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Inflammasome-driven inflammation is postulated to play a role in multiple sclerosis (MS), 
but there is no direct evidence that the nod-like receptor protein 3 (NLRP3) inflammasome 
is involved in MS pathogenesis. Uric acid was shown to be one of the “danger” signals 
involved in the activation of NLRP3 inflammasome; notably, the concentration of uric 
acid is increased in the serum and in the cerebrospinal fluid of MS individuals. To better 
investigate the role of the NLRP3 inflammasome in MS-associated inflammation, we 
primed with lipopolysaccharide and stimulated with monosodium urate crystals PBMCs 
of 41 MS patients with different disease phenotypes. Eleven individuals with primary 
progressive MS (PPMS), 10 individuals with stable relapsing–remitting MS (SMS), 10 
individuals with acute relapsing–remitting MS (AMS), 10 individuals with benign MS were 
analyzed; 10 healthy controls were enrolled as well in the study. The expression of the 
NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), caspase-1, 
caspase-8, IL-1β, and IL-18 inflammasome genes was evaluated by RT-PCR. NLRP3 and 
ASC-speck protein expression was analyzed by FlowSight AMNIS, whereas production 
of the pro-inflammatory cytokines IL-1β and IL-18 and of caspase-1 and caspase-8 was 
measured by ELISA in supernatants. Results showed that uric acid serum concentration 
was significantly increased in PPMS; in these and in AMS patients, mRNA for NLRP3, 
ASC, and IL-18 was upregulated as well, but caspase-8 mRNA was upregulated only 
in PPMS. Expression of NLRP3 and ASC-speck protein was significantly increased in 
PPMS, SMS, and AMS patients, but IL-18 and caspase-8 production was significantly 
increased only in PPMS, in whom a direct correlation between hyperuricemia and 
caspase-8 was detected. The NLRP3/caspase-8 inflammasome pathway is activated 
in PPMS, possibly as a consequence of hyperuricemia. Therapeutic strategies reducing 
NLRP3 activation and/or lowering hyperuricemia could be useful in the therapy of PPMS.
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Abbreviations: MS, multiple sclerosis; NLRP3, nod-like receptor protein 3; CSF, cerebrospinal fluid; MSU, monosodium urate 
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CNS, central nervous system; DAMP, damage-associated molecular pattern; ASC, apoptosis-associated speck-like protein 
containing CARD; EAE, experimental autoimmune encephalomyelitis; MRI, magnetic resonance imaging; EDSS, expanded 
disability status scale.
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inTrODUcTiOn

Multiple sclerosis (MS), the most common non-traumatic 
disabling neurological disease in young adults, is an inflamma-
tory and demyelinating disease of the central nervous system 
(CNS) that is mediated by multiple immune effector mecha-
nisms. From a pathogenic point of view, MS is a heterogeneous 
condition consisting of neuroinflammatory, autoimmune, and 
neurodegenerative processes that are the consequence of an 
inappropriate activation of the immune system toward myelin 
“self ” antigens.

Similarly to other neurodegenerative diseases, MS is also 
characterized by complex biochemical alterations affecting 
neuronal functions. Uric acid, the product of purine catabolism, 
is a damage-associated molecular pattern (DAMP) released 
from dying cells whose concentration is reported to be elevated 
in the cerebrospinal fluid (CSF) and the serum of MS patients, 
in particular, in the chronic phase of the disease (1, 2). Notably, 
though, even if a correlation has been demonstrated between 
serum concentration of uric acid and susceptibility to the disease, 
hyperuricemia was not observed in every analyzed cohort of MS 
patients (3–8).

Uric acid activates the nod-like receptor protein 3 (NLRP3) 
inflammasome (9), an event suggested to be involved in the 
pathogenesis of MS. Inflammasomes are signaling complexes 
that sense inflammatory signals and promote inflammation by 
maturation and release of the pro-inflammatory cytokines inter-
leukin (IL)-1β and IL-18. Classically, functional inflammasome 
complexes are composed of three proteins: a sensor (NLRP3, 
NLRP1, NLRC4, AIM2), an adaptor [apoptosis-associated speck-
like protein containing CARD (ASC)], and catalytic proteins 
(pro-caspase-1, pro-caspase-8). Upon detecting inflammatory 
signals, the inflammasome sensor molecule induces a rapid 
polymerization of the adaptor protein ASC into large helical 
filaments (“specks”), which represent the hallmark of inflamma-
some activation (10). The assembly of the three proteins results 
in the generation of a complex that mediates the self-cleavage 
of pro-caspase-1 and pro-caspase-8 to their active analogs. 
Caspase-1 and caspase-8 will then cleave the immature forms of 
the pro-inflammatory cytokines IL-1β and IL-18 into the mature 
bioactive forms.

