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Maintenance of homeostatic immune surveillance and development of effective adap-
tive immune responses require precise regulation of spatial and temporal lymphocyte 
trafficking throughout the body to ensure pathogen clearance and memory generation. 
Dysregulation of lymphocyte activation and migration can lead to impaired adaptive 
immunity, recurrent infections, and an array of autoimmune diseases and chronic inflam-
mation. Central to the recruitment of T cells, integrins are cell surface receptors that 
regulate adhesion, signal transduction, and migration. With 24 integrin pairs having been 
discovered to date, integrins are defined not only by the composition of the heterodi-
meric pair but by cell-type specific expression and their ligands. Furthermore, integrins 
not only facilitate adhesion but also induce intracellular signaling and have recently 
been uncovered as mechanosensors providing additional complexity to the signaling 
pathways. Among several leukocyte-specific integrins, lymphocyte function-associated 
antigen-1 (LFA-1 or αLβ2; CD11a/CD18) is a key T cell integrin, which plays a major role 
in regulating T  cell activation and migration. Adhesion to LFA-1’s ligand, intracellular 
adhesion receptor 1 (ICAM-1) facilitates firm endothelium adhesion, prolonged contact 
with antigen-presenting cells, and binding to target cells for killing. While the downstream 
signaling pathways utilized by LFA-1 are vastly conserved they allow for highly disparate 
responses. Here, we summarize the roles of LFA-1 and ongoing studies to better under-
stand its functions and regulation.
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inTRODUCTiOn

Precise spatial and temporal regulation of adhesion and de-adhesion is critical for immune cell 
development, localization, and pathogen clearance. LFA-1 is a key T cell integrin that plays a critical 
role in the regulation of these functions. With this highly diverse set of roles, it is unsurprising 
that LFA-1 has been implicated in numerous autoimmune and inflammatory conditions including 
inflammatory bowel disease, psoriasis, diabetes, and arthritis (1, 2). Intriguingly, intracellular signals 
dictating LFA-1 activation are highly conserved between migration, T cell activation, and cytolytic 
activity suggesting that any alterations in the signaling may cause substantial biological consequences 
during the host immune responses. This review will discuss our current understanding of the role of 
LFA-1 during T cell activation, effector functions, and memory formation.

LFA-1 STRUCTURe

LFA-1 is composed of α- and β- subunits that together form a heterodimer expressed at the cell sur-
face. These subunits include long extracellular domains, a single transmembrane domain, and short 
cytoplasmic tails (Figure 1). The extension of LFA-1, which resembles a switchblade-like motion, 
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FigURe 1 | Multidimensional regulation of LFA-1 affinity (i) LFA-1 affinity regulation is mediated via conformational changes to LFA-1 structure. In the low affinity 
state, the bent conformation causes the ligand binding αI domain to be inaccessible to interact with ICAM-1. In the intermediate affinity state, the extracellular leg 
domains are straightened allowing for low affinity interactions between LFA-1 and ICAM-1. Importantly, the intracellular domains of LFA-1 are not separated and the 
metal ion-dependent adhesion site (MIDAS) binding site closed. In the high affinity state, disruption of the salt bridge between the α and β cytosolic tails results in 
conformational shift along the β subunit and αI domain resulting in high affinity LFA-1 via the opening of the ligand-binding site. (ii) The αI domain contains the MIDAS 
within which resides Mg2+ coordinating the binding pocket. This site interacts with the glutamic acid-34 in Domain 1 of ICAM-1 to facilitate binding. This induces a 
shift in the α7 helix to cause the hybrid domain to swing out further stabilizing LFA-1 structure. Additional sites surrounding the MIDAS such as AMIDAS and 
ligand-induced metal-binding site assist with coordination of the binding pocket and stabilization of high affinity LFA-1. (iii) Upon T cell receptor or chemokine 
activation, RAP1-GTP recruits a number of factors including RAPL that interact with the α subunit of LFA-1 to induce integrin activation (inside-out signaling). 
Similarly, talin cleavage allows the FERM domain to interact with the NPxY motif of the cytosolic tail on the β subunit. This interaction causes a dissociation of the 
salt bridge inducing cytosolic tail separation. Kindlin also contains a FERM domain and interacts with the β subunit to further stabilize high affinity LFA-1. Molecules 
such as RIAM, talin, paxillin, and vinculin may interact with the cytosolic tails to recruit additional effector molecules and promote a scaffold to interact with actin and 
reinforce LFA-1 activity (outside-in signaling). Arp2/3 will promote continued actin filament growth while MyH9 functions to provide stress on actin fibers to induce 
LFA-1 dissociation from ligand. (iv) Interaction of LFA-1 with ICAM-1 and β-actin allows for force driven responses along the β subunit. Transmission of force (arrows) 
along the β-subunit has been measured in pN scale with actin flow functioning to direct the orientation and location of LFA-1 both at the immunological synapse and 
during cell migration. Stabilization of the integrin in the high affinity conformation via force generation requires adhesion to both the cytoskeleton and ICAM-1. The 
stiffness of the substrate may also alter the level of force generated thus altering the signaling response. Downstream signal is induced via outside in signaling 
generated through the stabilization of high affinity LFA-1. Phosphorylation of focal adhesion kinase through force generation may play a role in mediating cell 
adhesion and proliferation. Rho signaling, and thus actin polymerization, may also be altered through changes in force generation resulting in changes in actin 
dynamics and cell migration. Induction of Rac and CDC42 may also be altered through force generation resulting in changes to cell proliferation and survival.
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requires substantial changes to the conformation of both subunits 
(3). LFA-1 has at least three separate conformational states that 
are conferred by movement of the extracellular and cytosolic 
domains: (1) closed/bent, where the integrin has low affinity for 
ligand and is conformationally unavailable to bind ligand; (2) 
closed/extended, where the integrin is extended allowing for 
interaction with ligand, but the cytosolic tails remain closed; and 
(3) open/extended, where the integrin has high affinity for its 
ligand and the cytosolic tails have separated (Figure 1i) (3–5).

