides and CpG 
ODN. This coincided with a decrease in IFN-γ production in the 
peanut-specific co-culture model when galectin-9 was neutral-
ized by TIM-3-Fc. Therefore, we assume that also in an allergen-
specific setting, galectin-9 may mediate the immunomodulatory 
effect in the case of scFOS/lcFOS, as was described previously 
(10). Next to the role of galectin-9, we assessed whether oli-
gosaccharide mixtures exert their functions via C-type lectin 
receptor dectin-1 which is present on human IECs and HT-29 
cells (27). IFN-γ production was not significantly affected after 
neutralization of this receptor, indicating that dectin-1 might 
not be important in the recognition of non-digestible oligosac-
charides. However, there are also studies indicating that dectin-1 
can collaborate with other TLRs or complement receptor 3  
(45, 46). Further investigation into the possible role of dectin-1 
might be necessary to rule out any collaboration with other recep-
tors. In conclusion, this in vitro study indicates that combined 
exposure of IECs to CpG ODN and scFOS/lcFOS in a peanut-
specific co-culture model contributes to an effector response that 
is favored toward a Th1 and regulatory IL-10 response and is less 
prone to the Th2 milieu. To improve efficacy and safety of cur-
rently developing protocols for immunotherapy, scFOS/lcFOS 
may be an interesting candidate for dietary adjunct therapy in 
allergen-specific immunotherapy, since the final efficacy goal of 
immunotherapy is the suppression or recovery of the allergen-
specific Th2 response which may contribute to acquiring long 
lasting tolerance induction.
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