Among the inflammasomes, much attention has been given to 
the NLRP3 complex due to its potential contribution to several 
diseases, including neurodegenerative conditions. The NLRP3 
inflammasome can be activated by a wide range of stimulators, 
including pathogens, viruses, bacteria, extracellular ATP, amy-
loid β and uric acid (9, 11, 12). In experimental autoimmune 
encephalomyelitis (EAE), in particular, the most widely investi-
gated animal model of MS, activation of the NLRP3 inflamma-
some was shown to have a critical role. Thus, augmented levels of 
caspase-1, IL-1β, and IL-18 are observed in the pathogenesis of 
EAE (13) and, conversely, the absence of the NLRP3 gene results 
in diminished Th1 and Th17 encephalitogenic responses and 
reduces the inflammatory infiltrate in the spinal cord (14). Very 
recent results, in particular, show that, in caspase-1-deficient 
mice models, the processing and the release of IL-1β can be 
taken up by caspase-8 (15). These data indicate that caspase-8, 

together with ASC and NLRP3, can drive IL-1β production in 
EAE and show the presence of a caspase-1-independent form 
of EAE (16). These results also suggest that caspase-1 activation 
may be not be present in all phenotypes of MS, which is a clini-
cally heterogeneous disease.

In MS, it was shown that the upregulation of caspase-1, 
IL-1β, and IL-18 associates with the progression and severity of 
disease (17–19). Caspase-1 expression, in particular, is elevated 
in MS plaques (20) and, together with that of IL-18, in periph-
eral mononuclear cells of MS patients (21). Notably, whereas 
augmented serum and CSF IL-18 concentration was shown to 
be present in MS individuals (17, 22), not all authors have found 
increases of IL-1β in the CSF of these patients (23–26). IL-1β is 
known to promote the differentiation of naive CD4+ T cells into 
Th17 T lymphocytes (27, 28), whereas IL-18 is a potent activa-
tor of polarized Th1 cells for IFNγ production and lymphocytes 
proliferation (28). These observations are important within the 
pathogenesis of MS as both Th1 and Th17 T lymphocytes have 
been implicated in the pathology of the disease (29–32).

To verify whether NLRP3 activation could be detected in MS 
patients with different disease phenotypes, and to determine if 
hyperuricemia drives NLRP3 activation in MS, we analyzed uric 
acid serum concentration and NLRP3 inflammasome activation 
in MS patients affected by active MS or with a clinically quiescent 
disease.

MaTerials anD MeThODs

Patients and controls
This study was approved by and carried out in accordance with the 
guidelines of the ethic committee of the Don Gnocchi Foundation 
and conformed to the Declaration of Helsinki. All participants 
gave informed consent according to a protocol approved by the 
local ethics of the Don Gnocchi Foundation.

Forty-one patients affected by MS as diagnosed by clinical 
and laboratory parameters, and followed by the Centro Sclerosi 
Multipla of the Don Gnocchi Foundation in Milano, Italy, were 
included in the study. Twenty patients (13 females and 7 males) 
were diagnosed as been affected by relapsing–remitting (RR) MS 
with or without sequelae. The disease had been clinically stable 
in 10 patients for at least 6  months prior to the study period; 
these patients (mean age = 45 ± 11 years; range = 26–62 years; 
7 females and 3 males) were classified as patients with stable 
relapsing-remitting MS (SMS). The diagnosis of SMS was con-
firmed by brain and spinal cord magnetic resonance imaging 
(MRI) with gadolinium: MRI showed no areas of enhancement at 
the time of enrollment. Mean disease duration was 20 ± 10 years 
(range  =  1–31  years); the median Kurtze Expanded Disability 
Status Scale (EDSS) score was 4.5 (range = 4–9). Ten other RRMS 
patients (mean age = 46 ± 13 years; range = 28–69 years; 6 females 
and 4 males) were undergoing clinical relapses of the disease and 
were classified as patients with acute relapsing-remitting MS 
(AMS). MRI scans performed during the acute phases showed 
enhancing lesions in all AMS patients. Mean disease duration 
was 19 ± 15 years (range = 4–39 years); the median EDSS was 
4.25 (range = 2–6). Eleven patients (mean age = 60 ± 10 years; 
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range  =  48–72  years; 5 females and 6 males) were diagnosed 
as been affected by PPMS; the MRI evidenced a stability of the 
lesion load at the time of enrollment. Mean disease duration 
was 16 ± 10 years (range = 5–36 years); the median EDSS was 6 
(range = 5.5–8). Finally, 10 patients (mean age = 62 ± 14 years; 
range  =  50–68  years; 5 females and 5 males) were affected by 
benign MS (BMS); MRI showed stability or in many cases, an 
improvement of the lesion load at the time of enrollment. BMS 
was diagnosed based on the most widely accepted definition, i.e., 
an EDSS score ≤ 3.0 > 15 years from the clinical onset of disease. 
Mean disease duration was 31 ± 8 years (range = 24–39 years); 
the median EDSS score was 2 (range = 1–3). None of the patients 
had received immunosuppressive drugs in the year prior to the 
study period.

