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NY-ESO-1 or New York esophageal squamous cell carcinoma 1 is a well-known cancer- 
testis antigen (CTAs) with re-expression in numerous cancer types. Its ability to elicit 
spontaneous humoral and cellular immune responses, together with its restricted expres-
sion pattern, have rendered it a good candidate target for cancer immunotherapy. In 
this review, we provide background information on NY-ESO-1 expression and function 
in normal and cancerous tissues. Furthermore, NY-ESO-1-specific immune responses 
have been observed in various cancer types; however, their utility as biomarkers are not 
well determined. Finally, we describe the immune-based therapeutic options targeting 
NY-ESO-1 that are currently in clinical trial. We will highlight the recent advancements 
made in NY-ESO-1 cancer vaccines, adoptive T cell therapy, and combinatorial treatment 
with checkpoint inhibitors and will discuss the current trends for future NY-ESO-1 based 
immunotherapy. Cancer treatment has been revolutionized over the last few decades 
with immunotherapy emerging at the forefront. Immune-based interventions have shown 
promising results, providing a new treatment avenue for durable clinical responses in vari-
ous cancer types. The majority of successful immunotherapy studies have been reported 
in liquid cancers, whereas these approaches have met many challenges in solid cancers. 
Effective immunotherapy in solid cancers is hampered by the complex, dynamic tumor 
microenvironment that modulates the extent and phenotype of the antitumor immune 
response. Furthermore, many solid tumor-associated antigens are not private but can 
be found in normal somatic tissues, resulting in minor to detrimental off-target toxicities. 
Therefore, there is an ongoing effort to identify tumor-specific antigens to target using 
various immune-based modalities. CTAs are considered good candidate targets for 
immunotherapy as they are characterized by a restricted expression in normal somatic tis-
sues concomitant with a re-expression in solid epithelial cancers. Moreover, several CTAs 
have been found to induce a spontaneous immune response, NY-ESO-1 being the most 
immunogenic among the family members. Hence, this review will focus on NY-ESO-1 and 
discuss the past and current NY-ESO-1 targeted immunotherapeutic strategies.
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CANCeR-TeSTiS ANTiGeNS (CTA)

Cancer-testis antigens form a family of antigens that are encoded by 276 genes, comprising more 
than 70 gene families (1). Approximately 50% of all CTA genes form multigene families on the X 
chromosome and are referred to as CT-X genes (2). These CTAs are located in specific clusters along 
the chromosome with the highest density in the Xq24–q28 region (3). CTA expression is largely 
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restricted to testicular germ cells and placenta trophoblasts with 
no or low expression in normal adult somatic cells (3, 4).

Interestingly, several CTAs have been found to be re-expressed 
in a variety of epithelial cancers. For example, using the RNA 
sequencing dataset from the Genotype–Tissue Expression project, 
Rooney et al. identified 60 CTAs with absent expression in normal 
tissues and ectopic expression in numerous tumor types, including 
melanoma, head and neck, lung, liver, stomach, and ovarian can-
cer (5). Across cancer types, tumors can be classified as CTA-rich, 
intermediate, or poor based on the frequency of CTA expression. 
CTA-rich tumors include melanoma, ovarian, lung, and bladder 
cancer; the group of CTA-moderate tumors comprises breast, 
bladder, and prostate cancer, while renal cell carcinoma, colo-
rectal cancer, and lymphoma/leukemia are categorized as CTA-
poor tumors (4, 6). Several reports suggest that there might be a 
preference for specific CTA re-expression in certain tumor types, 
exemplified by MAGEA1–4 in 70% of metastatic melanomas, 
ACRBP in 70% of ovarian tumors and NY-ESO-1 in 46% of breast 
tumors (7). CTA expression patterns have also been associated 
with disease stage. For example, whereas no expression of the SSX 
family of CTAs could be observed in benign prostate tissue, 23% 
of metastatic prostate cancer lesions showed re-expression of SSX 
proteins (8). Although CTA expression may be increased in bulk 
primary tumors, this might not be reflected on the single cell level. 
For instance, microdissection of ovarian cancer specimens dem-
onstrated considerable intra-tumoral heterogeneity of NY-ESO-1 
expression (9). Heterogenous expression can also be found across 
metastatic foci originating from one primary lesion (10). Intra-
tumoral heterogeneity could partly explain the different extent 
to which certain CTAs are re-expressed in tumors. In addition, 
discrepancies between RNA and protein expression levels are not 
uncommon and may contribute to the variety of expression levels 
reported. There is a great need for studies with direct comparison 
of RNA and protein expression levels in the same samples, which 
is impeded by the lack of specific commercially available CTA 
antibodies.

The mechanisms underlying the aberrant re-expression of 
CTAs include DNA demethylation and histone posttranslational 
modification with recent evidence also supporting a role for 
miRNA-mediated regulation (2, 11). Interestingly, demethylat-
ing agents such as 5-aza-2-deoxycytidine are capable to induce 
re-expression of certain CTAs specifically in tumor cells but not 
in normal epithelial cells (12–16).

Cancer-testis antigens are not only re-expressed in tumor 
tissues but they are also believed to be immunogenic proteins as 
many members of the family have been shown to elicit spontane-
ous cellular and humoral immune responses in cancer patients. 
The first CTA identified, MAGE-A1, was discovered through its 
ability to induce an autologous cytotoxic T lymphocyte response 
in a melanoma patient (17). Since then, several other CTAs have  
been identified as immunogenic tumor-associated antigens (TAAs)  
including SSX-2, NY-ESO-1, and various members of the BAGE, 
GAGE, and MAGE families (2, 18).

Despite the increasing amount of data on CTA expression 
in normal and neoplastic tissues, their functions remain largely 
elusive. Transgenic mouse models have revealed several CTA 
members to play a key role in male fertility (7). A handful of CTAs 

have been implicated in cell metabolism, cytoskeleton dynamics, 
double-strand break repair, maintenance of genomic integrity, 
and regulation of mRNA expression during spermatogenesis. 
Although increasing number of studies are demonstrating CTA 
re-expression in cancer, their functional role in oncogenesis is 
largely unexplored. More recent data points to a role for CTAs in 
the regulation of epithelial-to-mesenchymal transition as well as 
tumor cell survival (19).

Given their largely restricted expression in adult somatic 
tissues and their immunogenic potential, CTAs have been con-
sidered good candidate targets for cancer immunotherapy. To 
date, NY-ESO-1 is the most promising CTA for immune-based 
interventions as its tumor expression is clearly correlated with the 
induction of an immune response in a wide range of malignancies 
(2). Therefore, this review will focus on NY-ESO-1 in relation 
to its expression pattern and biological function; and will also 
discuss some of the past and recent developments in NY-ESO-1 
tumor immunology and immunotherapy. This review does not 
aim to cover all available literature on NY-ESO-1 in cancer as this 
has become a very large area of research. Therefore, certain stud-
ies might have been missed in this review for which we apologize 
in advance.

