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Complement regulating proteins, including CD46, CD55, and CD59, protect cells against 
self-damage. Because of their expression on the donor endothelium, they are hypothe-
sized to be involved in accommodation. Polymorphisms in their promoter regions may 
affect their expression. The aim of this study was to investigate if donor polymorphisms 
in complement regulating proteins influence kidney transplant outcomes. We included 
306 kidney transplantations between 2005 and 2010. Five polymorphisms in the pro-
moters of CD46, CD55, and CD59 were genotyped. A CD59 promoter polymorphism 
(rs147788946) in donors was associated with a lower 1-year rejection-free survival 
[adjusted hazard ratio (aHR) 2.18, 95% CI 1.12–4.24] and a trend toward impaired 5-year 
graft survival (p = 0.08). Patients receiving a kidney with at least one G allele for the CD46 
promoter polymorphism rs2796267 (A/G) showed a lower rejection-free survival, though 
this became borderline significant after adjustment for potential confounders (aHR 1.87, 
95% CI 0.96–3.65). A second CD46 promoter polymorphism (rs2796268, A/G), was 
also associated with a lower freedom from acute rejection in the presence of at least one 
G allele (aHR 1.95, 95% CI 1.03–3.68). Finally, the combined presence of both favorable 
genotypes of rs2796267 and rs147788946 had an additional protective effect both on 
acute rejection (p = 0.006) and graft survival (p = 0.03). These findings could help to 
identify patients who could benefit from intensified immunosuppressive therapy or novel 
complement inhibitory therapeutics.

Keywords: complement regulatory proteins, promoter regions, genetic, kidney donor, graft survival, acute rejection

inTrODUcTiOn

Current immunologic matching of donor and recipient and risk stratification in kidney transplanta-
tion is largely based on AB0 blood group compatibility, HLA typing and the presence of donor-
specific HLA antibodies, but does not include the potency of effector mechanisms such as the 
complement system (1–3). In kidney transplantation, complement activation can be involved in the 

Abbreviations: BOS, bronchiolitis obliterans syndrome; CD46, membrane cofactor protein; CD55, decay accelerating factor; 
CD59, protectin; DSA, donor-specific anti-HLA antibodies; HR, hazard ratio; PCR, polymerase chain reaction; PRA, panel 
reactive antibodies; SNP, single-nucleotide polymorphism.
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pathogenesis of ischemia-reperfusion injury (IRI), cellular and 
antibody-mediated rejection, and posttransplant occurrence of 
certain native kidney diseases. Damage to the renal allograft is 
mainly mediated through the anaphylatoxins C3a and C5a, the 
opsonin C3b, and the membrane attack complex, resulting in 
pore formation in the cell membrane and subsequent cell lysis 
(4). To protect cells against complement-mediated damage, most 
nucleated cells express membrane bound complement regulatory 
proteins including membrane cofactor protein (CD46), decay 
accelerating factor (CD55), and protectin (CD59) (5). CD46 is 
a cofactor for factor I and thereby facilitates degradation of the 
complement proteins C3b and C4b. Downstream amplification 
of the complement cascade is further inhibited by CD55 through 
the inhibition of C3 convertase. Finally, CD59 interferes with 
the formation of the membrane attack complex by blocking the 
binding of C9 to C5b-C8 (5). Animal and human-biopsy studies 
suggest that complement regulation by these proteins on the 
donor endothelium is crucial in accomplishing accommodation, 
inducing resistance against antibody-mediated complement-
dependent cell lysis, and subsequent long-term allograft function 
(6–10). A higher CD46 expression in renal tubules following 
treatment for acute T  cell-mediated rejection was found to be 
associated with lower serum creatinine values and improved 
graft survival (7). Moreover, another study reported that a dif-
fuse positive CD55 staining in the peritubulair capillaries of for 
cause renal allograft biopsies correlated with a smaller increase in 
serum creatinine and a better graft survival compared to biopsies 
with a negative CD55 staining (8). Finally, large-animal studies 
demonstrated that rejected renal grafts show lower CD59 expres-
sion compared to accommodated grafts (9, 10). The importance 
of these complement regulators is further illustrated by their 
role in the pathogenesis of atypical hemolytic uremic syndrome 
(aHUS) and C3 glomerulopathy, both complement dysregulation 
disorders (11).