Ten sex and age matched healthy controls (HC) (mean 
age = 53 ± 5 years; range = 42–58 years; 8 females and 2 males) 
was enrolled as well in the study.

Whole Blood and serum sample 
collection and cell separation
Thirty milliliters of whole blood was collected in EDTA-containing 
vacutainer tubes (Becton Dickinson and Co., Rutherford, NJ, 
USA). PBMCs were separated on lymphocyte separation medium 
(Organon Teknika Corp., Durham, NC, USA) and washed twice 
in PBS. Leukocytes viability was determined using a Bio-Rad 
TC20 Automated Cell Counter (Bio-Rad, CA, USA). Serum was 
collected in vacutainer tubes containing serum separator (Becton 
Dickinson and Co.). After 40 min at room temperature, samples 
were centrifuged at 3,000 rpm for 10 min to separate sera.

Uric acid concentration in sera
Serum uric acid concentration was measured by the uricase-
peroxidase method (Beckman Coulter Synchron LX, Beckman 
Coulter, Fullerton, CA, USA) following the manufacturer’s 
instructions.

cell cultures: human Monocytic  
ThP-1 cell line and PBMcs
The human monocytic cell line THP-1 was provided by Istituto 
Zooprofilattico Sperimentale della Lombardia e dell’Emilia 
Romagna (Brescia, Italy) and maintained in RPMI 1640 sup-
plemented with 10% fetal bovine serum, 2 mM l-glutamine, and 
1% penicillin (Invitrogen Ltd., Paisley, UK) (medium) at 37°C in 
a humidified 5% CO2 atmosphere.

PBMCs were maintained in RPMI 1640 supplemented with 
10% human serum, 2  mM l-glutamine, and 1% penicillin 
(Invitrogen Ltd., Paisley, UK) (medium) at 37°C in a humidified 
5% CO2 atmosphere. THP-1 cells and PBMCs were resuspended 
at 1  ×  106/ml and were either: (1) cultured in medium alone 
(unstimulated); or (2) primed 2 h with lipopolysaccharide (LPS) 
(1 μg/ml) (Sigma-Aldrich, St. Louis, MO, USA); or (3) stimulated 
with 50, 100, or 200 µg/ml of monosodium urate crystals (MSU) 
for 22 h; and (4) primed 2 h with LPS and stimulated with 50, 100, 
or 200 µg/ml of MSU for 22 h at 37°C in a humidified 5% CO2 
atmosphere (33). LPS pre-incubation is required because neither 
NLRP3 nor pro-IL-1β are constitutively expressed and require 

transcriptional induction (9, 11, 12). Each experiment was run 
at least in triplicate.

Determination of the Optimal Dose  
of MsU to Be Used in stimulation
THP-1 cells and PBMCs stimulated with different concentration  
of MSU were evaluated for vitality with (3-4,5-dimethylthiazol-
2-yl-2,5-diphenyl-tretrazolium bromide) the MTT cell viability 
assay. Briefly, MTT dissolved in PBS was added to the cells (20 µl/
well). Cells were incubated at 37°C for 22 h, centrifuged, pellets 
were dissolved using 100 μl/well of dimethyl sulfoxide, and plates  
were read in a micro plate reader using a test wavelength of 550 nm 
and a reference wavelength of 650 nm. Results were calculated as: % 
cytotoxicity = 100 − [optical density (OD) test − OD control]/
OD control × 100. The concentration of 200 µg/ml of MSU was 
toxic to cells (>50% cell death); cell mortality was <5% using 
100 µg/ml of MSU, a dose that optimally stimulated the NLRP3 
inflammasome (see Results).