NY-eSO-1 eXPReSSiON iN NORMAL 
TiSSUeS

The CTA New York Esophageal Squamous Cell Carcinoma-1 
(NY-ESO-1) is also known as cancer-testis antigen 1B (CTAG1B) 
and is encoded by the gene CTGAG1B which is located on the 
Xq28 region of the X chromosome.

NY-ESO-1 is an archetypical example of a CTA with restricted 
expression to germ cells and placental cells and re-expression in 
tumor cells. During embryonic development, NY-ESO-1 expres-
sion can be detected as early as 13 weeks and is the highest at 
22–24 weeks (20). While NY-ESO-1 expression is maintained in 
the spermatogonia and primary spermatocytes, its expression 
quickly decreases in the female oogonia (3, 20–22). RNA, but not 
protein, expression of NY-ESO-1 has been detected at low levels 
in ovarian and endometrial tissue, albeit its biological relevance 
is as yet unclear (21, 23).

NY-ESO-1 is an 18-kDa protein with 180 amino acids featur-
ing a glycine-rich N-terminal region and a strongly hydrophobic 
C-terminal region with a Pcc-1 domain. The NY-ESO-1 protein 
has been shown to be homologous to two other CTA located 
in the same region; LAGE-1 and ESO3 (24). While NY-ESO-1 
and LAGE-1 encode very homologous proteins with restricted 
expression in adult testis, the ESO3 protein has a rather low simi-
larity with both and has been reported to be expressed in various 
somatic tissues (25). Screening of cDNA expression libraries 
for T cell epitope discovery has revealed that NY-ESO-1 can be 
generated from an alternative open reading frame, resulting in a 
58 amino acid-long protein that is recognized by tumor-reactive 
T cells (26).

Although very little is known about the biological function 
of NY-ESO-1, possible functions can be deducted from its 
structure and expression pattern. The presence of the conserved 
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Pcc-1 domain suggests that it might be involved in cell cycle 
progression and growth (27). Coexpression with melanoma 
antigen gene C1, a member of the MAGE family of CTAs (28), 
further supports involvement in cell cycle progression and 
apoptosis given the prominent role of MAGE proteins in these 
cellular processes (29). In addition, its restricted expression pat-
tern suggests that it may have a role in germ cell self-renewal or 
differentiation. This notion is further supported by the nuclear 
localization of NY-ESO-1 in mesenchymal stem cells in contrast 
to the predominant cyto plasmic expression in cancer cells. Upon 
differentiation of mesenchymal stem cells, NY-ESO-1 expression 
is downregulated which suggests a possible role in cell prolifera-
tion of stem cells and cancer cells (30). Furthermore, NY-ESO-1 
expression is increased in glioma cancer stem cells compared to 
differentiated cells, concurrent with histone acetylation and DNA 
hypomethylation (31).

NY-eSO-1 eXPReSSiON iN CANCeR

Tumor expression
NY-ESO-1 expression has been reported in a wide range of tumor 
types, including neuroblastoma, myeloma, metastatic melanoma, 
synovial sarcoma, bladder cancer, esophageal cancer, hepatocel-
lular cancer, head and neck cancer, non-small cell lung cancer, 
ovarian cancer, prostate cancer, and breast cancer (21, 32–46). 
Within these tumor types, the expression frequency of NY-ESO-1 
differs greatly with the most commonly expressing tumors being 
myxoid and round cell liposarcoma (89–100%), neuroblastoma 
(82%), synovial sarcoma (80%), melanoma (46%), and ovarian 
cancer (43%) (37, 47–51). Other tumor types show protein expres-
sion of NY-ESO-1 in the range of 20–40%. In addition, numerous 
studies have reported RNA expression data which might differ 
considerably from protein expression levels as determined by 
immunohistochemistry; and only few studies have investigated 
both RNA and protein expression.

Important to note is that the majority of cancer types show a 
heterogeneous expression of NY-ESO-1, which could limit the 
treatment response to NY-ESO-1, targeted treatment. The most 
homogenous expression has been reported in myxoid and round 
cell liposarcomas (94%) and synovial sarcomas (70%) which 
might be related to the promising results that have been obtained 
in adoptive cellular immunotherapy trials (47, 49).

Humoral and Cellular immune Response
The first evidence of a spontaneous immune response against 
NY-ESO-1 was reported in an esophageal cancer patient (52). 
Using the tumor mRNA of one patient with a squamous cell car-
cinoma of the esophagus, the authors constructed a tumor cDNA 
expression library that was immunoscreened with the serum 
of the same patient. Using the SEREX technology (Serological 
analysis of recombinant cDNA expression libraries), NY-ESO-1 
was identified as a tumor antigen that could elicit high-titer IgG 
humoral responses.

Humoral immune responses against NY-ESO-1 can be detected 
in a variety of cancer patients, including patients with colorectal, 
lung, breast, prostate, gastric, and hepatocellular cancer (53–61). 

As most of these studies focus on one cancer type, the study of 
Oshima et al. is worth noting as they performed a large serological 
study on 1,969 specimens from patients with various cancer types 
(62). The authors could detect serum NY-ESO-1 autoantibodies 
across all cancers, with the highest frequency in esophageal can-
cer (32%), followed by lung cancer (13%), hepatocellular cancer 
(11%), prostate and gastric cancer (10%), colorectal cancer (8%), 
and breast cancer (7%). Analysis of healthy individuals revealed 
no spontaneous NY-ESO-1 humoral response.

NY-ESO-1 has also been shown to induce a cellular immune 
response. The first report of a simultaneous humoral and cel-
lular response against NY-ESO-1 was observed in a metastatic 
melanoma patient with a high-titer antibody response (63). Three 
HLA-A2 restricted epitopes in NY-ESO-1 were identified as the 
recognition sites for CD8+ cytotoxic T lymphocytes. In a follow-
up study, the same team validated their findings by detection 
of NY-ESO-1-specific CD8+ T cells in 10 out of 11 melanoma 
patients who carry NY-ESO-1 antibodies (64). In a later study, 
they also identified three HLA-DRB4*0101–0103, MHC class 
II epitopes that were recognized by CD4+ T lymphocytes from 
two melanoma patients (65). In addition, others identified HLA-
DRB1*0401 and HLA-DP4 restricted epitopes in the carboxy-
terminal end of NY-ESO-1 which can be recognized by CD4+ 
T  lymphocytes from melanoma patients (66–69). The peptide 
containing the HLA-DP4-restricted epitope could also generate 
HLA-A2-restricted CD8+T cells, suggesting that the peptide could 
be used as a cancer vaccine to induce both CD4+ and CD8+ T cell 
responses (70). This opens up the number of immunotherapeutic 
approaches that can be employed against NY-ESO-1-positive 
tumors inducing the humoral immune system as well as the cel-
lular CD4+ and CD8+ T cell compartments, either individually 
or in combination. Interestingly, in healthy individuals NY-ESO-1 
specific CD4+ T-cell precursors were found to be actively sup-
pressed by regulatory T cells, suggesting that the cytokine milieu 
of the tumor microenvironment can dictate and impede natural 
NY-ESO-1 antitumor immune responses (71, 72). This notion is 
of great importance and should be taken into account during the 
design of novel immune-based interventions.

