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CD154 is a transmembrane cytokine expressed transiently on activated CD4 T  cells 
upon T-cell receptor (TCR) stimulation that interacts with CD40 on antigen-presenting 
cells. The signaling via CD154:CD40 is essential for B-cell maturation and germinal 
center formation and also for the final differentiation of CD4 T cells during T-dependent 
humoral immune responses. Recent data demonstrate that CD154 is critically involved 
in the selection of T-cell clones during the negative selection process in the thymus. 
Whether CD154 signaling influences the TCR repertoire during peripheral T-dependent 
humoral immune responses has not yet been elucidated. To find out, we used CD154-
deficient mice and assessed the global TCRβ repertoire in T-cell zones (TCZ) of spleens 
by high-throughput sequencing after induction of a Th2 response to the multiepitopic 
antigen sheep red blood cells. Qualitative and quantitative comparison of the splenic 
TCZ-specific TCRβ repertoires revealed that CD154 deficiency shifts the distribution of 
Vβ-Jβ genes after antigen exposure. This data led to the conclusion that costimulation 
via CD154:CD40 during the interaction of T cells with CD40-matured B cells contributes 
to the recruitment of T-cell clones into the immune response and thereby shapes the 
peripheral TCR repertoire.

Keywords: cD154 costimulation, T-cell repertoire, humoral immune response, sheep red blood cells, spleen,  
T:B-cell interaction

inTrODUcTiOn

The T-cell receptor (TCR) repertoire is shaped during negative, positive, and agonist selection in the 
thymus and by inter-clonal and intra-clonal competition in the periphery in adults after thymic invo-
lution. The latter is mainly triggered by homeostatic proliferation of naive T cells and by expansion of 
individual T-cell clonotypes after antigen exposure (1, 2). Clonal expansion and the resulting numbers 

Abbreviations: BCZ, B-cell zones; CDR3, complementary determining region 3; GC, germinal centers; SRBCs, sheep red blood 
cells; TCR, T-cell receptor; TCZ, T-cell zones.
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of progeny depend on the strength of signals transmitted via the 
TCR upon ligation to its cognate peptide-MHC ligand. Thereby 
T  cells with stronger TCR signaling generate bigger burst sizes 
(3–5). In addition to TCR signaling, the activation and lineage 
decision of CD4 T cells is regulated by costimulatory pathways. In 
particular, costimulation via CD154:CD40 that takes place during 
the interaction of antigen-activated T  and B  cells is critical for 
the differentiation of CD4 T cells into cytokine-producing effector 
T cells (6–8). The assumption that CD154 costimulation contrib-
utes to TCR signaling intensity leads to the hypothesis that it could 
provoke the enrichment or diminishment of individual T-cell 
clones during T-dependent humoral immune responses. Thus, 
the peripheral TCR repertoire could become narrower, shifted 
or alternatively broader due to CD154:CD40 costimulation sup-
porting the clonal expansion of additional T-cell clonotypes that 
would otherwise be outnumbered by inter-clonal competition.

It has been shown previously that CD154 costimulation 
contributes to the TCR repertoire diversity during thymocyte 
development. Here, during the process of negative selection, 
CD154 deficiency permits the survival of T cells that bear specific 
Vβ segments, which are normally deleted in wild-type (WT) mice 
due to the recognition of superantigens presented in MHCII 
(9). Clear differences in the thymic T-cell repertoire have been 
described between WT and CD154-deficient mice, which were 
especially prominent in mice expressing the H-2E molecule (such 
as BALB/c mice) but also to a minor extent in mice expressing 
only the H-2A allele (such as C57BL/6 mice) (10–12). Whether 
CD154 costimulation affects the TCR repertoire during periph-
eral immune responses has not yet been clarified.

Here, we applied a high dose of sheep red blood cells (SRBCs) 
i.v. for induction of a strong local Th2 response in the spleen and 
isolated two individual T-cell zones (TCZ) by laser-microdissec-
tion (13) for analysis of the TCRβ repertoire by high-throughput 
sequencing. To compare the TCRβ repertoire between WT and 
CD154-deficient mice, we assessed typical features such as: (i) 
the number of TCRβ clonotypes, (ii) the percentage of identical 
TCRβ clonotypes between the groups, (iii) the frequency of indi-
vidual TCRβ clonotypes, (iv) the length of their complementary 
determining region 3 (CDR3), and (v) the distribution of the V-J 
gene usage (14–16). Most of the differences were observed in both 
unimmunized and immunized mice, which clearly confirm the 
influence of CD154 costimulation during T-cell development in 
the thymus in C57BL/6 mice. However, the distribution of the V-J 
genes shifted differently after immunization in CD154-deficient 
mice compared to WT. These data demonstrate that CD154 
costimulation influences the TCRβ repertoire not only during 
thymocyte development but also during T-cell differentiation in 
the periphery. Further studies are required to delineate whether 
targeting CD154 could be a therapeutic option to shape the TCR 
repertoire in a beneficial way in patients suffering from severe 
immune disorders.