rna extraction and reverse Transcription
RNA was extracted from THP-1 cells or PBMCs using the acid 
guanidinium thiocyanate-phenol-chloroform method. RNA 
was dissolved in RNase-free water and purified from genomic 
DNA with RNase-free DNase (RQ1 DNase; Promega, Madison, 
WI, USA). One microgram of RNA was reverse transcribed into 
first-strand cDNA using RT2 First Strand kit (Qiagen, Hilden, 
Germany) according to manufacturer’s instruction.

real-Time rT-Pcr
Quantitative real-time RT-PCR (qPCR) was performed on the 
Biorad CFX Real-Time PCR instrument (Biorad) using RT2 SYBR 
Green qPCR mastermix (Qiagen). All primers (NLRP3, ASC, 
caspase-1, caspase-8, IL-1β, IL-18) (Qiagen) were cDNA specific. 
All the samples were evaluated for glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) expression by real-time PCR to test the 
quality of RNA. Results were expressed as ΔΔCt (where Ct is the 
cycle threshold) and are presented as ratios between the target 
gene and the GAPDH housekeeping mRNA.

image stream analysis by Flowsight 
aMnis
PBMCs (1 × 106), stimulated as described above, were fixed with 
100  µl of PFA (1%) (BDH, UK), permeabilized with 100  µl of 
Saponine (0.1%) (Life Science VWR, Lutterworth, Leicestershire, 
LE), and stained with FITC-anti human NLRP3 (Clone #768319, 
isotype Rat IgG2a, R&D Systems, Minneapolis, MN, USA) and 
PE-anti human ASC (clone HASC-71, isotype mouse IgG1, 
Biolegend, San Diego, CA, USA) for 1 h at room temperature; 
cells were then washed with PBS, centrifuged at 1,500 rpm for 
10  min, resuspended in 50  µl of PBS, and examined using the 
AMNIS Flowsight Imaging. Results were analyzed by IDEAS 
analysis software (Amnis Corporation, Seattle, WA, USA).

The analysis of NLRP3 expression was performed by inter-
nalization feature utilizing a mask representing the whole cell, 
defined by the brightfield image, and an internal mask defined by 
eroding the whole cell mask.
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FigUre 2 | Modulation of inflammasome genes by monosodium urate crystals (MSU) in THP1 cells. THP-1 cells were treated with lipopolysaccharide (LPS) (1 µg/
ml) for 2 h and/or with the indicate concentration of MSU crystals for 22 h. RNA was isolated from THP-1 cells and the level of IL-1β (a), Nod-like receptor protein 3 
(NLRP3) (B), Caspase-1 (c), and IL-18 (D) transcription was determined using SYBR green qPCR. Human GAPDH was used for normalization.

FigUre 1 | Serum uric acid concentration. Uric acid concentration (means; mg/
dl) in serum of primary progressive (PP, n = 11), acute relapsing-remitting (A, 
n = 10), stable relapsing-remitting (S, n = 10), or benign (B, n = 10) multiple 
sclerosis (MS) patients and healthy controls (HC, n = 10). SDs are indicated by 
vertical bars. Statistical significance is shown.

4

Piancone et al. NLRP3/Caspase-8 Inflammasome Drives PPMS

Frontiers in Immunology | www.frontiersin.org May 2018 | Volume 9 | Article 983

inside of cells. Threshold mask was used to separate all ASC 
positive cells population in ASC-Speck spot cells or ASC-diffuse 
cells by the different diameter of the spot area: in ASC-speck, the 
spot shows a small area and high max pixel vice versa in cell with 
ASC-diffuse.

elisa
IL-1β, IL-18, caspase-1, and caspase-8 concentration was 
determined by ELISA according to the manufacturer’s recom-
mendations (Quantikine Immunoassay; R&D Systems) in 
supernatants from unstimulated or stimulated THP-1 cells 
and PBMCs. The wells were read on a plate reader (Sunrise, 
Tecan, Mannedorf, Switzerland) and optical density (OD) 
was determined at 450/620  nm. The measured absorbance 
is proportional to the concentration of cytokines (IL-1β and 
IL-18) or caspases (caspase-1 and caspase-8) present in the 
supernatants expressed in picogram per milliliter and calcu-
lated by dividing OD measurement generated from the assay 
by OD cut-off calibrator. All the experiments were performed 
in triplicate.