Multiple studies on complement polymorphisms in kidney 
transplantation, including in C3, C4, and mannose-binding lec-
tin, have been performed, but could not provide an indisputable 
association between these polymorphisms and acute rejection 
nor graft survival (12). We hypothesize that polymorphisms in 
genes encoding for membrane bound complement regulatory 
proteins in kidney donors may have a greater influence on acute 
rejection and graft survival because of their pivotal role in accom-
modation. Promoter polymorphisms can affect binding affinity of 
transcription factors and thereby protein expression levels (13). 
The genes encoding for CD46 and CD55 are located on chromo-
some 1 and for CD59 on chromosome 11 (14). Within the CD46 
promoter region, the GG haplotype of the single-nucleotide poly-
morphisms (SNPs) rs2796267 and rs2796268 is associated with 
a lower transcriptional activity compared to the AA haplotype 
(15). rs2796268 is located within the consensus binding sequence 
of the transcription factor CBF-1/RBP-Jk (15). Therefore, donor 
kidneys with at least one G allele for these SNPs may show a 
lower CD46 expression upon their endothelium compared to 
kidneys with a homozygous A genotype. Both G alleles are also 
part of larger aHUS risk haplotype (16). A 21-bp deletion in 
the promoter region of CD55 (rs150046210) is associated with 
a lower transcriptional activity and CD55 expression levels and 

with more severe influenza infections and allergic respiratory 
diseases (17, 18). Finally, an adenine insertion in the promoter 
of CD59 (rs147788946) in lung donors is associated with the 
incidence of bronchiolitis obliterans syndrome (BOS) following 
lung transplantation (19). The aim of this study was to investigate 
whether donor polymorphisms in the promoters of CD46, CD55, 
and CD59 affect kidney transplant outcomes.

PaTienTs anD MeThODs

Patients and study Design
Between January 2005 and December 2010, 357 transplantations 
were performed in the UMC Utrecht. 51 transplantations were 
excluded because no donor DNA was available (n = 38) or donor 
DNA was degraded and not suitable for genotyping anymore 
(n = 13), leaving 306 transplantations for this analysis. Clinical 
data were obtained from hospital records and the Dutch Organ 
Transplant Registry for which all patients provided written 
informed consent. Posttransplant follow-up data were available 
for all patients for at least 5 years. All patients provided consent 
for use of leftover sera samples. The primary outcomes in this 
study were 5-year death-censored graft survival and 1-year free-
dom from acute rejection. For acute rejection, we decided to look 
at 1-year freedom from acute rejection because the incidence of 
acute rejection is the highest within the first year and rejection 
after the first year is often related with nonadherence or overag-
gressive immunosuppressive tapering (20). Rejection was defined 
as biopsy proven acute borderline rejection or acute rejection. All 
biopsies were performed on indication and reviewed by an expe-
rienced nephropathologist according to the Banff classification 
valid at that time. The study protocol including usage of donor 
DNA and patient sera was approved by the Biobank Research 
Ethics Committee of the UMC Utrecht (TC Bio 13-633) and 
performed in accordance with the Declaration of Helsinki.