MaTerials anD MeThODs

Mice and injections
8–12-week-old female C57BL/6J WT mice were obtained 
from Charles River Laboratories (Sulzfeld, Germany). CD154 

(CD40L)-deficient mice (C57BL6; 129S2-Cd40lgtm1Imx/J; 
provided by D. Gray, Edinburgh, UK), and JHT (gh-Jtm1Cgn, 
provided by Klaus Rajewsky, MDC Berlin) were bred in our 
animal facility (17, 18). Animal experiments were approved 
by local authorities of the Animal Care and Use Committee 
Kiel, Germany [V# 242-7224 122-1 (120-8/13) and (112-9/14)] 
and performed by certified personnel. A total of 109 SRBCs 
(Labor Dr. Merk, Ochsenhausen, Germany) were prepared and 
injected into the tail veins as described (13). The spleens were 
removed before and 72 h after injection, snap frozen and stored 
at −80°C.

histological analysis
Serial cryo-sections of spleens (10  µm thick for histology, 
12 µm thick for laser-microdissection, and 14 µm thick for 3D 
reconstruction) were mounted on plain glass slides for histology 
and 3D model reconstruction or on membrane-covered slides 
(Palm Membrane Slides, PEN membrane, 1 mm; Carl Zeiss AG, 
Germany) for laser-microdissection. T- and B-cell compartments 
of spleens were analyzed by immunohistochemical staining 
with biotinylated mAbs against TCRβ and B220 (both from 
BD Biosciences). Alkaline phosphatase goat anti-rat IgG (Roth, 
Karlsruhe, Germany) and goat anti-hamster IgG (Abcam, Berlin, 
Germany) were used as respective secondary Ab. Alkaline phos-
phatase activity was visualized with Fast Red (BB Salt, Sigma-
Aldrich Chemie, Steinheim, Germany). Proliferating cells were 
identified by staining with rat anti-mouse Ki-67 mAb as primary 
antibody (BioLegend, Koblenz, Germany) and biotinylated rabbit 
anti-rat IgG (Dako, Glostrup, Denmark) as secondary antibody 
as described (19). For laser-microdissection and subsequent 
RNA analysis, the staining with toluidine blue was performed as 
described (13).

3D reconstruction
For each condition, a complete collection of serial cryo-sections 
from half a spleen was imaged by automatic scanning microscope 
and processed by For3D as described (20, 21) using a Miraxmidi 
slide scanner (Zeiss, Jena, Germany). ImageJ and homemade 
Matlab functions were used to render spleen sections into 3D. 
TCZ were segmented by filtering, thresholding and soothing 
the stack of spleen section images. Matlab was used to identify 
individual volumes of the 3D structures within the spleen as 
described (20, 21).

laser-Microdissection
To obtain sufficient concentration of TCR-specific RNA, it was 
important to carefully select the largest TCZ. A total of 10–15 
serial sections had to be prepared for the isolation of whole large 
TCZ by laser-microdissection (Table 1; Figures 2A–C). Therefore, 
the two largest TCZs were chosen carefully and isolated using a 
pulsed UV laser (Palm Microbeam; Zeiss microImaging GmbH, 
Germany). To estimate the TCZ volumes, the isolated TCZ 
areas were determined by the Palm Microbeam software (Zeiss 
microImaging GmbH, Germany) and multiplied by the section 
thickness (12 µm) (Table 1). In order to prevent any degradation 
of RNA, the tissues were shock frozen immediately after isolation 
and not allowed to thaw during their preparation. All specimen 
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TaBle 1 | TCZ volumes, raw reads, total, and unique TCRβ sequences obtained from laser-captured splenic TCZ in wild-type (WT) and CD154-deficient (KO) mice.

Mouse TCZ TCZ volume (×106 µm3) Raw reads (×106) Total TCRβ sequences (×106) Unique TCRβ clonotypes