Roughly half of all integrins, including LFA-1, express an 
αI domain, which is critical for ligand binding and contains a 
metal ion-dependent adhesion site (MIDAS) that binds Mg2+ 

to coordinate the binding pocket (Figure 1ii) (3). ICAM-1 will 
directly bind with the LFA-1 MIDAS and Mg2+ by interacting 
with a glutamic acid residue found in Domain 1 of ICAM-1 
(Figure 1ii) (6). LFA-1 is also capable of binding ICAM-2 and 
ICAM-3 albeit with much lower affinity. Two additional sites, 
ligand-induced metal-binding site (LIMBS) and adjacent to 
MIDAS (ADMIDAS), have been shown to regulate cytosolic tail 
separation and reduce cell spreading, respectively (7–9). Two 
domains on the α subunit leg, calf-1 and calf-2, have a Ca2+ binding 
loop that is critical to the subunit bending. The β subunit consists 
of the I-like domain, which is homologous to the αI domain and 
plays a key role in determining specificity. The hybrid domain, 
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which connects the upper and lower portions of the β subunit, is 
critical for conformation change. The β subunit leg consists of a 
plexin/semaphorin/integrin domain that is connected to the βI 
domain and four integrin epidermal growth factor-like (I-EGF) 
domains, which facilitate β leg bending (Figure 1i–ii) (3, 5, 8–10).

To facilitate conformation changes, a number of structural 
modifications occur utilizing the abovementioned integrin com-
ponents. As the α7-helix is displaced downward during integrin 
activation, the hybrid domain swings outward leading to separa-
tion of the extracellular legs (6). However, due to the flexibility 
of the extracellular β subunit leg, this separation facilitates only 
extension of the leg and does not separate the cytosolic tails. 
Complete cytosolic tail separation requires intracellular effectors, 
such as talin (Figure 1iii) and stabilization through interaction 
with actin and ICAM-1 (Figure  1iv). Fluorescent resonance 
energy transfer (FRET) studies have demonstrated cytosolic tails 
closely interact under resting conditions, and upon activation, the 
tails separate and induce an integrin conformational change to 
high affinity (11, 12). This process through which intracellular 
signals induce integrin activation is termed “inside-out” signal-
ing. Similarly, integrin adhesion to ligand induces intracellular 
responses in a process termed “outside-in” signaling. High affinity 
integrin conformation can be achieved via either inside-out or 
outside-in signaling.