anti-hla antibodies
In all transplantations, the T-cell complement-dependent 
cytotoxicity crossmatch with both current and peak sera was 
negative. In addition, pretransplant anti-HLA antibodies were 
previously determined with the LABScreen panel reactive anti-
gen and single antigen class I and II (OneLambda, CA, USA) 
for all transplantations between 2005 and September 2008 (21). 
For transplantations performed after September 2008, sera were 
retrospectively tested for the presence of anti-HLA antibodies 
with the LifeScreen Deluxe and Lifecodes single antigen beads 
class I and II (Immucor, GA, USA) in case of a positive screen-
ing. Based on a comparative study between both HLA antibody 
assays have a similar ability to detect anti-HLA antibodies at a 
mean fluorescence intensity cutoff of 4,000 (22), we decided to 
apply this cutoff. Donor-specific anti-HLA antibodies (DSA) 
were assigned for HLA-A/-B/-C/-DR/-DQ by comparing bead 
specificities with the donor HLA type on split level.

Donor Dna isolation and genotyping
Donor DNA was extracted from peripheral blood mononuclear 
cells or splenocytes at the time of transplantation for HLA typing 
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TaBle 1 | Overview of studied polymorphisms.

complement 
protein

Polymorphism—
rs number

alleles genotype frequencies 
within cohort

CD46 2796267 (A) A/G A/A: 31%
G/G: 17%
A/G: 52%

2796268 (B) A/G A/A: 31%
G/G 17%
A/G: 52%

CD55 150046210 (A) −/TAGTTAC 
TTCCCCTC 

CTTCCC

+/+: 49%
−/−: 43%
+/−: 9%

28371583 (B) A/G A/A: 54%
G/G: 8%
A/G: 38%

CD59 147788946 −/A −/−: 71%
A/−: 29%

TaBle 2 | Baseline characteristics.

cohort (n = 306)

Recipient age (years) 49.6 ± 13.8
Recipient sex, male 172 (56%)
Donor age (years) 51.5 ± 13.2
Donor sex, male 137 (45%)
Donor type

Living 136 (44%)
DBD 85 (28%)
DCD 85 (28%)

First transplant 257 (84%)
Highest PRA > 5% 57 (19%)
Pretransplant DSAb 33 (11%)
HLA-A, -B, -DR mismatches (no.)

0–1 72 (24%)
2–4 189 (62%)
5–6 45 (15%)

Cold ischemia time (hours)c 16.5 ± 6.8
Delayed graft functiona 77 (25%)
Baseline immunosuppression

Tacrolimus 299 (98%)
Cyclosporine A 2 (1%)
Mycophenolate mofetil 277 (91%)
Azathioprine 2 (1%)
Prednisone 303 (99%)
Sirolimus 20 (7%)

Induction therapyd 54 (18%)

Data are depicted as number and percentage or mean ± SD.
DBD, donation after brain death; DCD, donation after circulatory death; DSA, donor-
specific anti-HLA antibodies; PRA, panel reactive antigen.
aDefined as the need for dialysis indicated by poor kidney function within the first week 
after transplantation.
bPretransplant DSA status could not be determined for five patients.
cCold ischemia time for deceased donors only.
dInduction therapy with anti-interleukin 2 receptor monoclonal antibody.
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purposes by using the MagnaPure Compact system according 
to the manufacturer’s instructions (Roche diagnostics, Basel, 
Switzerland) and stored at 4°C. Because all donor DNA samples 
were stored with a donor code that was not traceable to an 
identifiable person, permission to use the leftover DNA samples 
for study purposes was granted by the Biobank Research Ethics 
Committee of the UMC Utrecht. Genomic DNA was amplified 
through polymerase chain reaction (PCR) by using specific 
primer-pairs for the promoters of CD46, CD55, and CD59 (Table 
S1 in Supplementary Material). Following enzymatic purification, 
the PCR products were sequenced by using sequence-primers 
and fluorescent capillary electrophoresis (3730 DNA analyzer, 
Applied Biosystems, Waltham, MA, USA). Sequence data were 
analyzed with SeqScape® version 2.7 (Applied Biosystems).

