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Lymphocytes are the responsible of adaptive responses, as they are classically described, 
but evidence shows that subpopulations of mammalian lymphocytes may behave as 
innate-like cells, engaging non-self rapidly and without antigen presentation. The innate-
like lymphocytes of mammals have been mainly identified as γδT cells and B1-B cells, 
exert their activities principally in mucosal tissues, may be involved in human pathologies 
and their functions and tissue(s) of origin are not fully understood. Due to similarities in 
the morphology and immunobiology of immune system between fish and mammals, 
and to the uniqueness of having free-living larval stages where the development can be 
precisely monitored and engineered, teleost fish are proposed as an experimental model 
to investigate human immunity. However, the homology between fish lymphocytes and 
mammalian innate-like lymphocytes is an issue poorly considered in comparative immu-
nology. Increasing experimental evidence suggests that fish lymphocytes could have 
developmental, morphological, and functional features in common with innate-like lym-
phocytes of mammals. Despite such similarities, information on possible links between 
conventional fish lymphocytes and mammalian innate-like lymphocytes is missing. The 
aim of this review is to summarize and describe available findings about the similarities 
between fish lymphocytes and mammalian innate-like lymphocytes, supporting the 
hypothesis that mammalian γδT cells and B1-B cells could be evolutionarily related to 
fish lymphocytes.

Keywords: innate immunity, innate-like lymphocytes, fish lymphocytes, innate lymphoid cells, comparative 
immunology

iNTRODUCTiON

Vertebrate-type adaptive responses with MHC, RAG, memory, are present in only 2% of metazoans, 
but invertebrates can live very long protected by their innate immune defenses. Indeed, invertebrates 
classically defined as relying only on innate responses may live for centuries and have been found 
to respond to reinfection, suggesting that innate immunity mechanisms need more investigation. 
In a comparative immunology view, it is conceivable to speculate that leukocytes populations that 
emerged early in vertebrates evolution inherited and retained some invertebrate features related to 
antigen recognition and elimination. During evolution, genes coding for immune activities accu-
mulated toward mammals in a form of “layers.” This hypothesis proposes that evolution produced a 
layered immune system in which following descendants obtain predominance during development, 
giving rise to cell populations responsible for progressively more complex immune activities. As it is 
commonly thought that “ontogeny resembles phylogeny,” a “layered immune system” hypothesis may 
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give clues to understand cell functionality in vertebrates and pro-
vide knowledge for a better understanding of human pathologies.

Immune innate responses are a first-level of protection against 
infection and damage, exerted by cells reacting fast to non-self/
injury with their germline-encoded receptors. In mammals, there 
are different types of innate immune cells, besides macrophages/
dendritic cells/neutrophils, also innate lymphoid cells (ILC) have 
been described. ILC are classified in three groups for the expres-
sion of defined transcription factors, functional characteristics, 
and phenotype. Another group of mammalian unconventional 
or innate-like lymphocytes (mILL) has been identified with 
properties and functions as a bridge between innate and adap-
tive responses. Populations of mILL might thus rerepresent an 
“immune lower layer,” with activities involved in maintaining 
gut homeostasis, in early response to intestinal infections, in 
autoimmune diseases and cancer, in a fast unprimed fight against 
infection and damage, in producing germline natural polyreac-
tive antibodies and typical cytokine patterns. The mILL have been 
mainly identified as γδT cells and B1-B cells, are mainly located 
in mucosal tissues, and their functions and origin are still under 
scrutiny.

Of note, increasing evidence suggests that conventional fish 
lymphocytes display some developmental, morphological, and 
functional features in common with mILL and, very recently, 
these similarities have attracted attention among immunologists 
(1). However, studies aimed to clarify the links between fish 
lymphocytes and mIL are at their infancy.

This review is proposed to summarize the current knowledge 
on possible similarities between fish lymphocytes and mILL, and 
use the knowledge to raise the hypothesis that most of fish lym-
phocytes behave like subpopulations of mILL and, consequently, 
that mILL subpopulations (γδT cells, B1-B cells) could represent 
a “lower layer” of extant, evolutionary-related, analogs of fish 
lymphocytes.