LFA-1 AnD T CeLL MigRATiOn

Extravasation of immune cells from the vasculature is a highly 
organized process composed of five steps: (1) weak tethering/
rolling, (2) firm adhesion, (3) crawling, (4) paracellular or tran-
scellular migration through the endothelium, and (5) migration 
through the basement membrane (13, 14). Initial adhesion of 
cells to the endothelium is mediated by the expression of both 
selectins and addressins (15–19). Upon tethering, cells begin 
to decrease velocity and roll along the endothelium forming 
transient low-affinity interactions. Subsequently, immune cells 
may firmly adhere to the endothelium or be released back into 
circulation. Firm adhesion to the endothelium is induced by 
chemokine stimulations and high-affinity integrin activation via 
inside out signaling (20–23). The integrin conformation change 
can lead to as much as a 10,000-fold affinity increase of LFA-1 to 
its ligand ICAM-1 (3, 21). ICAM-1 is expressed at low levels and is 
highly upregulated upon damage or inflammation (24, 25). After 
secretion, chemokines bind glycosaminoglycan proteins, such 
as CD44 and syndecans, expressed on the endothelium (26, 27) 
to subsequently be presented to immune cells. Chemokine and 
LFA-1 engagement initiate a series of intracellular cascades that 
induce T cell polarization inducing subsequent migration (28, 29).

LFA-1-mediated adhesion plays essential roles in both naïve 
and activated T  cells extravasation into the lymph node and 
tissue, respectively (30). Shulman et  al. demonstrated that this 
process can be mediated via intra-endothelial chemokine stores 
at the immune/endothelial cell synapse and surprisingly, that 
T  cell adhesion to the endothelium appeared independent of 
chemokine stimulation (31, 32). With single-dye tracking and 
conformation specific antibodies, Bakker et al. demonstrate that 
in resting monocytes that roughly 5% of LFA-1 is in nanoclusters 

that are in a fully active state and bound to the cytoskeleton, 
suggesting that low levels of LFA-1 activation may occur inde-
pendently of chemokine stimuli (33). It is tempting to speculate 
from these data that integrin engagement may occur independent 
of chemokine stimulation suggesting that chemokine may simply 
act to reinforce integrin engagement and facilitate transmigra-
tion. While high affinity interactions are necessary for adhesion, 
constitutive expression of LFA-1 with the intermediate affinity 
I-domain led to impaired crawling and diapadesis through limit-
ing detachment at the rear of the cell (34). This demonstrates a 
need for dynamic regulation of LFA-1 affinity. Indeed, studies 
have demonstrated that defects in LFA-1 adhesion and activation 
(changes in conformation, clustering, or cell signaling) through 
therapeutic treatments and genetic abnormalities can cause 
deficient immune response and autoimmunity (2, 35–37).

While LFA-1 plays a crucial role in adhesion to the vascula-
ture, very late antigen-4 (VLA-4; α4β1) has also been implicated 
in T cell extravasation (14, 38–41). In tissues such as the CNS, 
LFA-1 inhibition is not sufficient to inhibit cell extravasation as 
cells also utilize VLA-4 (42, 43). However, in other tissues such 
as the retina, T cell infiltration was LFA-1 dependent and vastly 
VLA-4 independent suggesting that tissue-specificity plays a 
critical role in determining integrin-mediated extravasation (44). 
Indeed, in a bronchial epithelial model, inhibition of LFA-1 lead 
to a 75% decrease in infiltration whereas inhibition of ICAM-1 
or ICAM-2 alone lead to a 50% reduction. However, when both 
ICAM-1 and ICAM-2 were blocked a 70% reduction in infiltra-
tion was observed (45). Additionally, immune cells may alter their 
integrin dependency. Glatigny et al. demonstrated in T regula-
tory (Treg) cells that when VLA-4 expression was blocked, cells 
were still capable of migration utilizing LFA-1 (46). These data 
demonstrates a highly diverse set of mechanisms, which dictate 
immune cell infiltration (43).