WT naive 1 1 61 2.1 1.86 54652
2 30 2.4 1.88 21016

2 3 60 1.8 1.54 36625
4 36 2.2 1.88 36196

3 5 24 1.6 1.53 26190
6 24 1.7 1.26 16477

Mean ± SD 39.17 ± 17.12 1.97 ± 0.31 1.66 ± 0.26 31859 ± 13765

KO naive 1 1 33.6 1.3 0.8 16780
2 32.4 1.9 1.02 13129

2 3 43.2 1.5 1.0 10951
4 48 1.6 1.4 23670

3 5 33.6 1.0 0.8 25737
6 33.6 1.0 0.8 24302

Mean ± SD 37.40 ± 6.55 1.38 ± 0.35 0.97 ± 0.24 19095 ± 6316

WT SRBC 1 1 60 3.4 2.9 34926
2 72 3.7 3.2 30141

2 3 72 2.8 2.3 23253
4 72 2.8 2.15 30200

3 5 60 3.1 2.9 65306
6 72 1.4 1.2 28173

Mean ± SD 68.00 ± 6.20 2.87 ± 0.80 2.44 ± 0.73 35333 ± 15159

KO SRBC 1 1 40.8 1.7 0.7 28347
2 38.4 1.3 0.8 12371

2 3a 96 1.5 1.3 27909
4a 93.6 1.6 1.5 43734

3 5 36 1.3 1.2 25260
6 36 1.3 0.8 12349

Mean ± SD 56.80 ± 29.50 1.45 ± 0.18 1.05 ± 0.33 24995 ± 11749

Two individual TCZ per spleen were isolated by laser-microdissection and subjected to deep sequencing.
aA total of 2–3 TCZ were pooled for one analysis.
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were treated identically in order to exclude any biases between 
the mice.

gene expression analysis
Five serial cryo-sections of spleens were prepared for isolation of 
the total RNA with the innuPREP RNA Mini Kit (Analytik Jena, 
Hildesheim, Germany). After reverse transcription, the cDNA 
and the respective primers were added to the Taq Man PCR 
Master Mix (Applied Biosystems) and amplified. The optimal 
primer concentrations used were 900 nM each for the forward and 
reverse primers and 200 nM for the TaqMan probe (Biomers, Ulm, 
Germany): IFN-γ (for: 5′GCAAGGCGAAAAAGGATGC, rev: 
5′GACCACTCGGATGAGCTCATTG, probe: 5′TGCCAAGTT 
TGAGGTCAACAACCCACAG); IL-4 (for: 5′GAGACTCTTTC 
GGGCTTTTCG, rev: 5′AGGCTTTCCAGGAAGTCTTTCAG, 
probe: 5′CCTGGATTCATCGATAAGCTGCACCATG); and  
MLN51 (for: 5′CCAAGCCAGCCTTCATTCTTG, rev: 5′TAACG 
CTTAGCTCGACCACTCTG, probe: 5′CACGGGAACTTCGAG 
GTGTGCCTAAC). For signal detection, the ABI Prism 7000 
sequence detector (Applied Biosystems, Darmstadt, Germany) 
was used. The amount of cDNA copies was normalized to the 
housekeeping gene MLN51 according to the 2ΔΔct method (13, 22).

identification of Tcrβ clonotypes Within 
splenic TcZ by high-Throughput 
sequencing
The RNA from TCZ was isolated as described above. The prepa-
ration of cDNA and amplification of the antigen-binding site 
(CDR3β region) of the TCRβ chains were performed according to 
the manufacturer’s protocol (iRepertoire, patent 7999092, 2011, 
Huntsville, USA) and prepared for pair-end sequencing with the 
Illumina Miseq system as described (23). CDR3 identification, 
clonotype clustering, and correction of PCR and sequencing 
errors were performed using ClonoCalc wrapping MiTCR 
software according to the IMGT nomenclature (16, 24, 25). To 
avoid unpredictable PCR and sequencing errors, the default 
parameters (“eliminate these errors”) were used. Additionally, to 
avoid artificial diversity due to PCR errors, all TCRβ clonotype 
sequences that appeared only once were removed (on average 
4% of all sequencing reads). To compare similarity or diversity 
among the groups we calculated the Jaccard Index. Therefore, we 
asked how many TCRβ clonotypes that exist in one TCZ would 
be present also in all other TCZ from the other mice (exclud-
ing the one TCZ from the same mouse). By doing this for each 
TCZ 12 values (Jaccard indices) for each group were determined 
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FigUre 1 | CD154 costimulation is essential for the Th2 differentiation of CD4 T cells and the formation of germinal centers (GC) but not for T-cell expansion. 
Wild-type (WT) and CD154-deficient (KO) mice were primed with 109 sheep red blood cell (SRBC) intravenously. Splenic sections were stained for B cells  
(blue, B220) and proliferating cells (red, Ki-67+). (a) Proliferating cells in spleens from WT and CD154-deficient mice 10 days after injection of SRBC are shown. 
White arrows indicate GC in WT mice. (B) Proliferating cells (red, Ki-67+) were counted within the T-cell zones (TCZ) before and 3 days after injection of SRBC 
[*significant differences between the number of proliferating T cells compared to unchallenged mice; mean ± SEM (Kruskal–Wallis test), n = 3, p < 0.05].  
(c,D) mRNA expression of IL-4 and IFNγ was analyzed by real-time RT-PCR and normalized to the housekeeping gene MLN51 before and 3 days after 
challenge with SRBC and displayed as x-fold increase compared to control spleens from non-injected mice. Dotted lines mark mean expression levels 
of controls [data show mean ± SEM (Kruskal–Wallis test), n = 6–7, **p < 0.01].
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(Table S1 in Supplementary Material). These 12 values were taken 
for statistical analysis (two-way repeated measures ANOVA 
with Tukey’s multiple comparison test). Further data analysis 
[frequency distribution (Figure  3), CDR3 length (Figure  4), 
principal component analysis (PCA) of V-J usage (Figure 5)] was 
performed after normalization of TCRβ clonotypes to the total 
number of TCRβ sequences (Table 1) using the R programming 
language, including the tcR package (15).