MAMMALiAN iNNATe-LiKe 
LYMPHOCYTeS

Important players of innate immune activities are the mammalian 
ILC that derive from a common lymphoid precursor and play a 
role with effector and regulatory functions in innate immunity 
and tissue remodeling. The ILC do not have TcR or Ig rearranged 
receptors in their surface and are classified into three groups on the 
base of the patterns of cytokines they produce, and of transcrip-
tion factors necessary to their functions. Namely, ILC1 produce 
IFNγ and depend on Tbet, ILC2 produce type 2 cytokines (IL-5/
IL-13) and require GATA3, ILC3 depend on RORγt and produce 
IL-17 and/or IL-22 (2). Also natural killer (NK) cells belong to 
innate lymphocytes are involved in fast innate responses and 
do not express CD3 or lymphocyte receptors on their surface. 
However, aside from the classical description of lymphocytes as 
cells responsible of adaptive responses, subpopulations of recently 
discovered mILL behave as innate immune cells with respect to 
the historical innate-adaptive classification (3).

The mILL are involved in maintaining gut homeostasis and 
in early response to intestinal infections (4, 5), in autoimmune 
diseases and cancer (6, 7), are able to combat non-self in an 

MHC-independent fashion (8, 9), produce unbiased natural poly-
reactive antibodies (10, 11) and typical cytokine patterns (12, 13).

The main lymphocyte subpopulations displaying innate-like 
activities in mammals have been identified as γδT cells (5), mucosa- 
associated invariant T  cells (MAIT) (14), natural killer T  cells 
(NKT) (15), B1-B cells (16), and spleen marginal zone B cells (17).

innate-Like T Cells
The γδT  lymphocytes are non-conventional T  lymphocytes, 
comprising a minor T cell subset in blood and a major population 
of intestinal intraepithelial lymphocytes (IELs) having typical 
morphological features of lymphocytes with a surface germline 
TCR phenotype of γ+δ+ (mostly displaying repertoires Vδ1/
Cγ1 and Vγ9/Vδ2) and showing a potent phagocytic ability to 
both soluble and particulate antigens (18, 19). With respect to 
immunoglobulins and αβTcR molecules, the γδTcR displays the 
highest spontaneous diversity in the CDR3 region produced by 
VDJ recombination by using the V-chain gene. The γδT  cells 
can develop extrathymically and independently from an antigen 
encounter and are active players in adaptive and innate-like 
immune responses such as the direct killing of infected cells, are 
involved in tumor immunosurveillance (20), produce molecules 
required for pathogen clearance (21), are spontaneously cyto-
toxic (22), release immunomodulatory cytokines (23), and can 
be activated by stress-induced molecules (MIC-A/B, ULBPs) to 
produce pro-inflammatory cytokines and lytic enzymes. In sum-
mary, evidence suggests that γδT cells act either as effectors and 
regulators (24), and represent an evolutionarily primitive T cell 
subset characterized by innate and adaptive immune functions. 
Supporting these findings, recent data also showed the presence 
of γδT cells subsets for which innate stimuli are more important 
than TcR ligation, as in the case of IL-17-producing (γδT-17) and 
IFNγ-producing (γδT-IFNγ) cells (25).

Other subpopulations of recently discovered mammalian 
innate-like T lymphocytes are the MAIT and NKT. MAIT are an 
innate T cell subpopulation (14), principally involved in antibac-
terial immunity at mucosal surfaces, and mainly present in man 
than in mouse (26), they display a germline TcRαβ phenotype 
(Vα7.2-Jα33/12/20 in humans, Vα19-Jα33 in mice) and variable 
but restricted TcRβ chains (5, 27). Upon stimulation, MAIT 
produce the regulatory cytokines IFNγ, TNFα, and IL-17, and 
express the receptors for IL-7, IL-12, and IL-18 (26).