After firm adhesion, T  cells crawl along the endothelium 
searching for a site to migrate across the endothelial monolayer 
into the tissue (47). Migration along the endothelium is primar-
ily dictated by chemokine signals that direct cell chemotaxis via 
chemotactic gradients. However, LFA-1-ICAM-1 interaction also 
plays a critical role in regulating the direction of T cell migration 
in the blood vessel. T  cells and hematopoietic stem/progenitor 
cells can migrate against shear flow on ICAM-1, while T  cells 
mainly migrate with the flow on VCAM-1 (42, 48, 49). Diapadesis 
can occur through either paracellular (in between the junction 
of two cells) or transcellular (through a single endothelial cell) 
mechanisms. While most cells (~90%) are thought to utilize para-
cellular migration, the processes dictating para- vs. trans- cellular 
migration are still being investigated (50, 51). Evidence suggests 
that ICAM-1 density, monolayer organization (e.g., tricellular 
junctions), and previous cell diapadesis at the same location 
(“hot spots”) are all implicated in dictating this phenomenon (50, 
52–55). Additionally, cells have been found to survey the tissue 
with LFA-1/Wiskott–Aldrich Syndrome Protein-dependent pro-
trusions, which have been observed to penetrate as deep as 600 nm 
into the endothelial cell to promote transcellular migration (56).

Additionally, endothelial cells may facilitate diapadesis via the 
lateral border recycling compartment (LBRC) (54, 57). Mediating 
changes in endothelial cell junctions to facilitate extravasation, 
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the LBRC has been shown to be essential for transcellular migra-
tion. Additionally, numerous diapadesis regulators, including 
cadherins, CD99, junction adhesion molecules, and platelet 
endothelial cell adhesion molecules are thought to determine 
and mediate cell extravasation and are thus a topic of continued 
research (58–60). We demonstrated that uropod elongation acts 
as the final step in leukocyte transendothelial migration. During 
this elongation, CD18+ microparticles are left behind which 
may play a role in either prevention or promotion of leukocyte 
transmigration at the site (55).

Upon successful migration across the monolayer, T  cells 
utilize a number of β4 and β1 integrins to migrate along the base-
ment membrane composed primarily of collagen and laminin. 
Intriguingly, the basement membrane appears to be lost directly 
at the transmigration site (61, 62). While the exact reason for this 
loss remains under investigation, it is believed to help control cell 
migration, mediate cell death at the infiltration site, and maintain 
tissue structure. Following this last step of migration across the 
endothelial barrier, immune cells continue to migrate through 
the tissue interstitium to exert their effector function (63).

During T  cell migration, LFA-1 engagement is primarily 
utilized in two-dimensional spaces. One study found that nei-
ther LFA-1 nor α4 integrins support stable adhesions of naive 
T cells to neighboring T cells, DCs or stroma in the lymph node 
T cell zones (64). Indeed, studies have shown that in dense, 3D 
tissues dendritic cells are capable of migrating without integrin 
adhesion though actin-polymerization (“flowing”) and myosin 
II-based contractions (“squeezing”) (65). However, T cells appear 
to require integrin-mediated adhesion in the tissue microenvi-
ronments under inflammation (66). Therefore, it is likely that 
integrin-mediated T  cell migration is determined by integrin/
ligand expression and tissue density in which the cell is found. It 
is also important to note that, while LFA-1-independent migra-
tion occurs under depleting conditions within the lymph node, 
the outcome of the immune response may be altered. Additional 
studies demonstrated that LFA-1 blockade abolished directed, 
high velocity migration of naïve T cells (67), suggesting that LFA-
1-mediated migration is important for the speed, and the pattern 
of T cell migration in the lymph node.

In addition to the conformational changes in LFA-1 (see 
Chapter 1), precise and dynamic regulation of LFA-1 recycling 
is a key to ensure efficient T  cell migration and adapt to the 
constantly changing microenvironment (68, 69). While LFA-1 
recycling occurs constitutively, as much as 75% of all integrins 
are internalized and redistributed within 15 min of cell migration 
onset (69). While integrins can utilize both clathrin-dependent 
and -independent pathways (69), LFA-1-dependent endocytosis 
is primarily mediated through clathrin-independent, cholesterol-
sensitive mechanisms (68) and play an important role both in 
mediating cell migration and cell polarization through the 
partitioning of molecules near LFA-1 (68–70). Upon internaliza-
tion, a series of steps determine the fate of intracellular LFA-1 
(degradation vs. recycling). Integrins are generally thought to 
return to the cell surface through via either a direct exocytosis 
route (via Rab4 or Rab5) or the perinuclear recycling compart-
ment route (via Rab11) (69, 71, 72). LFA-1 containing vesicles 
during T-antigen-presenting cell (APC) interactions have also 