Apoptosis-associated speck-like protein containing CARD 
speck formation was analyzed using the same mask of internali-
zation feature, differentiating diffuse or spot (speck) fluorescence 
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FigUre 3 | Modulation of inflammasome effector proteins by monosodium urate crystals (MSU) in THP1 cells. THP-1 cells were treated with lipopolysaccharide 
(LPS) (1 µg/ml) for 2 h and/or with the indicate concentration of MSU crystals for 22 h. The supernatants of cell cultures were collected and IL-1β (a), IL-18 (B), and 
caspase-1 (c) release was measured by ELISA. Data are representative of three independent experiments and expressed as means ± SD. *p < 0.05, **p < 0.01, 
***p < 0.001 significant difference from cells untreated.
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statistical analysis
Quantitative data were not normally distributed (Shapiro–Wilk 
test) and are thus summarized as median and interquartile range. 
Comparisons between groups were analyzed used a Kruskal–Wallis 
ANOVA for each variable. Comparisons among the different groups 
were made using a 2-tailed Mann–Whitney U test performed for 
independent samples. Acid uric serum data were normally distributed 
and were summarized as mean ± SD. In this case, comparisons were 
performed using ANOVA and unpaired Student’s t-test. The statisti-
cal correlations between uric acid serum concentration and caspase-8 
protein were investigated using Spearman correlation coefficient and 
95% confidence limits performed by Fisher’s Z transformation.

Data analysis was performed using the MedCalc statistical 
package (MedCalc Software bvba, Mariakerke Belgium). p-Values 
of less than 0.05 were considered statistically significant.

resUlTs

Uric acid serum concentration
Serum acid uric concentration was significantly increased 
in PPMS (mean  =  6.0  mg/dl  ±  1.8) compared to the values 

observed in all others MS patients (AMS = 3.86 mg/dl ± 0.79, 
SMS = 3.48 mg/dl ± 0.74, BMS = 4.13 mg/dl ± 1.17) and in HC 
(4.23 mg/dl ± 0.61) (p ≤ 0.005 for all comparison) (Figure 1).

Modulation of inflammasome genes in 
lPs-Primed and MsU-stimulated ThP-1 
cells and in PBMcs
To verify whether MSU stimulates the assembly of functional 
inflammasome complexes and to determine the optimal dose of 
MSU to be used in cell cultures, mRNA expression of NLRP3, 
caspase-1, IL-1β, and IL-18 was evaluated in THP-1 cells and in 
PBMCs of HC. Cells were unstimulated; stimulated with LPS 
alone; stimulated with 50, 100, or 200  µg/ml of MSU alone; 
or LPS-primed and stimulated with 50, 100, or 200  µg/ml of 
MSU. Results showed that the highest dose of MSU was toxic 
to the cells (mortality  >  50%). The two lower doses of MSU 
positively modulated these genes but a consistent upregulation 
of inflammasome related genes was observed in THP-1 cells 
stimulated with 100 µg/ml of MSU alone (Figure 2). This was 
further confirmed by measuring IL-18, caspase-1, and IL-1β 
concentration in supernatants of THP-1 cells (Figure 3). Results 
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FigUre 4 | Modulation of inflammasome genes by monosodium urate crystals (MSU) in PBMCs of healthy control (HC) subjects. PBMCs of HC were stimulated 
with lipopolysaccharide (LPS) (1 µg/ml) for 2 h and/or with the indicate concentration of MSU crystals for 22 h. RNA was isolated from PBMCs and IL-1β (a), 
Nod-like receptor protein 3 (NLRP3) (B), caspase-1 (c), and IL-18 (D) were determined using SYBR green qPCR. Human GAPDH was used for normalization.
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obtained when PBMCs of HC individuals were analyzed showed 
that the expression of inflammasome related genes (Figure 4), 
as well as the production of the inflammasome effector proteins 
(Figure  5) were only marginally upregulated. Based on these 
results, and on the lack of toxicity (cell death <5%), the con-
centration of 100  µg/ml MSU was used to stimulate PBMCs 
obtained from patients.

Modulation of inflammasome genes in 
lPs-Primed and MsU-stimulated PBMcs 
of Ms subjects
mRNA expression of NLRP3, ASC, caspase-1, caspase-8, IL-1β, 
and IL-18, genes involved in the assembly, the activation, and 
the downstream signaling of inflammasomes was quantified by 
qPCR in all MS patients and controls. Data are expressed as the 
fold change (nFold) comparing results observed in unstimulated 
cells (medium) to those obtained in cells primed with LPS and 
stimulated with MSU 100 µg/ml.

Results showed that, whereas inflammasome protein genes 
were not modulated in LPS-primed and MSU-stimulated PBMCs 
of HC and BMS individuals, these genes were significantly 

upregulated in cells of PPMS, AMS, and SMS patients. Notably, 
though the functional triad of inflammasome receptor 
(NLRP3), effector (ASC), and catalytic (caspase-8) genes was 
upregulated by MSU in PPMS alone: thus, the assembly of a 
potentially functional inflammasome complex was stimulated 
by MSU only in cells of MS patients with a primary progressive 
form of disease.