statistical analysis
Statistical analyses were performed using GraphPad Prism 5.0 
(GraphPad Software Inc., La Jolla, USA). Statistical significance 
was assessed by Kruskal–Wallis test, Mann–Whitney U-test, 
two-way repeated measures ANOVA with Tukey’s multiple 
comparison test, and multiple t-tests, one per row corrected for 
multiple comparisons with the Holms Sidak method. A p value of 
less than 0.05 was considered statistically significant.

resUlTs

cD154 costimulation is essential for cD4 
T helper cell Differentiation into Th2 cells 
and B-cell Maturation
It has been shown previously that CD154 deficiency has bidirec-
tional effects during T-dependent humoral immune responses: 
(i) it impairs the differentiation of CD4 T cells despite normal 

T-cell expansions and (ii) it abolishes germinal centers (GC) 
formation and affinity maturation of B cells (26–28). However, 
some reports demonstrated that primary GC could appear even 
under CD154-deficient conditions (29). To investigate whether 
a high dose of SRBC induces GC in CD154-deficient mice we 
monitored B-cell proliferation immunohistochemically 10 days 
after injection. GC were observed in WT mice but not in CD154-
deficient mice (Figure 1A).

Next, we quantified proliferating T  cells and determined 
respective mRNA expression levels of the Th1 cytokine IFNγ 
and the Th2 cytokine IL-4. At 3 days after injection, the peak of 
T-cell proliferation, we observed a three- to fivefold increase of 
proliferating cells in the TCZ of both groups (Figure 1B). In con-
trast, the IL-4 mRNA expression increased only in WT mice and 
was completely abolished in CD154-deficient mice (Figure 1C) 
whereas the expression of IFNγ did not change in either group 
(Figure  1D). To find out whether DC or B  cells mediate the 
effects of CD154 costimulation additional experiments with  
B-cell-deficient (JHT) mice were performed. The result revealed 
that B cells are required for the induction of IL-4 mRNA expres-
sion (Figure S1 in Supplementary Material). The crucial role for 
B  cells in this model was further supported by their increased 
expression of MHCII and their uptake of CFSE-labeled SRBC 
in vivo (Figures S2 and S3 in Supplementary Material). In conclu-
sion, our data show that CD154 deficiency impairs GC formation 
and Th2 differentiation but has no effect on T-cell proliferation in 
response to SRBC.
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FigUre 2 | Laser-microdissection allows the isolation of entire T-cell zones (TCZ). A complete collection of sections of about half a spleen from wild-type mice was 
stained for B cells (blue, B220) and T cells (brown, TCRβ), imaged by automatic scanning microscope and 3D reconstructed by For3D software. (a,B) Color-coded 
individual TCZ from spleens of wild-type mice before (a) and after immunization (B) are shown. Please see Videos in Supplementary Material. (c) 3D reconstructed 
spleens were used to determine the volumes of the 20 largest TCZ with Matlab (n = 3, 20 TCZ per spleen). The volumes of three naive and three immunized spleens 
from wild-type mice are shown and compared to the volumes of TCZ that were harvested by laser-microdissection and estimated from 2D cryo-sections  
(n = 12, two TCZ per mice).
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laser-Microdissection allows the 
isolation of complete TcZ
It is well known that TCZ are located around the splenic arteries 
in periarteriolar lymphoid sheaths (30). However, the organiza-
tion of these structures in whole spleens is not well described. 
Most current data were obtained and extrapolated from two-
dimensional tissue sections. Here, we performed a 3D recon-
struction from half of the spleens (20, 21). Splenic TCZ appear 
as individual entities of highly diverse shape and size scattered 
throughout the spleen in transversal and longitudinal directions 
(Figure 2A; Video S1 in Supplementary Material). The volumes 
of the 20 largest TCZ range from 17 × 106 to 290 × 106 µm3 in 
naive and immunized spleens (Figure 2C). Due to the irregular 
shapes, it appears difficult to laser-capture a TCZ completely 
from two-dimensional cryo-sections. Therefore, only the two 
largest TCZ of one spleen were selected for isolation. Estimation 
of the laser-captured TCZ volumes revealed sizes of on average 
53 ± 2 × 106 µm3 (mean ± SD) (Table 1), which is in the range 
of an entire TCZ. In conclusion, through the use of a stack of 
serial sections, an almost complete TCZ can be harvested by 
laser-microdissection (Figure 2C).