The NKT are a subpopulation of αβ- and γδ-T cells differing 
from NK cells for the presence of CD3 and TcR, characterized 
by CD1d restriction and limited TcR diversity (15, 28). They 
are principally present in non-mucosal tissues, are involved in 
antitumor activity, and are of help for B  cell proliferation and 
antibody production (29). The NKT can be further divided 
into two distinct subpopulations, namely, type I and type II 
NKT cells (30) that are preferentially located in the liver. Type I 
display a semi-invariant TcR (Vα14Jα18/Vβ2, 7, 8) in mice and 
(Vα24Jα18/Vβ11) in humans, whereas type II NKT cells exhibit 
a more diverse TcR repertoire.

innate-Like B Cells
The B lymphocytes of mammals are now cataloged as B2, or classic,  
and B1, or innate. These two major sets of B cells are defined by 
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differential presence of CD5 in their surface. The B1-B cells are 
further subdivided in B1a (B1) having a phenotype CD5+/IgMhigh/
IgDlow, and B-1b cells, which are CD5-negative (31). The B1-B cells 
produce large amounts of natural polyreactive antibody in a 
T cell-independent manner, are actively phagocytic and microbi-
cidal (32), may be involved in autoimmunity (33), and are present 
as IgA-secreting plasma cells in the intestinal mucosa where they 
migrate during infections (16). Natural polyreactive antibodies 
produced by CD5+ B cells are germline-encoded antigen recog-
nition molecules (class IgM, IgA, and IgG3) (11) with a limited 
repertoire of V-region genes, play an important role in early host 
defense, in autophagy/tissue remodeling and immune regulation, 
in recognition of pathogens and activation of the innate immune 
system via the classical pathway of complement activation (10). 
The B1-B  cells are considered to have no memory, are present 
in mouse liver at fetal stages (34), whereas in adults are present 
in the spleen and peritoneal cavity (35, 36), where they undergo 
self-renewal with mechanisms that are poorly understood.

Being involved in innate activities, B1-B  cells respond to 
stimulation in vitro through TLRs (from TLR1 to TLR8) (37, 38)  
inducing B1-B cell proliferation and differentiation into immu-
noglobulin-secreting cells. Also, B1-B cells show a rapid capacity 
to produce high amounts of the immunomodulatory cytokine 
IL-10 after innate activation (13).

An additional subpopulation of B  cells having innate-like 
activities is located in the spleen pulp marginal zone and involved 
in producing IgM antibodies in a T  cell-independent manner 
against pathogens circulating in blood (17).

Of particular interest is the tissue localization of innate-like 
B cells, which exert their activities principally in mucosal surfaces 
and mainly in the intestine, where the IgA produced by B1-plasma 
cells can be spontaneously present, reacting with the intestinal 
microflora (39). The mucosal intestine is also the richest site of 
γδT  lymphocytes in adult mice and man (40), followed by the 
respiratory epithelium (24), and the epidermis (41). In mucosal 
tissues, during a possible infection the mILL displaying germline 
receptors can respond quickly, thus providing protection inde-
pendently from adaptive responses and in the absence of antigen 
exposure as, for instance, in newborns (5).

FiSH LYMPHOCYTeS

The features of mILL, very briefly summarized above, appear to 
be remarkably similar to the features of conventional lympho-
cytes as they are known in teleost fish, where experimental data 
accumulated in decades of investigation showed the presence of 
T cells possessing surface αβ- and γδ-TcR, of B cells expressing 
three immunoglobulin types (IgM, IgT, and IgD), of lymphocyte 
subpopulations, and a complete set of master genes coding for 
lymphocyte-associated molecules (42–45). The fish lymphocytes 
have been shown to be functionally active in  vitro and in  vivo 
(46–52), and to produce and/or be affected by families of 
lymphocyte-related cytokines (53, 54).

