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Circulating C-reactive protein (CRP) is a key acute-phase protein and one of the main
clinical biomarkers for inflammation and infection. CRP is an important upstream medi-
ator of inflammation and is associated with the onset of a number of important disease
states including cardiovascular disease and neurodegenerative disorders such as
Alzheimer’s disease. This pentraxin exerts pro-inflammatory properties via dissociation
of the pentamer (pCRP) to a monomeric form (mCRP). This dissociation is induced by
binding of pCRP to cell surface phosphocholine residues exposed by the action of phos-
pholipase A, (PLA,). Given the association of CRP with the onset of a range of serious
disease states this CRP dissociation process is a tempting drug target for the develop-
ment of novel small-molecule therapeutics. This review will discuss potential targets for
chemotherapeutic intervention elucidated during studies of CRP-mediated inflammation
and provide an up-to-date summary of the development of small molecules, not only
targeted directly at inhibiting conversion of pCRP to mCRP, but also those developed for
activity against PLA,, given the key role of this enzyme in the activation of CRP.
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INTRODUCTION

Pentameric C-reactive protein (p-CRP) is a pentraxin, composed of five identical subunits, linked
by van der Waals and H-bonding, each weighing around 23 kDa with, what is described as, a jelly
role shape with the subunits arranged around a central, hydrophobic pore. The pentamer presents
two faces, each distinguished by their binding capabilities. Thus, the A face (effector face) binds to
globular head groups of compliment c1q and Fcy cell surface receptors on leukocytes while the B
(binding) face exhibits one binding site per subunit which undergoes Ca**-mediated binding with
phosphocholine moieties exposed on lipid membranes (1). pCRP is synthesized in the liver and is
freely circulating. While normally present at negligible levels, plasma concentrations rise 6-12 h after
acute inflammatory insult to 1,000-fold levels after 24-48 h, focused at sites of inflammation (2, 3).
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As a result, CRP is used as a biomarker for inflammation and
infection. It was long thought that pCRP was a direct mediator
of inflammation leading to upregulation of endothelial cellular
adhesion molecules, activation of the compliment system, phago-
cytosis, and release of a range of inflammatory signaling proteins
(4, 5). However, it has recently been shown that the dissociation
into the monomeric form, mCRP, is the key pro-inflammatory
event (6). Further work has shown that this event is localized to
sites of inflammation and mCRP plays an important role in the
pathogenesis of inflammation interacting with endothelial cells,
neutrophils, macrophages, and platelets (7). mCRP, rather than
pCRP, induces upregulation of IL-8, MCP-1, E-selectin, ICAM-1,
and VCAM-1 in endothelial cells resulting in increased adhe-
sion of neutrophils (8). These studies reveal that this process is
mediated via p38 MAPK signaling. Interestingly, recent work
indicates that the interaction with endothelial cells is initiated via
binding to lipid rafts rather than receptors, such as FcyRs on the
cell surface (9, 10). CRP is a ligand for LOX-1 which mediates
the entry of oxidized low-density lipoprotein (ox-LDL) across
the endothelium (11). Furthermore, mCRP is implicated in the
uptake of ox-LDL by macrophages leading to foam cell formation
(12). mCRP can also activate monocytes to adhere to endothelia
and transmigrate—a process mediated via binding with integrin
receptors (13, 14). High local levels of mCRP have been detected
in the myocardium of patients suffering from acute coronary syn-
drome (15) and the choroids obtained from donors at high risk of
developing age-related macular degeneration (16). Furthermore,
it has been shown there is an accumulation of mCRP in pertinent
brain regions, arising from poststroke inflammation (17) and
evidence that this observation explains the known link between

ischemic stroke and onset of AD (18). In addition, Ap plaques have
been demonstrated to cause dissociation of pCRP to mCRP lead-
ing to a buildup of the latter in cortical tissue of AD patients (19).