cD154 Deficiency increases the Tcr 
Diversity in splenic TcZ
Next, we isolated TCZ from WT and CD154-deficient mice, which 
were immunized or not. To exclude the possibility that CD154 
deficiency influences the structure of the spleen and thereby 

the sizes and organization of the TCZ and B-cell zones (BCZ) 
a quantitative analysis of splenic compartments was performed 
(31). TCZ made about 40% and BCZ about 50% of the splenic 
area in both groups (Figure S4 in Supplementary Material). Due 
to the fact that no difference was observed regarding the TCZ 
and BCZ, we collected an identical area of TCZ from WT and 
CD154-deficient mice and analyzed their TCZ-TCRβ repertoire 
by high-throughput sequencing. We obtained between 0.8 and 
1.88 × 106 total TCRβ sequences for TCZ of naive spleens and 
from 0.7 to 3.2 × 106 for TCZ of activated spleens, which contained 
between 10951 and 54652 unique TCRβ sequences (here referred 
to as TCRβ clonotypes) before immunization and from 12371 
to 65306 after immunization, respectively, regardless whether 
the TCZ derived from WT or CD154-deficient mice (Table 1). 
The diversity occurring within each of the four groups (WT and 
CD154-deficient mice; unimmunized and immunized mice) was 
assessed as Jaccard index (Figure 3A; Table S1 in Supplementary 
Material). It provides a measure of similarity of samples and ranges 
from 0 to 1 as described in the method section (0, 100% different; 
1, 100% identical). By contrast the Jaccard index is significantly 
lower in CD154-deficient mice compared to WT regardless of 
whether the mice were immunized or not. These data indicate 
that CD154 deficiency increases the number of distinct TCRβ 
clonotypes within the group of CD154-deficient mice. However, 
the Jaccard index does not differ significantly between unimmu-
nized and immunized mice of either group, which indicates that 
CD154 deficiency influences the TCR diversity during thymic 
selection but not during the primary immunization with SRBC.
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FigUre 3 | The diversity of TCRβ clonotypes is higher among the group of CD154-deficient mice compared to wild-type. Two TCZ per spleen of wild-type and 
CD154-deficient mice before and after immunization were laser-captured (two TCZ, n = 3 mice per group). TCRβ clonotypes were identified for each TCZ (six TCZ 
per group). (a) For every pair of TCZ within one group (excluding the TCZ of the same mouse) the Jaccard index, that is the number of TCRß clonotypes shared 
between the two TCZ relative to the total number of TCRß clonotypes occurring in the two TCZ together, is displayed (see Table S1 in Supplementary Material).  
In addition, the respective means are shown (**p ≤ 0.01, two-way repeated measures ANOVA with Tukey’s multiple comparison test). (B) The relative frequency of 
TCRβ clonotypes of two representative TCZ from one spleen per group [wild-type (blue) and CD154-deficient mice (red) before and after immunization] is shown.  
(c) Box plot analyses were performed to compare the frequency distribution of TCRβ clonotypes. Copy numbers relative to the number of all TCRβ sequences 
obtained are displayed (n = 3, two TCZ per spleen). Extremely high-frequent TCRβ clonotypes (outliers) that are outside an IQR of 3 are displayed as single dots. 
The following relative median clonotype frequencies were found: 14.3 × 10−6 for naive wild-type mice, 10.8 × 10−6 for wild-type mice after exposure to sheep red 
blood cell (SRBC), 26.87 × 10−6 for naive CD154-deficient mice, and 17.4 × 10−6 for CD154-deficient mice after exposure to SRBC. (D) Absolute numbers of high 
frequent outliers were compared between groups. Indicated are mean and standard error (p value is displayed for difference between indicated groups, Mann–
Whitney U-test, n = 3, two TCZ per spleen).
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cD154 Deficiency Marginally reduces the 
number of high Frequent Outliers
For comparison between the groups we elucidated the frequency of 
each individual TCRβ clonotype. Frequency plots were created in 
which each TCRβ clonotype is displayed as a single dot (x-axis) and 
arranged according to its relative frequency (y-axis) after normaliza-
tion to the total number of TCRβ clonotypes in the respective TCZ. 
As shown in Figure 3B, a minority of TCRβ clonotypes appear at 
higher frequencies than the vast majority. Consistent with the fact 
that antigen-specific TCRβ clonotypes expand clonally after antigen 
exposure, the frequency of some high-expanded TCRβ clonotypes 
increases in both groups (Figure 3B; triangles compared to circles). 
For quantification, box plot analyses were performed. As Figure 3C 
shows, the distribution of copy numbers of individual TCRβ clono-
types is far from a Gaussian distribution in all four groups. Between 