Features of Fish T Cells
Two classes of T cells are present in teleost fish, displaying on their 
cell surface αβ- and γδ-TcR, together with TcR coreceptors, and 

expressing patterns of genes that clearly indicate the presence of 
T cell subpopulations as they are known in mammals, namely, 
cytotoxic (CD8), helper (CD4), and regulatory (Treg, Th17)  
(45, 55–57). The immunobiology of fish T  cells has been the 
subject of extensive research addressed to investigate regulation 
mechanisms, expression of surface markers, and in  vitro/vivo 
studies, that have been reassumed in recent reviews (42, 53, 54, 
58–60). In relation with the present work, available data have 
shown that the distribution of T cells in fish is principally located 
in mucosal tissues of intestine and gills (60–66), and that activities 
of T cells are diverse in these tissues. In the intestine, IEL displays 
an in vitro spontaneous cytotoxic activity (65), proliferate poorly 
(unpublished), and perform in  vivo RAG-driven spontaneous 
somatic rearrangement of a given V/C combination in the CDR3 
junction length of TcRβ-chain/TcRγ-chain in the absence of 
antigen stimulation (64, 67). On the other hand, T cells from the 
gills are able to proliferate in vitro in response to lectins, but RAG 
expression is negligible (45). These observations suggest that the 
teleost intestine could be a site of production of T cells, whereas 
the gills could be a site where T cells are more committed as effec-
tors/helper. A support to the hypothesis that the fish intestine can 
be a primary producer of T cells comes from data on the develop-
ment of sea bass immune system, where first antibody-positive 
T cells are detected in the developing gut before, or at the same 
time, than in thymus (68, 69). However, definitive knowledge 
establishing precise timing and tissue of appearance of T  cell 
subpopulations in fish is still missing (70).

The intestine of sea bass displays a high homogeneous expres-
sion of TcRα and TcRγ, a low expression of CD4, and differential 
expression of CD8α and of MHCII showing an increment and a 
decrease, respectively, toward the terminal part (65). Considering 
the number of T cells present in the intestinal mucosa, and that 
purified T  cells from the intestine with a pan-T mAb showed 
enriched expression of RAG-1, TcRα, TcRγ, CD8α, and CD4, it 
appears evident that the gut can be considered the main lymphoid 
tissue for T cells in adult fish (43).

Data obtained on in  vitro activity of fish leukocytes suggest 
the presence of an IL-2 modulated proliferation of T cells during 
a mixed-leukocyte reaction (48) and of a MHC-restricted CTL 
activity (52), suggesting that fish immune cells also display activi-
ties comparable to classical T lymphocytes of mammals.

Finally, fish do have memory T cells, identified by the IL-10 
modulation of CD8- and CD4-populations responses and prolife-
ration in immunized carp (71). Interestingly, it should be noted 
that mutant zebrafish engineered for lacking somatic recombina-
tion (RAG-1−/−) are still able to mount a specific protection after 
bacterial re-exposure (72), and that Atlantic cod lacks CD4 and 
MHCII in the genome but is protected during immune challenges 
with pathogens (73). These latter observations suggest that further 
research is needed in fish to better elucidate functional features  
of T cells, such as the phagocytic capability of γδT cells (18).

Features of Fish B Cells
Production of antigen-specific antibody in fish is known since 
almost 70  years, and research has shown that fish have B  cells 
expressing three heavy Ig chain classes, namely, IgM, IgT/Z, and 
IgD, as defined by the expressed genes μ, τ, and δ, respectively 
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(74–76), and of some Ig light chains (e.g., two in catfish, three in 
zebrafish, MW 25–28 kDa) (77). The IgM are tetrameric in fish 
(MW 450 kDa) and present systemically in body fluids, where 
they may be present in serum at high concentration. The IgT/
IgZ are mucosal immunoglobulins produced in a monomeric 
form (MW 170  kDa), although a non-covalent polymeric IgT 
association has been observed in trout mucus. The IgD has been 
studied at molecular level, it is expressed in a monomeric form 
with a putative MW of 150 kDa, but little is known on its physio-
logical role in fish (78). Likewise T cells, the B cells of fish have 
been the subject of much research, with results reassumed in 
comprehensive reviews (44, 79, 80). With respect to the present 
work, main activities of fish B cells can be summarized as fol-
lows: (i) high content of natural serum IgM in unimmunized 
fish (81–83); (ii) poor increase in IgM affinity after secondary 
immunization (84, 85); (iii) presence of memory B  cells (85); 
(iv) spontaneous phagocytosis (86); (v) production of pathogen-
induced mucosal secretory IgT (evolutionary orthologs of IgA) 
(49); (vi) presence of kidney lymphocyte precursors similar to 
mouse spleen B1-B cells (34, 87); and (vii) presence of proliferat-
ing B  cells in the peritoneal cavity (88); possible expression of 
TLRs (89). Interestingly, intriguing features regarding B cells have 
been observed in some fish species as, for instance, the lacking of 

pathogen-specific IgM in gadoids after successful immunization 
against the pathogen (82), and a lack of the whole IgM gene in a 
coelacanth species (90).