The dissociation of pCRP to mCRP has now been delineated
in some detail. The dissociation is mediated by binding of pCRP
subunits to phosphocholine residues of lysophosphotidylcholines
(LPC) exposed on cell membranes (Figure 1). LPC is generated
by the action of pro-inflammatory phospholipase (PLA;) enzymes
acting on cell surface lysophospholipids. This link between PLA,
and CRP-mediated inflammation is backed up by the 6-12 h delay
observed between inflammatory insult and onset of high levels of
CRP. Furthermore, CRP formation is prevented by pre-incubation
of monocytes with ONO-RS-82, a well-known inhibitor of PLA,
enzymes (20). Dissociation is also mediated via interaction with
phosphocholine present on the surface of activated platelets,
which acts to localize mCRP generation to areas of inflammation
such as atherosclerotic plaques (13). Localized dissociation may
also arise from binding of pCRP to lysophosphocholine residues
exposed on the surface of ox-LDL, by lipoprotein-associated
PLA; (Lp-PLA,) (11). The most recent studies have provided a
more detailed mechanism of dissociation (21). Binding of pCRP
on activated monocytes, in addition to docking with phospho-
choline, also involves interactions between hydrophobic regions
of the pentamer and lipid rafts on the cell surface. The protein is
then released onto microvesicles and undergoes a conformational
change to an activated pentamer designated pCRP*. This moiety,
while still pentameric, exists in a more open form and undergoes
binding with a globular head group of complement Clq, which
inserts into the central cavity forcing the subunits of the pentamer
further apart to ultimately cause dissociation to mCRP.

2. Binding of pCRP
to Cell Surface via
Interaction with PC

1. PLA-Mediated
Exposure of PC

Arachidonic — Eicosanoids
acid

pCRP* on microvesicle

Activation of
p38 MAPK «—— Endothelium —LOX-1
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FIGURE 1 | Action of PLA; on arachidonic acid-containing phospholipids and subsequent mechanism of dissociation of pCRP to mCRP.
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FIGURE 2 | Example structures of anti-PLA, drugs and small-molecule binders to CRP.
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CHEMOTHERAPEUTIC TARGETS
IN CRP DISSOCIATION

The clear link between pCRP-mCRP dissociation and the onset/
mediation of inflammation indicates that inhibition of this
process is, potentially, a valuable chemotherapeutic strategy for
the treatment of a range of conditions associated with the inflam-
matory response. A number of key stages, from initial exposure
of cell surface phosphocholine residues to mCRP-mediated acti-
vation of monocytes/platelets/endothelia potentially provide an
opportunity for chemotherapeutic inhibition. However, an under-
standing of these various processes at the molecular level is an
important prerequisite for the development of small molecules
abrogation. Fortunately, investigations have provided informa-
tion on amino acid-ligand interactions by in silico modeling,
site-directed mutagenesis studies, and X-ray crystallographic infor-
mation. For instance, an X-ray crystal structure of pCRP bound
to phosphocholine reveals key amino acids involved in ligand
binding (1). Significantly, a hydrophobic cavity is shown to exist,
adjacent to the binding region, providing a potential blueprint
for the design of inhibitors of pCRP-phosphocholine binding.
Furthermore, an X-ray crystal structure of a CRP dissociation
inhibitor, 1,6-bis(phosphocholine)-hexane, a drug discussed
further below, bound to the active of two CRP pentamers has
also been determined (22). A crystal structure of the globular

head group of C1q has been solved, and the information used to
provide a model for the interaction of this domain with p-CRP
and to postulate amino acid residue interactions involved in
complement-pentamer binding (23). Site-directed mutagenesis
studies have also been directed toward identifying the key CRP-
Clq interactions (24). mCRP-mediated activation of monocytes
via binding to integrins avp3 and a4p1 has also been simulated
by in silico modeling yielding identification of potential binding
sites (14). Significantly, this study, while predicting favorable
mCRP-integrin binding, indicates significant steric interactions in
pCRP-integrin models of binding. The identification of lipid raft
interactions as key to mCRP binding to a range of targets, inclu-
ding endothelia, via cholesterol binding sequence (9, 10) offers
an additional target for small-molecule intervention-although
this interaction has not been studied at similar levels of details to
some of those discussed above.

These studies provide information that can be used to develop
small-molecule agents to inhibit the interaction between pCRP
and phosphocholine, complement Clq-induced dissociation to
mCRP and subsequent activation of monocytes. However, to
date, the only stage which has which has been perturbed by
small-molecule agents is the initial binding of pCRP to phos-
phocholine, to be discussed herein. Nevertheless, an important
stage of CRP activation is exposure of phosphocholine residues
on cell surfaces by PLA, and the action of this enzyme has been
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linked to CRP-mediated inflammation (20). A large number of
small molecules have been developed to inhibit phospholipase
activity although only a small number have been shown to lower
levels of mCRP (20). However, the use of PLA, inhibitors to
treat neuroinflammation, via suppression of pro-inflammatory
lysophospholipid formation, has been postulated (25) and, given
the clear links between mCRP formation and lysophospholipid
exposure, further implicates the use of PLA; inhibitors to prevent
CRP dissociation. Thus, this review will focus on summarizing
work in this area.