To summarize: (1) NLRP3 gene expression was significantly 
upregulated (nFold > 2) in PPMS, AMS, and SMS compared to 
HC (p < 0.05) (Figure 6A); (2) ASC was significantly upregulated 
in PPMS (nFold > 3.2) and AMS (nFold > 2.2) compared to all 
other groups of MS patients and HC (p < 0.005) (Figure 6B); and 
(3) caspase-8 expression was upregulated in PPMS (nFold > 2.5) 
compared to all other groups of MS patients and HC (p < 0.05 
in all cases) (Figure  6C). Notably, no statistically significant 
differences were detected when caspase-1 mRNA expression was 
analyzed (Figure  6D). These results seem to confirm that the 
inflammasome activity follows a caspase-1-independent pathway 
in PPMS-associated inflammation.

IL-1β and IL-18 gene expression was analyzed next in 
LPS-primed and MSU-stimulated PBMCs of all individuals. 
Results showed that IL-18 gene expression was significantly 
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FigUre 5 | Modulation of inflammasome effector proteins by monosodium urate crystals (MSU) in PBMCs of HC subjects. PBMCs of HC subjects were stimulated 
with lipopolysaccharide (LPS) (1 µg/ml) for 2 h and/or with the indicate concentration of MSU crystals for 22 h. IL-1β (a), IL-18 (B), and caspase-1 (c) were 
quantified in supernatants by ELISA. Data are representative of three independent experiments and expressed as means ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 
significant difference from cells untreated.
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increased in PPMS (nFold > 4.6), AMS (nFold > 3), and SMS 
(nFold > 7.5) compared to BMS and HC (p < 0.05 for all com-
parison) (Figure  6E). No statistically significant differences 
were detected when IL-1β mRNA expression was analyzed 
(Figure 6F).

nlrP3 Production and asc-speck 
Formation in lPs-Primed and MsU-
stimulated PBMcs
Nod-like receptor protein 3 production and ASC-speck forma-
tion were investigated next by Flowsight AMNIS analyses in LPS-
primed and MSU-stimulated PBMCs of all patients and controls. 
Representative images are provided in Figures 7A–D.

Results from NLRP3 protein expression analysis confirmed 
that the percentage of cells expressing NLRP3 was significantly 
increased in PBMCs of PPMS, SMS, and AMS compared to those 
of HC (p < 0.05 for all comparison) (Figure 7E).

Apoptosis-associated speck-like protein containing CARD-
speck formation, the hallmark of inflammasome activation, 

was then analyzed by Flowsight AMNIS in LPS-primed and 
MSU-stimulated PBMCs of all patients and controls. Results 
showed that the percentage of ASC-speck positive PBMCs was 
significantly increased in PPMS, SMS and AMS compared to 
BMS and HC (p < 0.05 for all comparison) (Figure 7F). Taken 
together, these results confirmed those obtained by gene expres-
sion analysis.

caspase-1, caspase-8, and 
inflammasome effector cytokines 
Production by lPs-Primed and MsU-
stimulated-PBMcs
Caspase-1 and caspase-8 production by LPS-primed and MSU-
stimulated cells was evaluated next in all patients and controls. 
Results showed that, whereas caspase-1 production was similar 
in all the groups of individuals (Figure 8A), caspase-8 production 
was significantly increased in PPMS (median = 846 pg/ml) alone 
compared to all other groups (Figure 8B). IL-1β and IL-18 pro-
duction was analyzed as well in LPS-primed and MSU-stimulated 
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FigUre 6 | Genes of inflammasome proteins in lipopolysaccharide (LPS)-primed and monosodium urate crystals (MSU)-stimulated PBMCs. mRNA expression by 
real-time PCR. Single real-time PCR results obtained in LPS-primed and MSU-stimulated immune cells of primary progressive (PP, n = 11), acute relapsing-remitting 
(A, n = 10), stable relapsing-remitting (S, n = 10), or benign (B, n = 10) Multiple sclerosis (MS) patients and healthy controls (HC, n = 10). Nod-like receptor protein 3 
(NLRP3) (a), ASC (B), caspase-8 (c), caspase-1 (D), IL-18 (e), and IL-1β (F) mRNA levels are shown. The results are indicated as fold-change expression from the 
unstimulated samples. Summary results are shown in the bar graphs. The boxes stretch from the 25 to the 75 percentile; the line across the boxes indicates the 
median values; the lines stretching from the boxes indicate extreme values. Statistical significance is shown.
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PBMCs. Once again, IL-18 was significantly increased in PPMS 
(median = 134 pg/ml) alone (Figure 8C). IL-18 production was 
not increased in AMS or SMS patients despite the upregulation of 
IL-18 mRNA that was detected in these individuals. This appar-
ently puzzling result could be explained by the observation that, 
even if IL-18 mRNA levels are increased, the activation and the 
secretion of this cytokine are mediated by caspase-8, which was 
upregulated in PPMS patients alone.