statistical analyses
All data were analyzed with SAS Enterprise Guide 7.1 (SAS 
Institute Inc., Cary, NC, USA) and R 3.2.2. Survival analyses were 
performed by constructing Kaplan–Meier curves and tested for 
significance with the log-rank test. No correction for multiple 
testing was performed because we selected the investigated poly-
morphisms beforehand based on literature and frequency within 
the general population instead of random testing of all identified 
polymorphisms within the CD46, CD55, and CD59 promoter 
regions (23). To adjust for potential confounders, cox multiple 
regression was performed. Included in the adjusted analysis were 
panel reactive antibody (PRA), donor type, retransplantation, 
and induction therapy. Results are reported as hazard ratios 
(HRs) with 95% confidence interval and p-values. A p-value of 
<0.05 was considered to be statistically significant.

resUlTs

Patient and Donor characteristics
Five different polymorphisms in the promoters of CD46, 
CD55, and CD59 that are frequently present within the general 
population were sequenced. The observed genotype frequencies 
within our donor population are summarized in Table  1 and 

are comparable to the frequencies that have been reported by 
the 1000 genomes project (14). We will refer to the two differ-
ent CD46 SNPs as A (rs2796267) and B (rs2796268). Additional 
donor and recipient characteristics are summarized in Table 2. 
Fifty-eight patients suffered from at least one episode of biopsy 
proven acute rejection within the first year. These episodes were 
classified as borderline rejection (12%), acute cellular rejection 
(66%), acute antibody-mediated rejection (5%), or combined 
antibody-mediated and cellular rejection (17%). The overall 
death-censored 5-year graft survival rate was 84%, 48 grafts failed 
during follow-up. Thirty-one patients died with a functioning 
graft within 5 years posttransplantation.

cD46 and cD59 Promoter Polymorphisms 
are associated With acute rejection
Kaplan–Meier survival analyses showed no associations between 
the polymorphisms in the promoters of the genes encoding for 
CD46 and CD55 and 5-year death-censored graft survival. For 
the CD59 promoter polymorphism, the survival curve hints at an 
impaired survival of kidneys with a SNP configuration without an 
adenine insertion (−/−), although this is not significant (p = 0.08; 
Figure 1). Regarding freedom from acute rejection, differences 
were observed for the CD46 and CD59 promoter polymor-
phisms, but not for CD55 (data not shown). Patients receiving 
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FigUre 1 | Death-censored graft survival curve according to donor CD59 
promoter genotype. Kidneys with the −/− single-nucleotide polymorphism 
configuration tend to have an impaired 5-year death-censored graft survival 
(p = 0.08).
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a kidney with at least one G allele for the CD46 SNP A showed 
a significantly lower freedom from acute rejection (p  =  0.02; 
Figure 2A). The other CD46 SNP (B), showed a trend towards a 
lower freedom from acute rejection in the presence of at least one 
G allele (p = 0.07; Figure 2B). Finally, the −/− configuration of 
the CD59 SNP in kidney donors correlated also with an impaired 
rejection-free survival (p = 0.03; Figure 2C). The observed dif-
ferences for all three SNPs occured already within the first weeks 
posttransplantation. Types of rejection stratified for donor SNP 
genotype are summarized in Table S2 in Supplementary Material.

Recipient and transplant characteristics did not significantly 
differ among CD59 and CD46 SNP B donor genotype (Tables S3 
and S4 in Supplementary Material). For CD46 SNP A, patients 
receiving a kidney with at least one G allele tended to be more 
often retransplant patients and subsequently also had more often 
a PRA above 5% and induction therapy with an IL-2 receptor 
antagonist (Table S4 in Supplementary Material). After adjust-
ment for donor type, PRA, retransplantation and induction 
therapy in a cox multiple regression model, there was still a trend 
toward a lower rejection-free survival (HR 1.82; 0.93–3.55) in 
patients receiving a kidney from a donor with at least one G allele 
for CD46 SNP A (Table 3). The adjusted analyses, including the 
same covariates as for CD46 SNP A, identified CD46 SNP B and 
CD59 SNP as significant risk markers for acute rejection within 
the first year (HR 1.95 and 2.18).