SMALL-MOLECULE INHIBITORS
OF PHOSPHOLIPASE A;

Among the various subgroups within the phospholipase A,
superfamily, secreted phospholipase A, (sPLA;), cytosolic phos-
pholipase A, (cPLA;), and lipoprotein-associated phospholipase
A, (LpPLA,) have been the most popular targets for the develop-
ment of inhibitors. The development of small molecules against
the PLA, family has been extensively reviewed and this mini
review will seek to provide a brief, up-to-date overview of only the
most successful drug candidates against s-, c-, and LpPLA, (26).
All PLA, enzymes catalyze the hydrolysis of phospholipids at
cell membranes or the surface of lipoproteins, to produce free
fatty acids and exposing lysophospholipids, including LPC, on
the cell surface (Figure 1). The former may include arachidonic
acid, which is converted to inflammatory-mediating eicosanoids,
indicating a dual pro-inflammatory role for PLA, enzymes.
Lipoprotein-associated phospholipase (LpPLA;) hydrolyzes
oxidized phospholipids present on the surface of ox-LDL produc-
ing pro-inflammatory oxidized fatty acids and lysophospholipids
(27). A plausible link between LpPLA, activity and CRP activa-
tion is supported by the detection of CRP/ox-LDL complexes in
the plasma of atherosclerosis patients (28). The central role of this
enzyme in the development of inflammation has led to its use
as a predictive biomarker for the onset of atherosclerosis (29).
A diversity of structures have been discovered to exhibit LpPLA,
inhibition (30-35). The most successful drugs against LpPLA,
are pyrimidin-4-ones of the darapladib class 1 (Figure 2) (36)
discovered by modification of lead compounds unearthed by
high throughput screening programs at GSK (37-39). A range
of analogs, based on the darapladib motif have been studied
but do not display improved activity (40, 41), although some
imidazopyrimidine derivatives, such as 2, do exhibit improved
bioavailability (42). Unfortunately, darapladib failed Phase III
clinical trials due to a failure to alleviate the risk of cardiovascular
death or stroke in coronary heart disease patients (43, 44).
Secretory phospholipase A, (sPLA,) is an extracellular
phospholipase catalyzing the hydrolysis of phospholipids at cell
surfaces. The association of this enzyme with the development
of inflammatory conditions, and even some cancers, has driven
the development of a number of small-molecule inhibitors (45).
Unsurprisingly, phospholipid derivatives do serve as inhibitors
given the natural substrates for this enzyme class (46-48). For
instance, the thioether analog 3 is a potent inhibitor (49). The
phosphocholine group has been successfully substituted with a

carboxylic acid moiety, which appears to function as a bioisostere
for this group, to provide compounds with excellent anti-sPLA,
activity (50) and substitution of the trimethylammonium group
with an amide provides more permeable compounds with some
inhibitory properties (51). The most successful molecules against
sPLA, are those based on an indole-3-acetamide structure.
Structure-activity studies based around this central motif (52, 53),
aided by an X-ray crystal structure of recombinant enzyme co-
complexed with alead compound (54, 55) led to the development
of the 3-glyoxamide derivative varespladib 4 (56). Unfortunately,
as with darapladib, varespladib failed to negotiate Phase III trials
due to lack of efficacy (57). Significantly, indole-based com-
pound, closely related to 4, are also potent inhibitors of group
X sPLA;, mammalian phospholipases, which are particularly
active pro-inflammatory members of this enzyme family (58).
Furthermore, X-ray structures of these inhibitors bound to the
active site have been obtained (59). Related indolizines such as 5
also exhibit potent anti-sPLA; activity (60) and the importance
of a central heterocyclic aromatic core to this activity is reflected
by the use of this information to develop potent inhibitors based
around pyrazole fragments (61). This concept was later expanded
to the study of amide-functionalized aromatic fragments leading
to the development of the preclinical candidate AZD2716 6 (62).
Compound 6 exhibits better oral bioavailability than varapladib,
which requires deployment as a methyl ester prodrug.