NY-eSO-1 as Biomarker
NY-ESO-1 expression has been found across tumor types to cor-
relate with several characteristics of advanced disease, including 
higher differentiation grade, lymph node metastasis, and clinical 
stage (23). The value of NY-ESO-1 expression as a prognostic 
biomarker remains controversial. While its expression has been 
linked to a poor clinical outcome in some cancers, no correlation 
or conflicting results have been found in others. For instance, 
in non-small cell lung cancer, hepatocellular carcinoma, head 
and neck cancer, gastrointestinal cancer, multiple myeloma, and 
malignant melanomas NY-ESO-1 tumor expression has been asso-
ciated with a higher risk of recurrence, poor treatment response 
and shorter survival (73–83). In contrast, in non-Hodgkin’s 
lymphoma NY-ESO-1 tumor expression was associated with early 
stage disease (84). Early reports on ovarian and breast cancer did 
not show any significant correlation with prognosis (37, 85, 86). 
Immune responses to NY-ESO-1 have also been investigated in 
the context of circulating biomarkers, providing a non-invasive 
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TABLe 1 | NY-ESO-1 cancer vaccines currently in clinical trial.

NCT number Other iDs interventions Conditions Status

NCT01967758 13-012A NY-ESO-1 bacterial vaccine ADU-623 Astrocytic tumors|glioblastoma 
multiforme|anaplastic astrocytoma|brain tumor

Active, not 
recruiting

NCT01536054 I 199911|NCI-2011-02964 ALVAC(2)-NY-ESO-1 (M)/TRICOM vaccine| 
mTOR inhibitor (Sirolimus)

Stage II–IV and recurrent fallopian tube cancer/
ovarian epithelial cancer/primary peritoneal 
cavity cancer

Active, not 
recruiting

NCT02833506 I 277115|NCI-2016-00811| 
P30CA016056|R01CA158318

Recombinant NY-ESO-1 Protein vaccine| 
mTOR inhibitor (Sirolimus)

Stage II–IV and recurrent fallopian tube cancer/
ovarian epithelial cancer/primary peritoneal 
cavity cancer

Not yet 
recruiting

NCT02224599 Kirovax 003|BSK01 DC vaccine Peptide-pulsed DC vaccine Advanced solid tumors Recruiting

NCT02692976 EudraCT 2012-002531-29 Multi peptide (NY-ESO-1, MUC1) -pulsed myeloid  
and plasmacytoid DC vaccine

Prostate cancer Active, not 
recruiting

NCT01883518 MC-01-2013|ADCVCTAST Allogeneic tumor lysate (NY-ESO-1,  
MAGE-A3) -pulsed DC vaccine

Soft tissue sarcoma Recruiting

NCT02334735 GCO 14-0780 Multi peptide (NY-ESO-1 and Melan-A/MART-1) - 
pulsed DC vaccine

Melanoma Recruiting

NCT02122861 ID-LV305-2013-001 DC lentiviral vector vaccine (LV305) Melanoma/non-small cell lung cancer/sarcoma Active, not 
recruiting

NCT02387125 IMDZ-C131 CMB305 (peptide-pulsed DC vaccine LV305 + 
G305 recombinant NY-ESO-1 protein vaccine)| 
TLR4 agonist (G100)

Sarcoma|melanoma|non-small cell lung 
cancer|ovarian cancer

Recruiting

NCT02129075 NCI-2014-00898|CITN-07-
FLT3L|U01CA154967

DEC-205/NY-ESO-1 Fusion Protein vaccine  
(CDX-1401)|Recombinant Flt3 Ligand (CDX-301)

Stage II–IV melanoma Active, not 
recruiting

NCT02166905 I 248613|NCI-2014-
00771|P30CA016056

DEC-205/NY-ESO-1 Fusion Protein (CDX-1401)| 
IDO1 inhibitor (Epacadostat)

Fallopian tube carcinoma|ovarian 
carcinoma|primary peritoneal carcinoma

Recruiting

NCT02750995 AZACTA Multi peptide vaccine (NY-ESO-1, PRAME, MAGE-A3,  
WT-1)|demethylating agent Decitabine

Myelodysplastic syndrome|acute myeloid 
leukemia

Recruiting

CMB305, peptide-pulsed DC vaccine LV305 + G305 recombinant NY-ESO-1 protein vaccine; DC, dendritic cell; CDX-1401, DEC-205/NY-ESO-1 Fusion Protein vaccine.
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way for monitoring disease progression and treatment response. 
The extent of a NY-ESO-1-specific humoral immune response has 
been found to increase with disease progression and to decrease 
with disease regression (32, 33, 38, 60, 62, 87–89). A comprehensive 
overview of NY-ESO-1 expression and immunogenicity in differ-
ent cancers has been provided by Esfandiary and Ghafouri-Fard 
(22). After the publication of that review, new findings showed 
that the detection rate of NY-ESO-1 antibodies in esophageal 
cancer gradually increases with disease stage, going from 16% in 
stage I to 42% in stage IV (62). Further, in colorectal cancer, the 
presence of NY-ESO-1 antibodies has been recently correlated 
with several prognostic clinicopathological parameters including 
depth of tumor invasion, clinical stage, lymph node, and distant 
metastasis (89). Changes in NY-ESO-1 antibodies over time can 
be indicative of disease regression and could be used as markers 
for disease monitoring as demonstrated in 12 patients with dif-
ferent tumor types (88). In four out of five patients (two bladder 
cancer, two melanoma, one non-small cell lung cancer) with a 
decrease in NY-ESO-1 humoral response, a reduction in tumor 
burden and/or metastases was observed. Likewise, NY-ESO-1-
T-cell responses have been investigated as prognostic markers. 
In metastatic melanoma, the presence of circulating NY-ESO-1-
specific T lymphocytes has been associated with better prognosis, 
improving overall survival from 6 to 21 months (90).