Finally, IL-1β concentration was augmented in HC 
(median = 588 pg/ml) alone compared to MS patients (p < 0.05 
vs. PPMS and BMS) (Figure  8D). These results confirm that, 
whereas IL-18 is elevated in MS, increased IL-1ß production is 
not always seen in this condition.

correlation Between caspase-8 and Uric 
acid concentration
Possible correlations between serum uric acid concentration 
and the production of the inflammasome proteins (caspase-1, 
caspase-8, IL-1β, IL-18, ASC-speck, and NLRP3) were analyzed 
next (data not shown). Results showed that in PPMS, i.e., in 
those patients in whom hyperuricemia was detected, a signifi-
cant positive correlation between serum uric acid concentration 
and active caspase-8 protein is present (Rsp = 0.811, p < 0.01) 
(Figure 9).

DiscUssiOn

Multiple sclerosis is a neurodegenerative disease characterized 
by chronic inflammation; inflammasome-driven inflammation 
is postulated to play a role in MS, but as of today, there is no 
direct evidence that the NLRP3 inflammasome is involved in MS 
pathogenesis. MS is also characterized by a series of biochemical 
abnormalities that include increased serum and CSF concentra-
tions of uric acid, a DAMP that is released from dying cells. 
Because the presence of hyperuricemia in MS is not confirmed by 
all authors, we first measured uric acid concentrations in serum 
of 41 MS patients with different disease phenotypes comparing 
the results to those of age- and sex-matched HCs. Results showed 
that hyperuricemia is seen in primary progressive MS (PPMS) 
confirming previous data demonstrating an increase of uric acid 
in the chronic phase of the disease (34).

Uric acid can act as a DAMP and stimulate the assembly of 
the inflammasome and, thus, can be one of the culprits for the 
activation of inflammasome-dependent inflammation in MS  
(9, 35). Hence, we next analyzed whether stimulation of PBMCs 
of MS patients with monosodium urate crystals (MSU) would 
result in the transcription of inflammasome-related proteins and 
the production of the pro-inflammatory cytokines that are the 
end products of the functional assembly of such proteins. Results 
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FigUre 7 | Nod-like receptor protein 3 (NLRP3) expression and apoptosis-associated speck-like protein containing CARD (ASC)-speck formation in 
lipopolysaccharide (LPS)-primed and monosodium urate crystals (MSU)-stimulated PBMCs. Representative images of NLRP3 expression and ASC-speck formation 
in LPS-primed and MSU-stimulated PBMCs. [(a), ASC-diffuse; (B), ASC-speck]. The first column shows cells in brightfield (BF), second column shows NLRP3-FITC 
fluorescence, third column shows ASC-PE fluorescence, and fourth column shows florescence of ASC merged with NLRP3 (IDEA software). The percentage of ASC 
speck positive cells was performed using the same mask of internalization feature (c), differentiating spot (speck) or diffuse fluorescence inside of cells (DF): 
threshold mask was used to separate all ASC positive cells population in ASC-speck spot cells or ASC-diffuse cells by the different diameter of the spot area (D). In 
ASC-speck cell, the spot shows a small area and high max pixel, conversely, in ASC-diffuse cell, the fluorescence shows a large area and low max pixel. Summary 
results of NLRP3 (e) and ASC-speck positive cells (F) in LPS-primed and MSU-stimulated PBMCs of PPMS, SMS, AMS, BMS, and HC are shown in the bar 
graphs. The boxes stretch from the 25 to the 75 percentile; the line across the boxes indicates the median values; the lines stretching from the boxes indicate 
extreme values.
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showed that, whereas the expression of inflammasome proteins 
was upregulated upon MSU stimulation in cells of patients with 
all forms of active disease, the functional triad of inflammasome 
receptor, effector, and catalytic proteins as well as IL-18, were 
significantly upregulated in PPMS alone.