500 and 1,500 of the high frequent TCRβ clonotypes were identified 
as outliers irrespective of whether 1.5 (data not shown) or 3 was 
chosen as the interquartile range (Figures 3C,D). Enumeration of 
TCRβ outliers revealed that CD154 deficiency significantly reduces 
the accumulation of  outliers compared to WT mice (Figure 3D). 
This reduction is found in both unimmunized and immunized 
mice, which indicates that CD154 costimulation regulates the 
number of outliers mainly during thymic selection but does not 
influence the expansion of TCRβ clonotypes during the immune 
response to SRBC.

cD154 Deficiency selects T cells With 
shorter cDr3 regions
To further compare the TCZ-TCR repertoires between WT 
and CD154-deficient mice, we compared the length of their 
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antigen-binding sequence, the CDR3 region. Given that the outli-
ers better survive the inter-clonal competition and expand prefer-
entially during thymic and peripheral selection, we assumed that 
they might represent the TCRβ clonotypes that are most affected 
by CD154 deficiency and therefore compared the length of the 
CDR3 region exclusively between the outliers of both groups 
(see Figures 3C,D). However, the CDR3 length of TCRβ outliers 
from CD154-deficient mice is shorter compared to WT mice. This 
applies in particular for the TCRβ clonotypes with a CDR3 length 
of 11 and 12 amino acids (Figure  4). For example, about 28% 
of the high frequent TCRβ outliers from WT mice have a CDR3 
length of 11 AA and about 31.4% from CD154-deficient mice. In 
turn, a higher percentage (29.9%) of the high frequent outliers 
from WT mice have a length of 12 AA compared to only 27.2% in 
CD154-deficient mice (first and third columns, Figure 4). These 
shifts were found in both unimmunized and immunized mice, 
which indicate that the enrichment of TCRβ clonotypes with 
shorter CDR3 regions in CD154-deficient mice takes place during 
thymocyte development. However, marginal shifts in the CDR3 
length due to the immune response to SRBC were found in WT 
outliers with a CDR3 length of 13 amino acids but not in CD154-
deficient mice (Figure 4). The CDR3 length of the low or medium 
abundant T-cell clonotypes did not differ (data not shown).

cD154 signaling controls the selection of 
Tcrβ clonotypes During immunization
We compared the V-J gene usage between splenic TCZ-TCRβ 
clonotypes from WT and CD154-deficient mice by PCA 
(Figure  5A). The TCRβ clonotypes from both groups localize 
in distinct clusters. The result that the TCRβ clonotypes of WT 
and CD154-deficient mice remain separated after immunization 
reveals that shifts in V-J gene usage are induced during thymic 
selection, which has been described before (Figure 5A, left and 
right panel) (12).

In more detail, distribution analysis of the individual Vβ 
and Jβ gene segments revealed that WT mice have significantly 
less TCRβ clonotypes with TCR expressing Vβ12-2 and Vβ3. 

Conversely, TCRβ clonotypes carrying the Vβ13-2 and Vβ19 
genes were significantly enriched (Figure  5B). No significant 
difference in the Jβ gene usage was observed. After removal of 
all 4 Vβ genes (Vβ12-2, Vβ13-2, Vβ19, and Vβ3), which are 
sensitive to CD154 signaling in naive mice, the two groups are 
not separated anymore. (Figure  5C, left). However, distinct 
clusters of TCRβ clonotypes of WT and CD154-deficient mice 
reappear after exposure to SRBC (Figure  5C, right). Here, a 
significantly higher percentage of Vβ15 and Jβ2-1 was found in 
CD154-deficient mice compared to WT (data not shown). This 
data indicates that the lack of CD154 costimulation leads to an 
accumulation of TCRβ clonotypes expressing Vβ15 and Jβ2-1 
segments whereas the presence of CD154 costimulation supports 
a more uniform distribution of the TCRβ clonotypes in regard to 
their V-J gene usage during the response to SRBC.

DiscUssiOn

A highly diverse peripheral TCR repertoire is a prerequisite for 
 successful responses to infections or vaccinations (32). A decreased 
diversity has been linked to chronic infections (33), aging (2) 
and several autoimmune diseases (34, 35). The factors that form 
the peripheral TCR repertoire during immune responses as well 
as during lifetime are poorly defined. The current available data 
allow catching a first glimpse only on the extreme diversity of the 
TCR repertoire and its regulation. Here, we asked whether T-cell 
costimulation during peripheral immune responses contributes 
to the diversity of the TCRβ repertoire.