NY-eSO-1 DiReCTeD iMMUNOTHeRAPY

NY-ESO-1 is widely believed to be a good candidate target for 
immunotherapy and some promising results have been obtained 
in early phase I/II studies. Its restricted expression in normal tissues 
in combination with its widespread expression across tumor types 
renders NY-ESO-1 a target with limited off-target toxicities and 
broad applications in numerous cancer types. Furthermore, its 
strong immunogenic nature suggests that there is an opportunity 
to boost the natural immune response against this TAA. To date, 
there are 12 active, 31 recruiting, and 5 proposed clinical trials 
targeting NY-ESO-1 using various immune-based interventions 
(http://www.clinicaltrials.gov). In this review, we will discuss the 
ongoing clinical trials, summarized in Tables 1–3, and highlight 
some of the completed trials using a NY-ESO-1 vaccination 
approach, adoptive cellular therapy, or combination treatment 
with immune checkpoint inhibitors (Figure 1).

NY-eSO-1 Cancer vaccines
The current NY-ESO-1 cancer vaccine trials have evolved con-
siderably since the first clinical trials that were conducted more 
than one decade ago. Many advances have been made in peptide 
discovery and vaccine formulation. We now have an armatorium 
of individual synthetic peptides, individual and complexed 
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TABLe 2 | NY-ESO-1 adoptive T cell therapy modalities currently in clinical trial.

NCT number Other iDs interventions Conditions Status

NCT02366546 1301-01 TBI-1301 Advanced solid tumors Recruiting

NCT02869217 1301-02 TBI-1301 Advanced solid tumors Recruiting

NCT03250325 1301-03 TBI-1301 Synovial sarcoma Recruiting

NCT03047811 NY-TCR WXH 2016 NY-ESO-1 TCR-T cells Advanced solid tumors Recruiting

NCT02457650 201504002 NY-ESO-1 TCR-T cells Metastatic solid tumors Recruiting

NCT01795976 ATTACK-OG|12_DOG14_22 NY-ESO-1 TCR-T cells Esophageal cancer Active, not recruiting

NCT03093350 H-39209 TACTIC Multi TAA T cells (NY-ESO-1, MAGEA4, PRAME, 
survivin and SSX2)

Breast cancer Not yet recruiting

NCT03192462 H-40378 TACTOPS Multi TAA T cells (NY-ESO-1, MAGEA4, PRAME, 
survivin and SSX2)

Pancreatic cancer Not yet recruiting

NCT02239861 H-35425, TACTASOM Multi TAA T cells (NY-ESO-1, MAGEA4, PRAME, 
survivin and SSX2)

Rhabdomyosarcoma Recruiting

NCT02291848 H-35626, TACTAM Multi TAA T cells (NY-ESO-1, MAGEA4, PRAME, 
survivin and SSX2)

Multiple myeloma Recruiting

NCT02494167 H-36346 ADSPAM Multi TAA T cells (WT1, NY-ESO-1, PRAME,  
and survivin)

Acute myeloid leukemia, myelodysplastic 
syndrome

Recruiting

NCT03175705 Beijing Youan Ethics[2017]06 Multi TAA T cells (GPC-3, NY-ESO-1, AFP) Hepatocellular carcinoma Recruiting

NCT02774291 2015-5254|NCI-2015-
01781|P30CA013330

Murine NY-ESO-1 TCR-T cells Metastatic solid tumors Not yet recruiting

NCT01967823 130214|13-C-0214 Murine NY-ESO-1 TCR-T cells Metastatic solid tumors Recruiting

NCT01567891 ADP-0011-001|230612 NY-ESO-1c259-T cells Ovarian cancer Recruiting

NCT01350401 ADP 01611 NY-ESO-1c259-T cells Metastatic melanoma Active, not recruiting

NCT01343043 ADP 04511 NY-ESO-1c259-T cells Synovial sarcoma Recruiting

NCT02992743 ADP-0011-007 NY-ESO-1c259-T cells Advanced myxoid, round cell liposarcoma Recruiting

NCT01892293 ADP-0011-002 NY-ESO-1c259-T cells Multiple myeloma Active, not recruiting

NCT02588612 ADP-0011-004 NY-ESO-1c259-T cells Non-small-cell lung cancer Recruiting

NCT01352286 ADP 01411 NY-ESO-1c259-T cells|stem cell transplantation Multiple myeloma Active, not recruiting

NCT03029273 2016-63 TAEST16001 Recurrent non-small cell lung cancer Recruiting

NCT03159585 TS20161229 TAEST16001 solid tumors Recruiting

TAA, tumor-associated antigen; TAEST16001, TCR affinity enhancing specific T cell therapy with autologous T cells transduced with affinity-enhanced NY-ESO-1 TCR; TBI-1301, 
NY-ESO-1 specific TCR-transduced T cells; TCR, T cell receptor.

5

Thomas et al. NY-ESO-1 Antitumor Immunotherapy

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 947

recombinant proteins, as well as a variety of adjuvant formulations 
to our disposal. Various adjuvants have been rigorously tested for 
their ability to enhance cytotoxic CD8+ T lymphocyte activity in 
response to exposure to MHC class I-restricted peptides. These 
adjuvants vary from granulocyte/macrophage colony-stimulating 
factor to montanide-ISA-51 (Montanide), polyinosinic–polycyti-
dylic acid-stabilized by lysine and carboxymethyl cellulose (Poly-
ICLC), incomplete Freund’s adjuvant, saponin-based adjuvant 
(ISCOMATRIX), cholesteryl pullulan, and monophosphoryl lipid 
A (91, 92). A combination of various factors has been proposed 
as novel adjuvant (APH); consisting of alum, polysaccharides and 
the short synthetic innate defense-regulator peptide HH2 (93). 
NY-ESO-1 vaccination with this adjuvant significantly increased 
humoral and cellular responses and reduced the melanoma 
burden in mice. Another strategy to enhance vaccination efficacy 
is to induce CD4+ immune responses to support the priming 
and maintenance of CD8+ cytotoxic T  lymphocytes (92). To 
date, 21 distinct epitopes restricted to at least five different HLA-
class II alleles have been identified in NY-ESO-1. The peptides 
NY-ESO-180–109 and NY-ESO-1157–165, associated with, respectively, 
CD4+ and CD8+ T cell responses, have been shown to be the most 