In contrast to sPLA,, cPLA, functions is an intracellular
enzyme and specifically interacts with arachidonyl phospholip-
ids and is thus especially responsible for the formation of pro-
inflammatory arachidonic acid in addition to lysophospholipids.
This enzyme has been identified as a key mediator of inflamma-
tion leading to a range of disease states (63). A range of relatively
simple compounds have been found to act as potent inhibitors
of activity. The design of these is largely based on mimicking
the arachidonoyl phosphonate structure and a knowledge of the
serine-based mechanism of phospholipid hydrolysis. While a
hydrophobic chain or aromatic group acts as a replacement for the
arachidonate moiety, an activated ketone serves to disrupt serine
hydrolysis and, as is the case with sPLA; inhibitors, a carboxylate
is an effective surrogate for the phosphonate group (64). The early,
anthranilic acid-based broad spectrum, PLA; inhibitors such as
N-(p-amylcinnamoyl)anthranilic acid (ACA) and ONO-RS-82
(65), widely used as tools to probe PLA; activity, partially fit this
model for inhibitor design as does the selective cPLA; inhibitor
arachidonyltrifluoromethylketone (AA-COCE;) (66). A design
strategy based on phospholipid binding has also led to the devel-
opment of linear 2-oxoamides (67) and 2-oxoesters (68) linked
via nitrogen or oxygen, respectively, to aliphatic carboxylic acid
group, and bis-aryloxypropanones, where both aliphatic groups
around a central carbonyl group have been replaced with aromatic
moieties (64). The disubstituted propanones serve as useful motifs
for inhibitor design and replacement of one aromatic group with
a thiazole (69), or suitably substituted indoles (70), have yielded
cPLA; inhibitors with good activity. The indole moiety has been
identified as a suitable substitute for the arachidonate section
of the phospholipid substrate, and this strategy has led to the
development of the ecopladib 7 class of cPLA, inhibitors (71).
Structural modification of 7 led to the development of the closely
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related efipladib (72) and giripladib (73). The latter compound
was advanced to Phase II trials but terminated at this stage. High-
throughput screening approaches have also led to the discovery
of potent cPLA, inhibitors. Compound library screening yielded
two fragments—a pyrrolidine and a thiazolidinylidene, combi-
nation of which provided a series of compounds, such as pyrro-
phenone 8, with very high inhibitory activity (74, 75).

SMALL-MOLECULE INHIBITORS
OF PCRP DISSOCIATION

The only small molecule demonstrated to inhibit dissociation
of pCRP to mCRP is the bis-phosphocholine dimer 1,6-bis
(phosphocholine)-hexane (bis(PC)-H) 9 (22). The design of this
compound utilized a similar strategy used in the development
of drugs targeted toward serum amyloid P component (SAP)
which act to crosslink two SAP molecules and is based on the
utilization of moieties chemically similar to phosphocholine head
groups that bind to the same active site to disrupt LPC-mediated
CRP activation. Crucially, a X-ray crystal structure of the pCRP-
bis(PC)-H drug complex was obtained revealing binding of five
drug molecules to phosphocholine binding sites to link two
pentamers. This interaction abrogates binding of pCRP to known
ligands such as LDL and blocks CRP-mediated complement C1q
activation. Additionally, bis(PC)-H was demonstrated to reduce
CRP-mediated effects in rat models. Despite demonstration of
some clinical efficacy in animal models bis(PC)-H suffers from
a low half-life, low CRP affinity and other suboptimal pharma-
cokinetic parameters.

While bis(PC)-H is the only small molecule that has been
demonstrated to effectively disrupt CRP dissociation, via direct
binding, other compounds have been shown to undergo chemi-
cal interactions with this pentamer and thus provide potential
blueprints for the future design of inhibitors. For instance, a
polypeptide conjugated with the phosphocholine linker 10 is a
high-affinity binder to CRP demonstrating that phosphocholine
mimics, free from the cell surface, can effectively interact with
the active sites of the pentamer (76, 77). Furthermore, effective
binding of 10 indicates that the CRP active sites may tolerate
phosphocholine analogs with larger, extended alkyl chains as
has been indicated previously by the X-ray crystal structure of
the CRP-phosphocholine complex (1). Further work in this area
has revealed that conjugates bearing heterocycles such as 11
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