CD154, a member of the TNFR superfamily, is transiently 
expressed on antigen-activated T cells. Its ligand CD40 is found 
on antigen-presenting cells such as dendritic cells, B  cells and 
macrophages but also on thymic epithelial cells. CD154 is a 
key molecule for T-cell survival in the thymus and CD4 T-cell 
differentiation in the periphery (36, 37). The effects of CD154 
deficiency on the TCR repertoire of thymocytes have been 
described previously. In these studies monoclonal antibodies 
directed against certain Vβ segments from thymocytes of BALB/c 
mice have been used (11, 12).

Our study provides for the first time high-quality data on 
global TCR repertoires of the spleen as a central peripheral sec-
ondary lymphoid organ in unimmunized and immunized WT 
and CD154-deficient mice. To focus on the local TCR repertoire 
we isolated two TCZ per spleen by laser-microdissection. Besides 
the advantage that the local distribution of T-cell clonotypes 
remains undisturbed, this approach avoids any potential loss of 
cells during isolation procedures. This is of importance because 
a significant number of splenic T cells get lost by conventional 
isolation techniques (38). One could assume that the TCR rep-
ertoires could be biased because especially the highly activated 
T cells are prone to undergo apoptosis during the isolation steps 
compared to their resting counterparts. To find out it will be nec-
essary to compare the TCR repertoires in vivo within the tissues 
and in vitro after isolation.

Analysis of the diversity of the TCZ-TCRβ repertoire revealed 
that the group of CD154-deficient mice shares less TCRβ clono-
types than the WT group, which indicates that splenic TCZ of 
CD154-deficient mice harbor a higher number of different TCRβ 
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FigUre 5 | V-J gene usage shifts between wild-type and CD154-deficient mice in response to sheep red blood cell (SRBC). (a) Principal component analysis (PCA) 
compares V-J gene usage of TCRβ clonotypes in individual T-cell zones (TCZ) between wild-type (blue dots) and CD154-deficient mice (red dots) before (left panel) 
and after immunization (right panel). (B) Relative frequencies of Vβ (left) and Jβ (right) genes were compared between naive wild-type and CD154-deficient mice. 
Indicated are means ± SEM. Vβ genes with significantly different usage are displayed in bold (two-way repeated measures ANOVA with Tukey’s multiple comparison 
test, **p ≤ 0.01 for Vβ3, ****p ≤ 0.0001 for Vβ12-2, 13-2, and 19). (c) PCA without Vβ3, Vβ12-2, Vβ13-2, and Vβ19 of V-J gene usage of TCRβ clonotypes in TCZ 
between wild-type and CD154-deficient mice before (left panel) and after immunization (right panel).
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clonotypes (Figure 3A). This observation is consistent with the 
impaired deletion of T-cell clonotypes during thymic negative 
selection in CD154-deficient mice (10, 11).

In general, our data reveal that CD154 costimulation has 
a strong impact on the selection of T-cell clones during T-cell 
development in the thymus. In the thymus, an increased 
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TCR signaling strength during CD154 costimulation leads to 
the induction of apoptosis of those T-cell clones that bind with 
the strongest avidity to self-peptide MHCII complexes during the 
negative and agonist selection process. It is, therefore, expected 
that more T cells survive and diversity increases under CD154-
deficient conditions. This higher diversity comes along with fewer 
outliers (Figure 3D), small shifts toward a shorter CDR3 region 
(Figure  4) and a higher number of T-cell clones that express 
Vβ12.2 and Vβ3 in CD154-deficient mice (Figure 5).