immunogenic. Using full-length recombinant protein can further 
enhance the extent of the induced immune responses as both class 
I and class II epitopes are available for antigen presentation and 
processing. For instance, vaccination of melanoma patients with 
recombinant full-length NY-ESO-1 alone or in combination with 
the ISCOMATRIX adjuvant resulted in a strong induction of 
NY-ESO-1 specific antibodies, as well as an increase in specific 
CD4+ and CD8+ T cells (94). Using longer peptides also has the 
potential to induce a stronger immune response. For example, 
vaccination with the 20-mer NY-ESO-191–110 peptide, covering 
multiple epitopes, induced both humoral and cellular CD4+ 
and CD8+ T  cell responses. Furthermore, stable disease was 
achieved in 3 out of 10 cancer patients (95). Another approach 
to enhance NY-ESO-1 vaccination responses is the use of a 
prime and boost schedule, consisting of an initial vaccination, 
the prime, with 1 cancer vaccine followed by administration of 
a second vaccine, the boost. Using a recombinant NY-ESO-1 
vaccine/recombinant fowlpox-NY-ESO-1 vaccine prime-boost 
regimen, both humoral and cellular responses against a broad 
range of NY-ESO-1 epitopes have been observed (96, 97). Other 
modifications to the acellular vaccine approach currently in 
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FiGURe 1 | Overview of NY-ESO-1 targeted approaches for cancer immunotherapy. Immune-mediated tumor rejection can be induced by targeting tumor-specific 
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inhibitors which block inhibitory signals between DCs and T cells (anti-CTLA-4) and between T cells and tumor cells (anti-PD1 and anti-PD-L1).

TABLe 3 | NY-ESO-1 combinatorial immune-based interventions currently in clinical trial.

NCT number Other iDs interventions Conditions Status

NCT01946373 MAT-02|2012-000450-63 Peptide-pulsed DC vaccine|TILs Melanoma Recruiting

NCT01176474 MCC-15651|NCI-8316 NY-ESO-1157–165/gp100280–288 vaccine|PD-1 inhibitor (Nivolumab)| 
PD-1 inhibitor (Nivolumab) + CTLA-4 inhibitor (Ipilimumab)

Stage III–IV melanoma Active, not 
recruiting

NCT01176461 MCC-15400|NCI-P-7997| 
CA209-006/007|10-15526-99-01

Multi peptide vaccine (MART-1, NY-ESO-1, gp100209–217,  
gp100280–288|PD-1 inhibitor) (Nivolumab)

Melanoma Active, not 
recruiting

NCT02609984 IMDZ-C232 CMB305|PD-L1 inhibitor (Atezolizumab) Sarcoma Active, not 
recruiting

NCT03206047 NCI-2017-01030|I 
285416|10017|P30CA016056

DEC-205/NY-ESO-1 fusion protein vaccine (CDX-
1401)|demethylating agent|PD-L1 inhibitor (atezolizumab)

Recurrent fallopian 
tube carcinoma|ovarian 
carcinoma|primary peritoneal 
carcinoma

Recruiting

NCT03017131 i 283616|NCI-2016-
01477|P30CA016056|P50CA159981

NY-ESO-1 TCR-T cells|demethylating agent Recurrent fallopian 
tube carcinoma|ovarian 
carcinoma|primary peritoneal 
carcinoma

Not yet 
recruiting

NCT01333046 H-27471-TACTAL|TACTAL Multi TAA T cells (NY-ESO-1, MAGEA4, PRAME, survivin and 
SSX2)|decitabine

Hodgkin lymphoma|non-
Hodgkin lymphoma|Hodgkin 
disease

Recruiting

NCT01697527 12-000153|NCI-2012-01548 NY-ESO-1 TCR-T cells|NY-ESO-1157–165 peptide-pulsed DC vaccine Advanced solid tumors Recruiting

NCT03240861 15-000511|NCI-2017-00896|Ribas 
NYESO SCT Cancer|P30CA016042

NY-ESO-1 TCR-transduced peripheral blood mononuclear  
cells and peripheral blood stem cells

Advanced solid tumors Recruiting

NCT02650986 I 258514|NCI-2015-
02080|P30CA016056

NY-ESO-1 TCR-T cells|TGFbDNRII-transduced TILs Advanced solid tumors Recruiting

NCT03168438 ADP-0011-008|KEYNOTE-487 NY-ESO-1c259-T cells|PD-1 inhibitor (pembrolizumab) Multiple myeloma Recruiting

NCT02775292 NYM|15-001433|NCI-2016-00201| 
Ribas NYESO + Nivolumab 
Cancer|P30CA016042

NY-ESO-1 TCR-T cells|NY-ESO-1157–165 -pulsed DC vaccine| 
PD-1 inhibitor (nivolumab)

Advanced solid tumors Recruiting

NCT02070406 13-001624|NCI-2014-00221| 
P30CA016042

NY-ESO-1 TCR-T cells|NY-ESO-1157–165 pulsed DC vaccine| 
CTLA-4 inhibitor (ipilimumab)

Advanced solid tumors Recruiting

CMB305, peptide-pulsed DC vaccine LV305 + G305 recombinant NY-ESO-1 protein vaccine; CDX-1401, DEC-205/NY-ESO-1 Fusion Protein vaccine; DC, dendritic cell; TCR, T cell 
receptor; TAA, tumor-associated antigen; TILs, tumor-infiltrating lymphocytes; PD-L1, programmed death ligand 1; CTLA-4, cytotoxic T-lymphocyte-associated protein 4; PD-1, 
programmed cell death protein 1.
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clinical trial are the use of a bacterial vector for NY-ESO-1 vaccine 
delivery (NCT01967758, Table 1); and combinatorial treatment 
of NY-ESO-1 vaccination with the mTOR inhibitor Sirolimus 
(NCT01536054, NCT02833506, Table 1) or with the demethyla-
ting agent Decitabine (NCT02750995, Table 1).