been found to require Arf6  +  Rab22 (72). LFA-1 can specifi-
cally utilize a Rab13-dependent pathway through which Rab13 
associates with Mst1 to facilitate increased integrin activation, 
as evidenced by increased LFA-1 clustering and cell migration 
(69, 73). Additionally, LFA-1 recycling requires Rap2-expressing 
vesicles which work synergistically with Rab13 to mediate new 
adhesion, while Rap2 facilitates continuous adhesion (74). 
T cell activation may also be impeded through defects in LFA-1 
recycling as demonstrated with Rab13 or Rab27 inhibition (73, 
75, 76). However, determining the precise roles of each recycling 
mechanism during LFA-1-mediated cell migration and activation 
requires more investigation.

LFA-1 AnD T CeLL ACTivATiOn

T cell activation is a highly organized process that can be divided 
into distinct events described by both T cell motility in the lymph 
node and T-APC interactions. The first phase is highly dynamic, 
as immune cells migrate along fibroblastic reticular cells (FRCs) 
while scanning for antigens. The second phase is defined by low 
motility and high interaction between the T cells and APCs. The 
final stage is characterized by regaining a high level of motility, 
effector differentiation, and proliferation (77).

T  cells migrate along FRCs to sample antigens via random 
interactions with antigen-bearing dendritic cells. These short, 
transient interactions, termed kinapses, are characterized by 
reduced T cell migration (78). Interaction with APC is determined 
via affinity between the peptide-MHC (pMHC) complex and 
the T cell receptor (TCR). As these interactions are low affinity 
(1–100 nM Kd), they are highly specific for only 1 × 105–1 × 106 
TCRs (79, 80). Upon recognition of cognate antigen, a T  cell 
ceases migration and induces surface and cytosolic changes in 
both the APC and the T cell. This phenomenon is defined as the 
second phase of T cell activation and is characterized by a loss of 
motility, extended T cell/APC interaction and the formation of 
an immunological synapse (IS) (77, 78). These changes include 
a loss of polarity in the T cell and surface molecule reorganiza-
tion referred to as supramolecular activation clusters (SMACs). 
The IS can be segregated into three distinct portions similar to a 
bullseye pattern. The center of the bullseye, aptly named center-
SMAC, contains the TCR/CD3 complex and the co-stimulatory 
molecules CD28 and PKCθ. The outermost ring, or the distal ring 
(d-SMAC), is composed of the phosphatase CD45, and the center 
ring, or peripheral SMAC (p-SMAC) is composed of LFA-1 and 
talin (81). Surprisingly, it has recently been observed that under 
basal conditions, LFA-1 can be found in clusters prebound to 
the cytoskeleton suggesting this may help to induce initial cell 
adhesion and formation of nanoclusters upon TCR engagement 
(33, 82). Interactions at the IS can be defined by the duration of 
the interaction. Synapse formation (>5 min) and kinapse forma-
tion (<5 min) are determined by the affinity of the TCR/pMHC 
complex and the activation phase of the T cell. Evidence suggests 
that both types of interaction are required for complete T  cell 
activation to balance activation signals imparted from the APC 
with differentiation and proliferation. Additionally, dysregulation 
of this process may lead to tolerance or autoimmunity through 
altering the balance of activation signals the T  cell receives or 
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through altering the affinity threshold required to engage TCR/
MHC complexes (78).