Because DSA are important inducers of complement activa-
tion, we also looked at the presence of pretransplant DSA in 
combination with donor genotypes. Five-year graft survival was 
the lowest in patients with pretransplant DSA receiving a kidney 
with a CD59 risk genotype (64%, overall p = 0.02; Figure S1 in 

FigUre 2 | Continued
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FigUre 2 | Rejection-free survival according to donor CD46 and CD59 
genotypes. (a) Rejection-free survival according to CD46 SNP A 
(rs2796267): A/A vs. G/G (p = 0.11), A/A vs. A/G (p = 0.02), A/A vs. G/R 
(p = 0.02). (B) Rejection-free survival according to CD46 SNP B (rs2796268): 
A/A vs. G/G (p = 0.22), A/A vs. A/G (p = 0.07), A/A vs. G/R (p = 0.07).  
(c) Rejection-free survival according to CD59 SNP (rs147788946): −/− vs. 
A/− (p = 0.03).
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by APCs (4, 24–27). CD46 also acts as a direct co-stimulatory 
molecule for T cells, driving them towards the anti-inflammatory 
type 1 regulatory phenotype (28, 29). The observed early effect 
of both CD46 SNPs on rejection-free survival, in the absence of 
DSA, may be the result of enhanced T-cell activation and prolif-
eration upon IRI induced complement activation (30).

Donor CD59 protects the allograft against rejection by hinder-
ing the formation of the membrane attack complex. Membrane 
attack complex formation on the donor endothelium can results 
in lysis, whereas sublytic levels induce endothelial cell activation 
and altered proliferation (31–33), augment alloreactive T-cell 
activation (34), and promote a prothrombotic phenotype 
(35–37). In addition, CD59 inhibits activation and proliferation 
of CD4+ and CD8+ T cells (38). Because of the limited numbers 
and involvement of complement in both cellular and antibody-
mediated rejection, we decided to pool the rejection subsets. 
The majority of the additional rejection episodes in the CD59 
risk genotype group were classified as cellular rejection. In a 
substantial part of these biopsies, vascular rejection was observed 
which is classically seen as a type of cellular rejection. However, 
in the presence of DSA this could also indicate antibody-mediate 
rejection. Indeed, for CD59 it seems like both graft failure and 
acute rejection within the first days posttransplantation are most 
prevalent in the presence of both pretransplant DSA and the 
donor CD59 risk genotype (39). Pretransplant DSA have been 
associated with an increased risk of early failure (40). This effect 
may be attributed to increased HLA antigen expression on the 
donor kidney within the first days due to IRI (40). Moreover, IRI 
also activates the complement cascade directly (30) and this may 
further contribute to the observed early effect of the complement 
polymorphisms.

To the best of our knowledge, this is the first study that assessed 
the impact of promoter polymorphisms in genes encoding for 
complement regulatory proteins in kidney donors on transplant 
outcomes. Park et al. studied the CD46 SNP A in kidney trans-
plant recipients and reported an inverse association between this 
polymorphism and acute and late-onset acute rejection in kidney 
transplant recipients (41). However, the pathological relevance 
of this polymorphism in recipients in terms of acute rejection is 
less clear since accommodation is primarily mediated by local 
complement regulatory proteins expressed on the donor organ 
(42). In our study, the −/− configuration of the CD59 SNP in 
kidney donors yielded a disadvantageous association with acute 
rejection. Previously, in a cohort of 137 lung transplantations, of 
whom 14 were diagnosed with BOS, a reverse association between 
the CD59 promoter polymorphism in lung donors and BOS was 
observed (19). A potential explanation for the opposite effect of 
this SNP in kidney and lung transplantation could apply to the 
timing of the effect and the fact that acute and chronic rejection 
(including BOS) are two distinct entities (43–45). Chronic rejec-
tion is a much more multifactorial process requiring multiple 
hits, resulting in gradual parenchymal fibrosis and obliterative 
vasculopathy and progressive graft dysfunction (43, 46), whereas 
acute rejection is identified by cellular and humoral attack result-
ing in rapid graft damage when untreated (43, 47). In our kidney 
transplant cohort, the observed effect of the CD59 promoter SNP 
occurred in the first weeks posttransplantation without an effect 