Since dendritic cells (DCs) are the dominant antigen-
presenting cells and are strong activators of T  cells, numerous 
studies have investigated the use of peptide-pulsed DCs as cellular 
vaccines (98). Further advances in the field have demonstrated 
an added benefit of including toll-like receptor (TLR) agonists as 
an adjuvant. The rationale behind this lies in the TLR-mediated 
activation of DCs, and the induction of T helper 1-cell responses 
(99). Indeed, combination treatment with a TLR3 (Hiltonol), 
TLR7 (imiquimod), TLR7/8 (resiquimod), or TLR9 (CpG 7909)  
agonist has been shown to enhance humoral and cellular resp onses 
in a significant proportion of cancer patients (100–102). The safety 
and efficacy of NY-ESO-1-pulsed DCs is currently under study 
in various clinical trials (Table  1), either alone (NCT02692976, 
NCT01883518, NCT02334735, NCT02224599) or in combi-
nation with a NY-ESO-1 protein vaccine and TLR4 agonist 
(NCT02387125). Specific targeting of the DCs can also be achieved 
using the DEC-205/NY-ESO-1 fusion protein (CDX-1401), which 
targets the NY-ESO-1 protein for DC endocytosis through the 
DEC-205 receptor. This fusion protein is currently in clinical trial 
in combination with the recombinant Flt3 ligand CDX-301 to pro-
mote DC development (NCT02129075, Table 1), or with the IDO1 
inhibitor Epacadostat (NCT02166905, Table 1), or with infusion of 
tumor-infiltrating lymphocytes (TILs) (NCT01946373, Table 3). 
Cancer vaccines can also be targeted toward DCs through TLRs. 
One example of this approach is the use of a NY-ESO-1 encoding 
LV305 lentivirus, targeting DCs through TLR3 and TLR7, which 
induced a strong cellular immune response with significant disease 
regression in one patient with metastatic, treatment-refractory 
synovial sarcoma (103). This case report is part of an ongoing phase 
I clinical trial (NCT02122861, Table  1) investigating the use of 
intradermal NY-ESO-1-specific lentiviral DC-targeting in mela-
noma, non-small cell lung cancer, ovarian cancer, and sarcoma.  
A second example of acellular dendritic-based therapy is the use of 
Fc receptor-mediated uptake of liposome-encapsulated adjuvants 
and/or drugs with subsequent DC activation (104). Combining 
a NY-ESO-1 protein vaccine with the liposome-encapsulated 
chemotherapeutic drug doxorubicin and the demethylation agent 
Decitabine enhanced the specific humoral and CD8+ immune 
responses in 67 and 50% of patients with relapsed epithelial ovar-
ian cancer (105). Stable disease was obtained in 50% of patients 
(5/10) with a median duration of 6.3 months, and one patient had 
a partial response (10%) with a duration of 5.8 months.

NY-eSO-1 Adoptive T Cell Therapy
NY-ESO-1 cancer vaccines have proven to elicit both humoral and 
cellular responses; however, few complete responses have been 
obtained using this approach. Therefore, the focus for immune-
based intervention against NY-ESO-1 has largely changed over 
time toward the development of genetically engineered T lympho-
cytes. Based on the knowledge gained from vaccine studies, T cells 
directed against specific NY-ESO-1 epitopes have been engineered 
and tested for their ability to eradicate tumors. Adoptive T cell 

therapy with HLA-A2 restricted NY-ESO-1/LAGE-1 transduced 
CD8+ T cells has improved the clinical response rates and overall 
survival of treatment-refractory melanoma and synovial cell 
sarcoma patients. In a first cohort, approximately half of patients 
with metastatic melanoma or synovial cell sarcoma who received 
NY-ESO-1 transduced CD8+ T cells and IL-2 showed a clinical 
response (106). 2 out of 11 metastatic melanoma patients exhib-
ited a complete response and 1 patient had a partial response. Four 
out of six patients with synovial cell sarcoma experienced partial 
responses, representing the first evidence of successful NY-ESO-1 
adoptive T cell therapy in non-melanoma patients. In a follow-up 
study, the authors expanded their cohort with 9 melanoma and 
12 synovial cell sarcoma patients and provided an update on 
the clinical responses of the first cohort (107). Combining both 
cohorts, objective responses were obtained in 61% of patients with 
synovial cell sarcoma with 5-year overall survival rates of 14%, and 
in 55% of melanoma patients with overall 5-year survival rates of 
33%. Furthermore, the same adoptive T cell treatment resulted in 
near complete or complete response in 80% of multiple myeloma 
patients with a median progression-free survival of 19.1 months 
(108). Numerous clinical trials are currently investigating the 
safety and efficacy of NY-ESO-1 transduced CD8+ T cells, using 
NY-ESO-1 either as a single target or as part of a multi-TAA 
target. While some current trials, summarized in Table 2, study 
NY-ESO-1 specific or multi-TAA TCR-transduced T  cells in a 
range of advanced solid tumors (NCT03047811, NCT02457650, 
NCT02869217, NCT02366546), others focus on subgroups 
of patients with esophageal cancer (NCT01795976), breast 
cancer (NCT03093350), pancreatic cancer (NCT03192462), 
rhabdom yosarcoma (NCT02239861), hepatocellular carcinoma 
(NCT03175705), synovial sarcoma (NCT03250325), or hema-
tological cancers (NCT02494167, NCT02291848). NY-ESO- 
1-specific murine TCR-transduced T  cells in combination with 
high-dose IL-2 and chemotherapy are currently under evaluation 
in metastatic cancer patients (NCT02774291, NCT01967823, 
Table 2). In addition, there are two phase I/II clinical trials inves-
tigating the safety and activity of T cell transduction with an affin-
ity-enhanced T cell receptor (TCR) for NY-ESO-1 and LAGE-1 
(NY-ESO-1c259 T  cells) in patients with relapsed or advanced 
multiple myeloma (NCT01892293, NCT01352286, Table  2). 
Similarly, adoptive transfer of affinity-enhanced NY-ESO-1 trans-
duced T cells is under evaluation (Table 2) in metastatic mela-
noma (NCT01350401), ovarian cancer (NCT01567891), synovial 
sarcoma (NCT01343043), myxoid/round cell liposarcoma 
(NCT02992743) and non-small cell lung cancer (NCT03029273, 
NCT02588612), and in a patient cohort with a variety of advanced 
solid cancers (NCT03159585). Furthermore, the safety, feasibility, 
and efficacy of NY-ESO-1 or multi TAA transduced T cell therapy 
in combination with other modalities is currently under review, 
including combination with treatment with the demethylating 
agent Decitabine (NCT03017131, NCT01333046, Table  3), 
NY-ESO-1157–165-pulsed DCs (NCT01697527, Table  3), trans-
duced peripheral blood stem cells (NCT03240861, Table 3), or 
dominant-negative transforming growth factor-beta receptor II 
transduced TILs (NCT02650986, Table 3).

Although the majority of adoptive T cell therapy studies focus 
on cytotoxic CD8+ T  lymphocytes, re-educated CD4+ T  cells 
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also show potential to eradicate cancer cells. For example, a case 
study demonstrated that treatment with HLA-DP4-restricted 
NY-ESO-1 transduced CD4+ T cells can induce complete regres-
sion of a refractory metastatic melanoma, with a durable response 
ongoing at 22  months (109). However, since most cancer cells 
do not express MHC class II molecules the efficacy of CD4+ 
based immunotherapy in se is rather limited. Presentation of the 
HLA-DP restricted NY-ESO-1157–170 epitope was enhanced in vitro 
by directing the antigen to the macro-autophagy pathway using 
a fusion protein of NY-ESO-1 and the autophagy molecule Atg8/
LC3 (110). The authors also reported that intercellular transfer 
of NY-ESO-1 by endocytosis increased antigen presentation. 
Therefore, agents targeting NY-ESO-1 cellular release and/or 
macro-autophagy could provide a new avenue to improve CD4+ 
immunotherapy. The lack of MHC class II tumor expression can 
also be addressed by engineering CD4+ T cells that can recognize 
HLA-class I-restricted peptides. Using in vitro and in vivo mouse 
models, this approach was found to induce cancer cell cytotoxic-
ity and cytokine production (111–117). A recent study by Tan 
et  al. demonstrated that HLA-A2-restricted NY-ESO-1157–165 
transduced CD4+ T  cells displayed higher binding affinity for 
the peptide than CD8+ T cells and were able to induce cancer cell 
cytotoxicity (118). These preclinical findings suggest that HLA-
class I-redirected CD4+ T  cells could improve the antitumor 
response of current adoptive T cell therapies.

