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The different cytoskeleton systems and their connecting molecular motors move vesicles 
and intracellular organelles to shape cells. Polarized cells with specialized functions 
display an exquisite spatio-temporal regulation of both cytoskeletal and organelle 
arrangements that support their specific tasks. In particular, T cells rapidly change their 
shape and cellular function through the establishment of cell surface and intracellular 
polarity in response to a variety of cues. This review focuses on the contribution of the 
microtubule-based dynein/dynactin motor complex, the tubulin and actin cytoskeletons, 
and different organelles to the formation of the antigen-driven immune synapse.

Keywords: immune synapse, cytoskeleton, T cell receptor, centrosome, dynein, dynactin, microtubule, molecular 
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iNTRODUCTiON

The immune synapse (IS) is a highly organized structure at the interface between a T cell and an 
antigen-presenting cell (APC) that is initiated by antigen recognition through the T cell receptor 
(TCR) and supported by the complex network of cell skeletons (1–3). In particular, the role of 
tubulin- and actin-based skeletons has been studied on the polarization of intracellular organelles 
at the IS and the organization of specific adhesion molecules and signaling receptors at the plasma 
membrane (4–6). Candidates to regulate intracellular traffic and cell organization are the tubulin-
based dynein/dynactin molecular motors (7, 8). Various strategies have been used to study this 
issue, e.g., omics-based techniques (proteomics and lipidomics) upon biochemical extraction and 
imaging of live or fixed cells through fluorescence and/or electron microscopy. Major issues include 
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synthase, FH, formin homology; FIP, arfophilin; FMNL, formin-like protein; ICAM, intercellular adhesion molecule; IFT, intra-
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determining the molecules that perform their function at the 
T cell surface, during T cell activation, the components delivered 
to the cell surface at/or near the IS that sustain or switch off 
T cell activation and the relevant mechanisms that control their 
transit to the IS upon activation. Motor protein complexes such as 
dynein/dynactin lie at the core of these issues. They regulate the 
movement and positioning of different cellular components, and 
generate internal forces.

Many studies support the principle of action and reaction 
processes during IS organization. The scanning of the APC 
by the T  cell through initial adhesive contacts based mostly 
on lymphoctye function-associated antigen-1 (LFA-1), and 
the actin reorganization in the T  cell impact on the ability of 
APCs, such as dendritic cells (DCs), to mobilize their intercel-
lular adhesive molecules (ICAM-1 and -3) and subsequently the 
major histocopatibility complex class II molecules (MHC-II) (9). 
Recently, LFA-1 activity on T cells has been found to be impor-
tant for ICAM-1 clustering at the DC, but not for MHC-II. The  
co-localization of MHC-II and ICAM-1 is mainly abrogated by 
drugs disrupting the actin cytoskeleton, which reduce MHC-II 
mobility while increasing ICAM-1 mobility (10). Most of the 
filamentous actin of a T cell engaged in an IS is found at a highly 
motile, contractile lamella used by the T cell to interact with the 
APC (11). The balance between actin filament polymerization 
and depolymerization establishes a retrograde flow that mediates 
continuous movement (12). Actin polymerization in filaments at 
the cell edge and depolymerization near the IS center directs the 
movement of different surface proteins, such as the TCR/CD3 
complex (13). The organization of fluctuating molecules in clus-
ters of different sizes allows the scaffolding of signaling networks 
that are highly efficient for the transmission of external cues to the 
intracellular milieu (14–16). All these processes can influence the 
APC. Forces usually come in pairs (action–reaction). Therefore, 
since protein-based complexes change their speed upon cell–cell 
contact, there must be an acceleration, which will depend on the 
net force applied and the mass of the object. This makes the actions 
exerted by T cell–APC contacts relevant for changes occurring in 
both cells. The mass of the objects (protein complexes) involved 
may change, as well as their ability to interact with large elements 
(cytoskeleton) that confers a kind of resistance and their capacity 
to undergo intramolecular changes that make the molecule itself 
different in terms of intramolecular stiffness or rigidity. All these 
events will affect the acceleration of the objects. In this regard, a 
conjugated T cell might not be considered as a “rigid body,” since 
it is highly plastic and its components change their position and 
shape, deforming the overall object (T cell). These circumstances 
confer relevance to every single event on receptors, cytoskeleton, 
and organelle dynamics during IS formation, therefore pointing 
to molecular motors.