Interaction between TCR and pMHC induces a phosphoryla-
tion-mediated signaling cascade. This process activates LFA-1 at 
the IS leading to firm adhesion required for effective T cell activa-
tion. LFA-1 may be activated through a number of pathways that 
convert the small GTPase RAP1 to its active GTP bound form 
(83–85). Importantly, RAP1 activation is dependent on the con-
text of activation (TCR vs. chemokine) with data demonstrating 
that RhoH functions as a rheostat with differential localization 
within the cell leading to alterations in LFA-1 activation (86). 
Many of these pathways require the LAT signalosome, includ-
ing the PLCγ1 activation of DAG regulated-guanine exchange 
factor (GEF)1 (CalDAG-GEF), which directly acts on RAP1. 
Additionally the adaptor protein CRKII can interact with C3G, a 
GEF, to activate RAP1. CRKII-C3G can also be activated via the 
WASP family member 2 (WAVE2) actin related protein 2/3 com-
plex (ARP2/3)-ABL complex. Upon conversion of RAP1 from 
the inactive GDP-bound form to the active GTP-bound form, it 
interacts with ADAP and the adaptor SKAP55 to recruit RAP1 
to the plasma membrane (87). This allows for recruitment of the 
RAP1 effectors RAPL, Mst1, PDK, and RIAM to induce integrin 
activation. The RAP1/Mst1/Kindlin3 complex can be formed 
through inside-out integrin activation signals, but may also play 
a role in stabilizing outside in signaling (88–91). This process is 
essential for LFA-1 recycling, as RAP1 complexes play key roles in 
delivering LFA-1 vesicles to the cell surface (78, 81, 92, 93).

Antigen-presenting cell expression of ICAM-1 is also required 
for effective T cell activation. ICAM-1 expression on DC’s plays 
a crucial role in mediating T  cell migration and localization 
throughout the lymph node (94–96). Additionally, ICAM-1 
clustering on APC is essential for effective LFA-1 engagement 
and T cell activation (97, 98). Interestingly, LFA-1 has also been 
directly implicated by CD8+ DCs to facilitate T cell activation via 
acting as a scavenger receptor to collect antigen from antigen-
bearing DCs (99).

Disregulation of LFA-1 expression can lead to changes in T cell 
activation and differentiation (28, 100–102). Stable engagement 
of LFA-1/ICAM-1 is required to re-enforce many pathways for 
complete T cell differentiation. LFA-1 crosstalk with Notch sign-
aling has been shown to induce IFNγ production and re-enforce 
Th1 cell functions suggesting that LFA-1 engagement with tissue 
resident APCs will further strengthen T cell differentiation (103). 
Similarly, Tregs have been shown to require talin and LFA-1 
activation to induce IL-2Rα upregulation, which is required for 
Treg function (104, 105). Additionally, we recently demonstrated 
that an intracellular pool of LFA-1 is relocalized to the cell surface 
upon initial T/APC interactions and plays a key role in T  cell 
memory development (76).

LFA-1 AnD T CeLL CYTOTOXiC 
ReSPOnSe

Fully differentiated effector CD8+ T cells kill infected/transformed 
target cells via caspase-dependent apoptosis (106, 107). Upon rec-
ognition of a target antigen via TCR/pMHC complex formation, 
CD8+ T cell activates LFA-1 and binds to ICAM-1 expressed on 

the target cell. Important functions of LFA-1 during the cytotoxic 
response was demonstrated with LFA-1 blockers that inhibited 
target cell killing (107–109). Cytotoxic T cells form short, LFA-1 
driven, kinapse-like interactions with infected cells to facilitate 
killing with interactions for as little as 10 min inducing apoptosis 
in target cells (110–112). Similar to the IS formed during T cell 
activation, TCR-derived (113–115), inside-out signals induce 
translocation of the microtubule organizing center (MTOC) 
toward the contact between IS and the target cell. The MTOC and 
microtubules interact with LFA-1 within the p-SMAC to define the 
ring shape structure observed during perforin/granzyme release 
(116–118). Organization of LFA-1 at the p-SMAC is thought 
to act as a “gasket” to prevent cytolytic granules from escaping 
(119). Furthermore, studies have indicated that the stability and 
strength of the LFA-1-mediated contact is critical for effective 
cytolytic activity (118). Additionally, CTLA-4 signaling has been 
shown to lead to RAP1-mediated increase in LFA-1 binding (120, 
121). While the purpose is unclear, it is possible that this medi-
ates low affinity TCR interactions or in cases of high stimulation, 
induces greater cell polarization and migration. Finally, galectin 
coating of the tumor infiltrating leukocytes (TILs) surfaces has 
led to decreased LFA-1 recruitment and activation at the IS and 
reduced cytokine secretion, further supporting a key role for 
LFA-1 in mediating TIL cytotoxic function (109).