Combination Treatment with  
Checkpoint inhibitors
The immune response is naturally kept in check by immune 
checkpoint molecules [cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4), programmed cell death protein 1 (PD-1) 
and programmed death ligand 1 (PD-L1)] in order to prevent 
over-activation of the immune response resulting in autoimmune 
disease. While the PD-1 pathway inhibits T cell activation during 
the effector phase, the CTLA-4 pathway plays an important role 
in naïve T cell activation during the priming phase (119). Binding 
of PD-1 on T cells to its ligands, PD-L1 and programmed death 
ligand 2, inhibits T-cell proliferation and activation and reduces 
T cell survival (120). CTLA-4 is a CD28 homolog on the T-cell 
cell membrane that through competitive binding will inhibit the 
costimulatory signal of CD28:B7 binding, similarly resulting in 
reduced T cell proliferation, differentiation, and survival (121). 
CTLA-4 expression can also increase T-cell mobility, thereby 
reducing the contact time between antigen-presenting cells and 
T-cells and indirectly inhibiting T cell activation (122). In addi-
tion, CTLA-4 is constitutively expressed on regulatory T  cells, 
which through competitive binding with B7 and/or induction 
of B7 internalization reduces the availability of B7 on antigen-
presenting cells to form the CD28:B7 costimulatory signal for 
T cell activation and survival (123, 124). Cancer cells can hijack 
these T-cell regulatory pathways to dampen the antitumor 
response. One approach in cancer immunotherapy is to unleash 
the natural immune response by inhibiting these checkpoint mol-
ecules using specific inhibitors. Patients who do not respond to 
immune checkpoint blockade may still benefit from combinato-
rial treatment with cancer antigen-specific therapy. For instance, 

treatment with the CTLA-4 checkpoint inhibitor ipilimumab has 
been reported to induce specific NY-ESO-1 humoral and cellular 
immune responses in patients with ovarian cancer, prostate cancer, 
and metastatic melanoma (100, 125–135). Ipilimumab-treated 
mela noma patients with a NY-ESO-1-specific humoral response 
at baseline more often experienced an antitumor response and 
improved survival if accompanied by a NY-ESO-1 specific CD8+ 
cellular immune response (131).

In addition, NY-ESO-1-specific CD4+ T  cells isolated from 
a metastatic melanoma patient after treatment with ipilimumab 
were able to directly lyse autologous cancer cells, suggesting an 
added clinical benefit of eliciting a NY-ESO-1 CD4+ cellular 
response (134). Together, these findings indicate that combina-
tion treatment of checkpoint inhibitors with NY-ESO-1 targeted 
treatment might result in enhanced and more durable clinical 
responses. However, this might not be true for all tumor types. 
Although NY-ESO-1 is highly expressed in sarcoma, antibod-
ies against the antigen are not as common thereby questioning 
the added clinical benefit of NY-ESO-1 targeted treatment in 
combination with checkpoint blockade (136–138). Therefore, a 
pilot phase I trial has been designed to determine the safety and 
efficacy of combining CTLA-4 blockade with NY-ESO-1 adoptive 
T cell therapy and NY-ESO-1 vaccination in patients with locally 
advanced or metastatic malignancies (NCT02070406, Table 3).

Similarly to CTLA-4 inhibition, inhibition of the immune 
checkpoint molecule PD-1 induces a NY-ESO-1 specific CD8+ 
cytotoxic immune response (139). Further evidence supporting 
a potential added benefit from PD-1 inhibition to NY-ESO-1 
targeted immunotherapy comes from NY-ESO-1157–165 peptide 
vaccination of melanoma patients, demonstrating an upregula-
tion of the T cell inhibitory molecules PD-1, Tim-3 and BTLA in 
NY-ESO-1 CD8+ T cells (140–143). In vitro blockade of both PD-1 
and Tim-3 increased cytotoxic cell proliferation and cytokine 
secretion of NY-ESO-1157–165 CD8+ T cells (140, 144). Similarly, 
tumor-derived NY-ESO-192–100 CD8+ T cells isolated from ovar-
ian cancer patients showed an upregulation of the inhibitory 
molecules PD-1 and LAG-3 with dual blockade enhancing the 
proliferation and cytokine production (145). Treatment of meta-
static melanoma patients with the PD-1 inhibitor nivolumab in 
combination with the NY-ESO-1157–165 peptide vaccine revealed 
that the response rate in both ipilimumab-pretreated and -naïve 
patients was 25% (146). Serological analyses showed a correla-
tion of high pretreatment NY-ESO-1 CD8+ T cells with disease 
progression, suggesting that these cells might express several 
inhibitory molecules, such as Tim-3 and LAG-3. In contrast, 
no difference in NY-ESO-1 cellular immune response has been 
observed between non-small cell lung cancer patients respond-
ing to PD-1 blockade by nivolumab and non-responders (147). 
The first experimental evidence supporting the use of PD-1 
inhibitors together with NY-ESO-1 adoptive T cell therapy came 
from a preclinical study using a lung cancer xenograft mouse 
model (148). In this study, NY-ESO-1 transduced T cells could 
infiltrate tumors and reduce tumor growth by 50%; however, the 
cells could not reduce tumor burden and showed upregulation 
of PD-1, Tim-3, and LAG-3. PD-1 blockade in addition to injec-
tion of transduced T  cells reduced the tumor burden with an 
additional 35%. Ongoing clinical trials are exploring the safety 
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of combining NY-ESO-1 peptide vaccination with Nivolumab 
(NCT01176461, Table  3), or with both Nivolumab and 
Ipilimumab (NCT01176474, Table 3). Other trials are determin-
ing the safety and feasibility of combining NY-ESO-1 transduced 
T  cell therapy with Nivolumab and NY-ESO-1 peptide-pulsed 
DC vaccine in advanced solid cancer (NCT02775292, Table 3), 
or with Pembrozilumab in multiple myeloma (NCT03168438, 
Table 3). Furthermore, targeting the ligand for PD-1, PD-L1, on 
tumor cells with Atezolizumab is currently under investigation in 
combination with NY-ESO-1 pulsed DC vaccination in patients 
with sarcoma (NCT02609984, Table  3), and in combination 
with the DEC-205/NY-ESO-1 fusion protein (CDX-1401) vac-
cine and the demethylation agent guadecitabine in patients with 
recurrent ovarian, fallopian tube, or primary peritoneal cancer 
(NCT03206047, Table 3).

wHeRe TO GO NeXT?