The situation is different during peripheral immune responses. 
Here, an increased TCR signaling strength should increase the 
progeny of the antigen-specific T-cell clones. Unexpectedly, 
our findings do not confirm this assumption. By analyzing the 
global TCZ-TCR repertoires, we find that CD154 costimulation 
has no effect on the diversity and the number of outliers during 
the primary immune response to SRBC. This finding might be 
explained by the fact that during T-cell development in the thymus 
each thymocyte is activated to express CD154 and selected for 
binding to CD40, whereas during peripheral immune responses 
only those T cells that are specific for the antigen have the chance 
to contact cognate CD40-matured B cells. It could be that the 
effects of CD154 costimulation would become more obvious 
if analysis was restricted to the antigen-specific CD4 T  cells 
only, for example with the use of MHCII tetramers (4), instead 
of the bulk analysis performed here. However, recent studies 
indicated that the TCR sequences of antigen-specific T cells are 
extremely divers even in genetically identical and cage-matched 
mice. Many different T-cell clonotypes of both high and low fre-
quency, rather than the dominant expansion of a few dominating 
antigen-specific clones, contribute to the immune response (39). 
In addition, it could be that the effects of CD154 costimulation 
could become stronger after repeated immunization with the 
same antigen. Here, we chose SRBC for immunization because 
it has multiple epitopes and induces CD4 T-dependent humoral 
immune responses without the need for adjuvants (40, 41). We 
assumed that SRBC would be recognized not only by the toll-like 
receptors of professional antigen-presenting cells due to their 
RNA content (42) but also by B  cells due to the carbohydrate 
structures present on the surface of each red blood cell. The 
fact that the activation of B cells is critical for CD4 T-cell dif-
ferentiation into Th2 cells was shown in B-cell-deficient mice 
(Figures S1–S3 in Supplementary Material). In addition, it has 
been demonstrated previously by administration of low or high 
doses of SRBC (13, 43). The major role of CD40–CD154 signal-
ing during T–B interaction is further underlined by previous 
in vitro studies that demonstrated that this lack of IL-4 expres-
sion is not caused by an intrinsic inability of CD154-deficient 
T cells to express IL-4 (6). The level of TCR signaling strength 
might be increased under in vitro conditions due to a boosted 
peptide:MHCII density or a shifted ratio of antigen-presenting 
cells to T cells compared to the in vivo situation, which could 
enable the expression of IL-4 even without CD154 costimulation 
(6, 44). However, even though SRBC induced a strong polyclonal 
T-cell response in WT and CD154-deficient mice (Figure 1B) 
in vivo, the expression of IL-4 was impaired in CD154-deficient 
mice (Figure 1C). In addition, the obtained TCRβ repertoire data 
revealed that CD154 deficiency had no effect on the diversity and 

the number of outliers. Further studies are required to address 
the differences between TCR repertoire data obtained by analysis 
of antigen-specific T cells versus: (i) bulk analysis, (ii) the impact 
of secondary and tertiary immunizations, and (iii) the role of the 
nature of the antigen.

Unexpectedly, we detected shifts in the V-J gene usage due 
to the immune response to SRBC. This difference becomes vis-
ible only after exclusion of those V-J genes that were affected 
by CD154 deficiency during the thymic selection process. The 
question arises: what causes the distinct enrichment of T-cell 
clones according to their V-J genes? In the thymus the shifts in V 
gene usage have been linked to the expression of superantigens 
such as mouse mammary tumor virus, which are recognized 
predominantly by TCR expressing specific Vβ segments (9). 
Accordingly the shifts in V-J gene usage during the peripheral 
immune response could be due to differences in the presentation 
of SRBC-specific epitopes under CD154-deficient conditions. 
One possible explanation that would support this scenario is 
the finding that the costimulatory signals CD28:CD80/86 and 
CD154:CD40, which are crucial for the differentiation of CD4 
T cells, precede as segregated events on distinct cells (8). This data 
leads to the assumption that B  cells mount their own antigen-
specific response, which is different from that of DC, and thereby 
recruit their own T-cell clones into the immune responses. Thus, 
in the case of CD154 deficiency, which impairs the interaction of 
CD4 T cells with B cells and prevents the antigen presentation 
by B cells, those T-cell clones that were activated preferentially 
by dendritic cells would accumulate more compared to the WT. 
Conversely, in WT mice with an intact antigen presentation by 
B  cells, those CD4 T  cells that were preferentially activated by 
dendritic cells would have to compete for interaction with CD40-
matured B cells, which would clearly impact the composition of 
the individual T-cell clonotypes. A  specific modulation of the 
B-cell response could therefore be a promising target for the 
modulation of the CD4 TCR repertoires.

Alternatively, the observed shifts in V-J segment usage 
could be explained by distinct migration behaviors. The lack of 
CD154:CD40 signaling during CD4 T-B interaction could pre-
vent the migration into the BCZ of CD4 T cells that express the 
V-J segments that recognize SRBC-specific epitopes. To further 
clarify the effects of peripheral CD154 signaling it would be 
preferable to use CD154 conditional knockout mice. In addition, 
it will be interesting to find out whether CD40-deficient mice 
show a similar phenotype as observed under CD154-deficient 
conditions. CD40 is expressed on thymic epithelial cells before 
birth whereas CD154 expression was found only in neonatal mice 
(45). One could speculate that CD40-deficient mice would have a 
more skewed TCR repertoire than CD154-deficient mice.

In summary, in this study we provide evidence that CD154 
signaling controls the selection of TCR clonotypes during a 
T-dependent humoral immune response. Further studies are 
required to investigate whether a variation of CD154 signaling 
could be used as a therapeutic option to modulate the TCR reper-
toire in a controlled manner. This could help to improve vaccines, 
treat autoimmune conditions, or prevent rejections after organ 
transplants. Due to this fundamental role of CD154 in adaptive 
immunity, CD154 signaling pharmacology for transplantation 
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medicine and the treatment of autoimmune disorders is already 
being subjected to clinical trial (46, 47).
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