The NLRP3 inflammasome is suggested to play a pivotal role 
in development of MS-associated neuroinflammation. Thus, in 
the EAE animal model of MS, Nlrp3−/− mice are either resistant 
to the development of EAE, or, develop a delayed disease that is 
characterized by reduced severity (14, 17). Notably, diminished 
Th1 and Th17 encephalitogenic responses, diminished inflam-
matory infiltrate, and reduced spinal cord demyelination and 
gliosis are seen as well in Nlrp3−/− mice (14). In MS, results 
suggest the possible involvement of NLRP3 inflammasome in 
MS, but definite data are missing. Thus: (1) caspase-1, IL-1β, 
and IL-18 upregulation was shown to associate with the pro-
gression and severity of disease (17–19); and (2) caspase-1 
expression was observed to be elevated in MS plaques (20) and 
in peripheral mononuclear cells of MS patients (19). Results 

herein indicate that fully functional inflammasome complexes 
are assembled in PPMS and are likely to drive inflammation in 
these patients.

Nod-like receptor protein 3 inflammasome assembly leads 
to the production of pro-inflammatory cytokines; IL-18, 
in particular, is an inflammasome-derived cytokine whose 
concentration was observed to be augmented in serum and 
CSF of MS patients (17, 22, 36). The possible involvement of 
this cytokine in the pathogenesis of MS was reinforced by the 
observations that IL-18 production by PBMCs of MS patients is 
increased (14) and that IL-18 is expressed by oligodendrocytes 
in brain tissues from patients with active MS (37). IL-18 plays 
an important role in Th1 response via its ability to induce 
IFN-gamma production in T  lymphocytes and NK cells (38), 
and numerous reports confirm that Th1 responses directed 
toward self antigens are activated in MS (39–43). IL-18 is first 
synthesized as an inactive precursor; the precursor can be 
cleaved into the biologically active form of the protein, or can 
be stored intracellularly. Following its cleavage by caspases, the 
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mature and biologically active form of IL-18 is secreted from 
monocytes/macrophages, even if over 80% of the IL-18 precur-
sor remains unprocessed inside the cell. Secreted IL-18 initiates 

multiple signaling pathways and drives inflammatory responses, 
which result in neuronal injury or death (44–47). The canonical 
NLRP3 inflammasome requires caspase-1 activation for IL-1β 
and IL-18 processing. Recent results, nevertheless, indicate 
that T cell intrinsic inflammasome activity can drive IL-1β and 
IL-18 production via caspase-8 activation independently from 
caspase-1 activation (48, 49).

Our results showing that the expression of caspase-8 but 
not of caspase-1 is significantly upregulated in PPMS alone, 
strongly suggest that a caspase-1-independent ASC-NLRP3-
caspase-8 inflammasome complex drives inflammation in 
PPMS patients.

Notably, IL-18 mRNA was significantly increased in MSU-
stimulated cells of PPMS, AMS, and SMS patients compared 
to the values seen in BMS or in HC; IL-18 production, never-
theless, was not augmented in these patients. The most likely 
explanation for this apparent discrepancy is that caspase-1 was 
not modified in any of the groups examined and caspase-8, the 
“alternate” cleavage protein was augmented in PPMS alone; 
hence, only in these patients, the IL-18 precursor protein could 
be cleaved and the mature form of IL-18 could be secreted. 
Notably, assembly of functional NLRP3 inflammasomes did 

FigUre 8 | Caspase-1, Caspase-8, and inflammasome effector cytokines production in lipopolysaccharide (LPS)-primed and monosodium urate crystals 
(MSU)-stimulated-PBMCs. Caspase-1 (a), Caspase-8 (B), interleukin-18 (c), and IL-1β (D) production was assessed by multiplex ELISA in supernatants of 
unstimulated and LPS-primed and MSU-stimulated cells of primary progressive (PP, n = 11), acute relapsing-remitting (A, n = 10), stable relapsing-remitting (S, 
n = 10), or benign (B, n = 10) multiple sclerosis (MS) patients and healthy controls (HC, n = 10). Summary results are shown in the bar graphs. Solid lines represent 
supernatants from LPS-primed and MSU-stimulated cells. Dashed lines indicate supernatants from unstimulated cells. The boxes stretch from the 25 to the 75 
percentile; the line across the boxes indicates the median values; the lines stretching from the boxes indicate extreme values.

FigUre 9 | Correlation between caspase-8 and uric acid concentration. 
Correlation between active caspase-8 protein (lipopolysaccharide-primed 
and monosodium urate crystals-stimulated PBMCs) and serum uric acid 
concentration in PPMS patients. Statistical significance is shown.
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