Similarities Between Mammalian innate-
Like and Fish Lymphocytes
The principal features of mILL and of fish conventional lympho-
cytes have been briefly summarized above, and a comparison of 
possible similarities is shown in Figure 1 for T cells and in Figure 2 
for B cells. A point of great importance to better understand the 
evolution of lymphocytes among vertebrates is the definition of 
the primary tissue(s) of origin and of tissue localization dur-
ing development. Experimental evidence suggests that the fish 
intestine may be a primary lymphoid tissue for T  cells, which 
can be detected there even before their appearance in thymus  
(68, 91–93), and where a T cell selection might be present that 
differs from thymic T cell selection. The possible thymus-inde-
pendent origin of T cell subpopulations appears to be conserved 
until mammals, where γδT cells may derive from human fetal liver 
and the primitive intestine between 6 and 9 weeks of gestation, as 
proposed by investigating expression of the δTcR repertoire dur-
ing human development (94, 95). Indeed, γδT cells play a pivotal 
role during human intestine development, since preterm infants 
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with intestinal barrier immaturity, and thus with a reduction in 
the number of IEL, may develop severe enterocolitis (96).

The importance of liver as a site of possible lymphocytes 
development emerges from data on the origin of B cells in mam-
mals, where B1a cells have been found to develop in mouse fetal 
liver, from which they migrate in the spleen, but not in the bone 
marrow (34). Interestingly, in the mouse spleen, a lymphocyte 
subpopulation shows flow cytometric morphological features  
(SP cells) remarkably similar to that of lymphoid SP cells from 
adult goldfish and zebrafish kidney (87, 97).

The origin of B cells in fish is not clearly defined, in zebrafish 
the pancreas has been supposed to be a primary site on the base of 
B cell receptors genes rearrangement (98), whereas in the sea bass 
kidney a presence of IgM-producing cells has been established by 
IHC at 55 days post hatching (69). Although it is evident in all 
fish species investigated that the development of T cells precedes 
development of B cells, a definitive clarification of a primary site 
of B cell origin is missing (69).

Another similarity could be found in the transmission of 
immunity between the female and the developing embryo. In fish, 
a possible precursor process of the maternal antibody transfer to 
the fetus through placenta has been observed by the presence of 
IgM molecules and IgM gene expression in unfertilized eggs and 
during first embryonic stages (99). In mammals, the B1-B cells 
are already present at early stages in the extraembryonic yolk 
sac and continue their development in the fetal liver (100), with 
the IgM being the predominant class during late gestation and 
infancy (101).

Other experimental evidence suggests striking similarities  
between low affinity polyreactive serum natural IgM antibodies 
produced by mammalian B1-B  cells (13) with IgM presence/
responses in fish (80). As in mammals and other investigated 
vertebrate species, the kinetic of primary antibody response in fish 
involves IgM but, at variance with mammals, in fish there is neither a 
class-switch secondary response nor a substantial increase in serum 
IgM affinity, although specific antibody titers can be observed after 
immunization. Of note, the protection mechanisms and specificity 
of antibody responses in fish are far to be fully understood, since 
some fish species result protected after immunization without pro-
ducing specific IgM antibody (82). In addition, the IgM can be even 
totally absent, as discovered in a species lacking completely of IgM 
genes (90). The possible importance of natural IgM in fish as players 
in innate immunity emerges from their amount in serum, since the 
mean concentration of IgM in unimmunized fish (sera from five 
species, 7.7 mg/ml) (81) is much higher than the mean concentra-
tion of IgM in humans (1.3 mg/ml) (102). Considering that fish 
lack IgG, the higher concentration of natural IgM could contribute 
to immunity against pathogens in not yet completely understood 
ways, suggesting that research on natural IgM contribution in 
innate immunity, and the kinetic of production of specific IgM by 
B cells upon immunization, may give some clues to understand the 
physiology of natural antibodies in mammals.