LFA-1 AnD T CeLL MeMORY 
DeveLOPMenT

As described above, LFA-1 plays a critical role in facilitating naïve 
T  cell activation and differentiation through T  cell-APC con-
tacts. Indeed, defects in LFA-1/ICAM-1 interactions have been 
shown to lead to impairment of memory formation (122, 123). 
Interestingly, ICAM-1 expression on T cells is important for T cell 
clustering during transient T–T interactions that provide addi-
tional cues for proliferation (124). ICAM-1 deficient cells resulted 
in higher levels of IFN-γ and granzyme B as well as, increased 
KLRG-1 expression suggesting increased differentiation toward 
short-lived effector cells (97). LFA-1 expression is required for 
the retention of tissue resident memory cells in the hepatic sinu-
soids and facilitate their migratory patterns unlike skin resident 
memory cells that are largely sessile (125). Additionally, numer-
ous allograft rejection model studies have demonstrated both 
in mice and non-human primates that LFA-1 blockades reduce 
or delay memory cell mediated rejection (126–129). While the 
precise mechanism of this appears to be a combination of infil-
tration, proliferation, and cytokine secretion, this demonstrates 
LFA-1’s multifaceted role in memory T cell function. Finally, it 
is important to note that this is not exclusive to LFA-1 as studies 
have suggested the integrin VLA-1 is required for memory T cell 
development in the airway against influenza infection (130, 131).

Intriguingly, several studies have shown that LFA-1, along 
with CD8, CD3, and CD43, are asymmetrically inherited into 
the two daughter (proximal vs. distal) cells upon initial T  cell 
division (132, 133). This has been further studied with fate-
associated factors such as IL-2Rα, IFNγR, and T-bet  all being 
asymmetrically distributed (133). Importantly, we demonstrated 
that unequal inheritance of LFA-1 in daughter cells caused 
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differences in migration, T-APC contacts, tissue retention, and 
effector functions (76). This study further demonstrated that the 
unequal inheritance of LFA-1 plays an important role in memory 
generation and differentiation of T  cells into both effector and 
memory subsets.

LFA-1 AS A MeCHAnOSenSOR

Recent evidence suggests a role for LFA-1 as a mechanosensor 
affecting cell signaling and integrin activation through the force 
generated by ligand binding. For example, it has been proposed 
that integrin adhesion occurs through a “catch bond” in which as 
the tension at the ligand binding site increases, the affinity also 
increases (134, 135). Recent work with a FRET-based LFA-1 ten-
sion sensor demonstrated significant tension across the β subunit 
of LFA-1 upon ICAM-1 binding resulting in the stabilization of 
active LFA-1 (136). Importantly, force generation requires adhe-
sion to both ICAM-1 and actin to result in increased integrin 
constraint, cell tension, and cell signaling (33, 98, 136, 137). Actin 
remodeling via WASP-dependent mechanisms is essential for the 
assembly and distribution of high affinity LFA-1 clusters at the 
IS. The control of LFA-1 topology at the IS by WASP is related 
to both the control of the CD4+ T cell stop signal (138) and the 
CD8+ T cell cytotoxic activity (139). Further work has demon-
strated that retrograde actin flow dictates LFA-1 orientation 
when bound to ICAM-1 on migrating Jurkat T (137). Similarly, 
TAGLN2 dependent inhibition of actin depolymerization is 
required for stable IS (140). Unsurprisingly, this force generation 
has been shown to be an important part of IS formation, cell 
cytotoxicity, and may modulate cell migration (42, 136, 141–143).  

As described in reviews by Sun et al. and Gauthier et al., the role 
of integrin tensile force requires continued study to fully elucidate 
its functions on in T cell activation, migration, and cytotoxicity 
(144, 145).

COnCLUSiOn

As this review has shown, LFA-1 functions are extremely varied 
but play a critical role in facilitating effective immune responses. 
Our understanding of the mechanisms through which LFA-1 
mediates immune cell function have grown exponentially, yet 
many questions still remain. As our understanding grows, our 
capability to modulate this highly adaptive molecule to better 
treat autoimmunity, cancer, and allograft rejection will continue 
to improve.
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