Supplementary Material). Moreover, rejection-free survival in 
patients with DSA was lower in patients receiving a kidney with a 
CD59 risk genotype compared to a protective genotype (p = 0.03; 
Figure S2 in Supplementary Material). For CD46 SNP A and B, 
no difference in rejection-free survival in patients with DSA was 
observed between the risk and protective genotypes, though in 
patients without DSA rejection-free survival was lower for the 
risk genotypes.

Protective complotype Yields additional 
Preservative effects
The combined presence of multiple complement polymorphisms, 
a complotype, may yield additional information. Therefore, we 
compared patients receiving a kidney with both protective vari-
ants of CD46 SNP A and CD59 SNP alongside kidneys with both 
risk variants and kidneys with one protective and one risk variant, 
the intermediate group. Recipient and transplant characteristics 
of all groups are summarized in Table 4, failure causes in Table 
S5 in Supplementary Material. Remarkably, none of the patients 
receiving a kidney from a donor with both protective genotypes 
suffered from acute rejection within the first year nor failed 
within 5  years (Figure  3). Kidneys with a risk or intermediate 
complotype showed an identical lower 5-year graft survival com-
pared to kidneys with a protective complotype (82%, p = 0.03). 
Regarding 1-year rejection-free survival, a dose-dependent effect 
was observed, with a lower rejection-free survival in kidneys 
with the risk complotype (73%) compared to kidneys with an 
intermediate complotype (83%, p = 0.05).

DiscUssiOn

This study demonstrated that two promoter polymorphisms in 
CD46 and one in CD59 in kidney donors correlate with a lower 
freedom from acute rejection within the first year posttransplan-
tation. The survival analyses hint at a lower 5-year graft survival 
in patients receiving a kidney with the −/− configuration of the 
CD59 SNP, although this was not significant. The combined 
presence of both protective genotypes of CD46 SNP A and CD59 
SNP has an additional preservative effect on freedom from acute 
rejection and 5-year graft survival. There was no association 
between the CD55 promoter polymorphisms and rejection-free 
nor graft survival.

Mechanisms by which CD46 can protect against both cellular 
and antibody-mediated rejection include decreased production 
of complement C3a and C5a and inhibition of further comple-
ment activation and amplification. Locally produced C3a and C5a 
can bind to antigen-presenting cells (APCs) and T cells, thereby 
inhibiting T-cell apoptosis and enhancing T-cell proliferation 
and the production of co-stimulatory molecules and cytokines 
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TaBle 3 | Hazard ratios (HRs) for acute rejection and graft failure.

Promoter polymorphism rs number genotype acute rejectiona graft failureb

Unadjusted adjustedc Unadjusted adjustedc

CD46 SNP A 2796267 G/R vs. A/A 2.09 (1.09–4.03) 1.87 (0.96–3.65) 1.10 (0.59–2.05) 1.03 (0.55–1.95)
CD46 SNP B 2796268 G/R vs. A/A 1.80 (0.95–3.39) 1.95 (1.03–3.68) 0.88 (0.48–1.61) 0.89 (0.40–1.64)
CD59 147788946 −/− vs. A/− 2.01 (1.04–3.87) 2.18 (1.12–4.24) 1.88 (0.91–3.88) 1.88 (0.90–3.89)

Data depicted as HRs with 95% confidence interval.
SNP, single-nucleotide polymorphism.
aAcute rejection within the first year.
b5-year death-censored graft failure.
cAdjusted for panel reactive antibodies, donortype, retransplantation, and induction therapy.
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TaBle 4 | Baseline characteristics according to donor complotype.