The Ig secreted in/by mucosal tissues are particularly important 
for pathogen clearance at the boundary with external environment, 
and teleost fish have a mucosa-associated IgT class whose features, 
like the coating of intestinal commensal microbiota, precede that 
of mammalian-specific secretory IgA (49). Although IgT is not 

homologous to IgA, it is evident a convergent evolution of the two 
molecules, both are multimeric, predominantly produced in the 
mucosa, and induced by mucosal immunization (103).

Fish leukocytes express TLRs (90), show strong in  vitro 
response to LPS, and respond to flagellin with TLR5 (104), and to 
viruses and poly I:C with TLR3 (105). Although these responses 
have been measured in leukocytes, it should be reasonable to 
speculate that fish B cells should express pathogen-specific con-
served TLRs on the base of nucleotide sequences obtained from a 
transcriptome of head kidney, a B cell lymphopoietic tissue in fish 
that revealed the presence of several TLRs’ gene expression (106). 
Given the presence of TLRs on fish B cells, a similarity becomes 
evident with TLRs on mammalian B1-B cells (37, 38).

Another population of fish IgM-B cells is located in the peritoneal 
cavity, capable of proliferate very soon after antigenic stimulation, 
produces polyreative antibodies, and is responsible of pathogen 
clearance (88). Similarly, in mammals the peritoneal B1-B cells can 
proliferate rapidly after antigen stimulation and can migrate in the 
periphery, including the intestine, to fight the pathogen (107).

SUMMARY

The immune defense system of vertebrates in its molecular and 
cellular components is remarkably conserved from teleost fish, 
the more ancient extant representatives of the evolutive lineage 
that directly brings to mammals. The knowledge on the similari-
ties between morphological and physiological processes of verte-
brates led to the use of teleost fish as an additional animal model 
for investigations in pathology and physiology of immune recog-
nition, with the goal of applying results in translational research 
for modeling human diseases, as can be easily appreciated with 
the zebrafish model. Therefore, teleost fish play a fundamental 
role in understanding the evolution of immune responses of ver-
tebrates, and experimental evidence suggests that some features 
of mammalian innate-like lymphocytes related to pathogenic 
conditions, such as chronic lymphocytic leukemia and inflam-
mation could benefit from knowledge in fish lymphocytes.

The hypothesis described in this review is that younger species 
(mammals) retain immune defense features of ancestors (fish) 
that have been enriched by evolution with new “layers” of genes 
coding for cells and molecules, with a “lower” immune layer that 
in mammals might be composed of cells with innate activities, 
among which innate-like lymphocytes.

The experimental evidence considered in this review suggests 
similarities in morphology, gene expression, and functional 
signatures of fish lymphocytes with mammalian innate-like lym-
phocyte subpopulations, although much remains to be learned 
on the immunobiology of fish lymphocytes such as the origin/
functions of intestinal T cells/γδT cells and of B1-B cells.

Considering that MAIT are restricted to mammals, it remains 
to elucidate the possible presence of NKT in fish, where a clear 
surface phenotype identification of spontaneously cytotoxic 
T cells is missing. It also remains to investigate in more details in 
fish a precise timing and tissues of origin of αβ/γδT cells, of IgM/
IgT B cells, their transcriptomic signatures, and some functional 
activities like production and kinetic properties of natural poly-
specific IgM and phagocytic capability of γδT cells.
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Importantly, the hypothesis that subpopulations of mam-
malian innate-like lymphocytes, namely, γδT cells and B1-B cells 
could be an extant-like counterpart of fish lymphocytes has been 
already proposed (32) and supported by a recent publication (1). 
These works suggest that the origin of lymphocytes, possibly 
including innate-like lymphocytes, goes back to the origin of all 
vertebrates (1).

In conclusion, investigations on the development and 
immunobiology of fish lymphocytes is of great importance in 
comparative immunology, and possibly important for a better 
understanding of mammalian innate-like lymphocytes immuno-
biology and their involvement in human diseases.
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