NY-ESO-1 targeted treatment has come a long way, targeting the 
antigen using various approaches from peptide and protein vac-
cination to adoptive T cell therapy and combinational treatment 
modalities. Promising results have been obtained, driving new 
clinical trials in numerous solid cancers.

Nevertheless, a pressing concern for NY-ESO-1 based therapy 
is the considerable inter- and intra-heterogeneity of NY-ESO-1 
tumor expression, which could significantly limit the extent of 
tumor cell eradication using NY-ESO-1 targeted treatment. Since 
the expression of many CTA, including NY-ESO-1, is regulated 
by methylation, one approach that is being pursued is to increase 
the tumoral re-expression of NY-ESO-1 by demethylating age nts 
prior to NY-ESO-1 targeted treatment. An early study by Weiser 
et al. demonstrated that NY-ESO-1 expression could be induced 
in vitro by treatment with the DNA demethylating agent 5-Aza-
2′-deoxycytidine, an effect which could be enhanced by sequential 
treatment with a deacetylase inhibitor (149). Since then, several pre-
clinical studies have shown that demethylation not only increases 
expression of NY-ESO-1 specifically in tumor cells, but also induces 
specific CD8+ immune responses and tumor cell cytotoxicity; and 
when used in combination with NY-ESO-1 immunotherapy it 
reduced the tumor burden and prolonged the survival in several 
mouse models (150–155). These experimental findings suggest 
that epigenetic modulation may enhance or even enable NY-ESO-1 
adoptive immunotherapy in poorly immunogenic tumor types.

On another note, even though promising results have been 
obtained with various NY-ESO-1 cancer vaccine approaches, some 
reservations need to be made. Since cancer vaccines are often based 
on synthetic peptides, the question arises whether the induced 
immune response reflects or complements the natural immune 
response against endogenous antigen expression. Naturally ind-
uced CD8+ immune responses against NY-ESO-1 are commonly 
directed against an HLA-A2-restricted epitope within the amino 
acid region 157–165 or 157–167 (156). Comparison of naturally 
and vaccine-induced CD8+ responses revealed that these cells 
exhibit structurally conserved but distinct TCR features (157). 
These findings suggest that synthetic peptides used for vaccination 
may not accurately reflect the naturally processed antigen and 
antitumor immune response.

Another important factor to take into account is the impact of 
the microenvironment on the outcome of immune-modulating 
treatments. The cancer-immunity cycle is a well-known concept 
and has become the framework for immunotherapy research. The 
cancer-immunity cycle describes the various steps that have to be 
completed to obtain successful eradication of tumor cells, includ-
ing release of cancer cell antigens, cancer antigen presentation, 
priming and activation of T cells, trafficking of T cells to tumors, 
infiltration of T cells into tumors, recognition of cancer cells by 
T cells, and finally killing of cancer cells (158). Therefore, the make 
of the inflammatory milieu and the presence of immune suppres-
sive cells can have a profound effect on treatment efficacy. Tumor 
cells are capable of escaping the antitumor immune response by 
hindering each of the steps of the cancer-immunity cycle. First, 
tumors can escape immune surveillance by altering the expression 
of tumor antigens. This has raised the concern that the presence 
of spontaneous tumor antigen-immune responses might induce 
epitope spreading as a result of prolonged immune pressure. For 
instance, interim analysis of a phase II study (NCT02609984, 
Table  3) using a combinatorial approach of PD-L1 inhibition 
and NY-ESO-1 DC-targeting revealed specific humoral and 
cellular responses in 50% of patients with synovial sarcoma and 
myxoid round cell liposarcoma but also antigen epitope spread-
ing in 20% of patients (159). Second, the presentation of tumor 
antigens can also be altered as has been demonstrated in inflam-
matory melanoma (160). The difference in activity between the 
non-inflammatory proteasome and the immunoproteasome 
has been shown to result into a dissimilar repertoire of epitopes 
that impedes the ability of T cells to recognize and target the  
tumor cells.

Third, the presence or induction of immunosuppressive cells 
can have a profound effect on the treatment outcome. In advanced 
melanoma it was shown that a single NY-ESO-1 epitope could 
induce CD4+ T cell responses as well as stimulate T regulatory 
cells (161). Further investigation revealed that these specific 
T regulatory cells are derived from CD4+ CD25− T cells. Hence, 
inhibition of the peripheral conversion of CD4+ CD25− T cells 
into specific T regulatory cells may improve treatment outcome. 
Further, treatment with the NY-ESO-1/ISCOMATRIX vaccine 
induced NY-ESO-1 specific T regulatory responses, most com-
monly recognizing the HLA-DP4-restricted NY-ESO-1157–170 
peptide (162). In tumor tissue, T regulatory cells with specificity 
toward the HLA-DR-restricted NY-ESO-1115–132 peptide could be 
observed. Together, these findings suggest that chronic antigen 
exposure can result in the suppression of both the circulating 
and local antitumor immune response through the stimulation 
and induction of antigen-specific T regulatory T cells. Similarly, 
chronic hepatitis B infection has been shown to increase the 
numbers of specific T  regulatory cells in the peripheral blood 
and liver of patients with hepatocellular carcinoma (163). In 
vitro investigation of co-culture of peripheral blood mononu-
clear cells with HBV-transfected hepatoma cell lines revealed an 
increase in T regulatory cells together with an upregulation of 
FoxP3 and the immune checkpoint CTLA-4. Interestingly, these 
T  regulatory cells were capable of suppressing not only HBV-
induced but also NY-ESO-1 tumor antigen-induced immune 
responses.
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CONCLUDiNG ReMARKS

Since its discovery, NY-ESO-1 has been investigated as an anti-
cancer target for immune-based interventions. Several approaches 
have been explored in vitro, in vivo, and in clinical trials. The vast 
majority of clinical trials focus on solid cancers in the advanced 
stage. Currently, there are 12 clinical trials registered using a 
NY-ESO-1 cancer vaccine, 23 using modified T cells, and 13 using 
combinatorial immunotherapy. As the field of immunotherapy is 
evolving, limitations to these approaches are becoming apparent 
which can be tackled by refining the current methods or addressing 
them from a different angle as discussed in this review. Exploring 
such new strategies have resulted in several novel treatments that 
are currently in clinical trial.
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