Protective 
complotype

risk 
complotype

intermediate 
risk complotype

N = 25 N = 146 N = 135

Recipient age (years) 50.2 ± 12.1 50.8 ± 12.0 48.3 ± 14.9
Recipient sex, male 17 (68%) 83 (57%) 72 (53%)
Donor age (years) 52.8 ± 14.8 50.6 ± 13.9 52.2 ± 12.2
Donor sex, male 11 (44%) 68 (47%) 58 (43%)
Donor type

Living 7 (28%) 62 (43%) 67 (50%)
DBD 6 (24%) 44 (30%) 35 (26%)
DCD 12 (48%) 40 (27%) 33 (24%)

First transplant 22 (88%) 117 (80%) 118 (87%)
Highest PRA > 5% 3 (12%) 30 (21%) 24 (19%)
Pretransplant DSAa 4 (16%) 18 (13%) 11 (8%)
HLA-A, -B, -DR mismatches 
(no.)

0–1 6 (24%) 33 (23%) 33 (24%)
2–4 15 (60%) 91 (62%) 83 (62%)
5–6 4 (16%) 22 (15%) 19 (14%)

Cold ischemia time (hours)c 16.4 ± 9.2 17.0 ± 6.8 16.3 ± 6.2 
Delayed graft functionb 11 (44%) 35 (24%) 31 (23%)
Induction therapyd 1 (4%) 27 (19%) 26 (19%)

Baseline characteristics stratified for protective complotype (CD46 SNP A: A/A and 
CD59 SNP: −/−), risk complotype (CD46 SNP A: G/R and CD59 SNP: A/−), or 
intermediate risk complotype (CD46 SNP A: A/A and CD59 SNP: A/− or CD46 SNP A: 
G/R and CD59 SNP: −/−). Data are depicted as number and percentage  
or mean ± SD.
DBD, donation after brain death; DCD, donation after circulatory death; DSA, donor-
specific anti-HLA antibodies; PRA, panel reactive antibodies; SNP, single-nucleotide 
polymorphism.
aData on pretransplant DSA status was missing for four patients receiving a kidney with 
a risk complotype and one patient with a donor with an intermediate complotype.
bDefined as the need for dialysis indicated by poor kidney function within the first week 
after transplantation.
cCold ischemia time for deceased donors only.
dInduction therapy with anti-interleukin 2 receptor monoclonal antibody.

thereafter. Therefore, we hypothesize that the CD59 promoter with 
the −/− configuration might be more inducible through vigorous 
inflammation such as IRI, whereas the other CD59 variant might 
be more strongly transcribed in steady state. Finally, the effect of 
the CD59 promoter SNP may be tissue specific. It was shown that 
not all cell types are equally responsive to stimuli such as phorbol 
myristate acetate, an NF-κB activator (48), when it comes to CD59 
upregulation (49). Further studies should reveal the molecular 
effect of the studied CD59 promoter polymorphism.

This discovery study was set up to explore the potential 
associations between promoter polymorphisms in the genes 

encoding for complement regulatory proteins and kidney trans-
plant outcomes. A limitation of this study is the relatively small 
sample size for a SNP association study and lack of replication 
cohort. The sample size has likely also attributed to differences 
in patient characteristics (retransplantation, PRA, and induction 
therapy) when stratifying for CD46 SNP A donor genotypes, 
since we would not expect an association between these factors 
and a donor polymorphism. Retransplantation and PRA are gen-
eral markers of immunization and can include both cellular and 
humoral immunization (1). We tried to overcome this potential 
bias by adjusting for these factors in cox multiple regression. 
Validation of our results in a larger, adequately powered, replica-
tion cohort is required to strengthen our findings. The incidence 
of rejection within the first and 5-year graft survival observed in 
our population are in line with numbers reported by others (2, 
50). Death-censored graft survival among the 51 patients trans-
planted without donor DNA who were excluded from further 
analysis, seemed to be slightly better compared to patients with 
available donor DNA (93%, p  =  0.08). However, when taking 
death with functioning graft into account, no significant differ-
ences in 5-year graft survival were observed between patients 
with available donor DNA (74%) and without donor DNA (65%, 
p = 0.25).

It has been postulated that the combined presence of multiple 
polymorphisms in complement genes, a complotype, could have 
an even greater impact on complement activity (51–53). For 
example, in age-related macular degeneration, a complement 
dysregulation disorder, a combination of a SNP in factor H and 
two in factor B shows the strongest association with disease status 
and complement activity in vitro (52). Therefore, we constructed 
a complotype combining the CD46 SNP A and CD59 SNP.  
The combined presence of both protective genotypes was 
associated with additional beneficial outcome compared to 
kidneys with only a single protective variant. Moreover, none 
of the kidneys with both protective variants showed any signs of 
acute rejection within the first year nor failed during follow-up. 
Because of the limited number of patients receiving a kidney 
with a protective complotype and absence of events in this 
group, we could not adjust for baseline differences by cox multi-
ple regression. Donors with a protective complotype were more 
often donation after cardiac death donors and less often living 
donors. On the other hand, patients receiving a kidney with a 
protective complotype also had a lower PRA and received less 
often induction therapy. A potential bias in both directions can 
therefore not be ruled out.
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FigUre 3 | Graft and rejection-free survival according to donor complotype. Protective complotype (CD46 SNP A: A/A and CD59 SNP: A/−), risk complotype 
(CD46 SNP A: G/R and CD59 SNP: −/−), and intermediate complotype (CD46 SNP A: G/R and CD59 SNP: A/− or CD46 SNP A: A/A and CD59 SNP: −/−).  
(a) 5-year death-censored graft survival according to donor complotype: protective vs. risk complotype (p = 0.03) and protective vs. intermediate complotype 
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In conclusion, the presented data suggests that donor poly-
morphisms in the promoters of CD46 and CD59 affect kidney 
transplant outcomes. This study opens new perspectives on the 
role of complement regulation in preventing acute rejection and 
graft failure and could add valuable information to already known 
risk indicators of unfavorable outcomes following kidney trans-
plantation. We hypothesize that kidneys with a risk complotype 
are less capable of protecting themselves against recipient-induced 
complement attack. Therefore, these patients may benefit from 
complement-targeted therapeutics like eculizumab and comple-
ment C1-inhibitor or one of the newly developed inhibitors that 
are currently being investigated (54). Alongside this information 
could also help to determine which patients could benefit from 
more intensified regular immunosuppressive treatment and more 
frequent check ups.
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FigUre s1 | Death-censored graft survival according to donor CD59 promoter 
genotype and pretransplant DSA status. 5-year graft survival was comparable 
between patients with a protective (A/−) genotype kidney without DSA (90%)  
and with DSA (91%). For the CD59 risk genotype (−/−), graft survival was 83%  
in patients without DSA and 64% in patients with DSA (overall p = 0.02).

FigUre s2 | Rejection-free survival according to donor CD46 and CD59 
genotypes in combination with pretransplant DSA status. (a,B) For CD46 
single-nucleotide polymorphism (SNP) A and SNP B, rejection-free survival did 
not differ between the protective (A/A) and risk (A/G or G/G) variant in patients 
with pretransplant DSA. Whereas, rejection-free survival was lower in patients 
without DSA receiving a kidney with a risk genotype of CD46 SNP A (p = 0.02) 
or CD46 SNP B (p = 0.06). (c) For CD59, rejection-free survival in patients with 
DSA was markedly lower for the CD59 risk genotype (−/−; p = 0.03). In patients 
without DSA, rejection-free survival was 87% in patients with a protective 
genotype (A/−) and 80% in patients with a risk genotype (p = 0.16).
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