The IS also behaves as an “active zone” acting as a platform 
for localized vesicular trafficking (17). This region corresponds 
to a low-actin area, which allows the microtubule (MT)-mediated 
transport of endosomes and vesicles toward the pericentrosomal 
region, near the IS and from there to the plasma membrane  
(18, 19). Although internalization of TCR/CD3 may occur ran-
domly at any part of the cell surface, recycling is mainly focused to 
the T cell–APC contact area, leading to the polarized accumulation 

of this receptor at the IS (20). The effective membrane traffic is 
a relevant, quantifiable process, both in resting and activated 
T cells, for the balance of the cellular localization of very different 
components, from the TCR to integrins and signaling compo-
nents, such as kinases and adaptor proteins. It is also important 
to measure cell degranulation and secretion, as well as to evaluate 
the compartments dedicated to degradation, such as lysosomal-
dependent autophagic or endosomal partitions. Hence, the 
contribution of lateral membrane motility to the recruitment of  
TCR/CD3 at the IS is facilitated by an intracellular pool of the 
complex associated with recycling endosomes to balance meta-
bolic steady state (4). These endosomes are stores of signaling 
molecules and adaptor proteins and play a role in delivering them 
to the plasma membrane at the IS (21). The regulation of these 
internal movements depends on different molecular motors. In 
this review, we offer a perspective on the molecular players and 
mechanisms that may be contributing to the internal forces that 
control organelle positioning and function at the T  cell–APC 
contact area; in particular, dynein/dynactin complexes.

COORDiNATiON OF ACTiN AND TUBULiN 
CYTOSKeLeTONS AT THe T-APC 
CONTACT AReA

The interplay of actin and MT skeletons with surface receptor 
complexes coordinates the forces applied on the T cell and those 
exerted by the T cell (Figure 1). A specific correlation between 
MT and actin areas has been largely analyzed in different cellular 
systems. It is clear that MTs and actin territories partially overlap. 
The activation of Rac1 regulates both actin polymerization and 
MT growth at the leading edge during migration (22). At the IS, 
MTs growing from the translocated centrosome (18) may benefit 
from TCR and integrin-mediated activation of Rac1, paralleling 
the retrograde flux of actin (Figure 2). Activated Rac1 collaborates 
with Rab11 and FIP3 at endosomes to control actin dynamics and 
tracking forces at the IS (23) and endosomal clathrin coordinates 
actin polymerization at the same location, thereby controlling 
T  cell activation (24). Since endosomes re-localize near the IS 
thanks to the centrosomal positioning, it is conceivable that MT 
skeleton collaborates with actin for sustained tracking forces. This 
may be done through changes in the MT network by polymeriza-
tion and depolymerization at plus ends of MTs during centro-
somal repositioning and once it is located at the IS (18, 25, 26). 
However, disruption of Aurora A activity or expression, which 
reduces MT growing from the polarized centrosome (but not its 
polarization) and vesicular traffic at the IS, does not prevent actin 
dynamics in CD4 T cells. Aurora A activates leukocyte C-terminal 
Src kinase (Lck), a tyrosine-kinase involved in early TCR/CD3 
phosphorylation at the plasma membrane, but the blockade 
of Aurora A does not affect Lck activity enough to prevent the 
docking of the centrosome in CD4 T cells (27). Lck activity on 
CD3 ITAMs is required for correct centrosome polarization (28). 
This cascade of kinases might be rapidly activated by Ca2+ influx, 
since Ca2+ promotes immediate Aurora A activation (29). It has 
been postulated that CD8 T cells require Fyn tyrosine-kinase for 
centrosome movement and Lck for docking (30). Previous work 
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FigURe 1 | Dynein-driven forces acting on centrosome polarization during early T cell activation. Centrosome polarization upon T cell receptor (TCR) activation can 
be mediated by cortex and/or cytosolic pulling forces. TCR, lymphoctye function-associated antigen-1 (LFA-1), and CXCR4 binding to its ligands involve rapid 
increases in Ca2+ intracellular influx. This can activate Aurora A, which will favor leukocyte C-terminal Src kinase (Lck) activation and subsequent CD3 ITAMs 
phosphorylation at the CD3/TCR complex. The activation of the centrosome and associated molecules is probably due to diffusible secondary messengers such as 
the Ca2+. The interaction of dynein/dynactin complexes and other motors with intracellular organelles and the cytoskeleton may induce the force needed to move 
the centrosome toward the immune synapse (IS). At the IS, the interaction with TCR/CD3/SKAP55/ADAP or LFA-1/SKAP55/ADAP may serve to dock growing 
microtubules (MTs) and to pull the centrosome to the IS. End-binding 1 (EB1) may interact directly to CD3ζ subunit of the CD3/TCR complex. The growth and 
shrinkage of MTs at this zone would also create pulling forces. The images in the figure are not scaled.
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FigURe 2 | Molecular motors at motion to rearrange the cytoskeleton at the immune synapse (IS). Myosin IIA provides the lymphoctye function-associated 
antigen-1 (LFA-1)-dependent actin ring with contractile activity, thereby helping the centripetal movement of surface proteins. Dynein/dynactin may interact  
directly with receptors or move vesicles to allow recycling, walking toward the minus-end of microtubules (MTs) (centrosome). Kinesin-1 helps the traffic from the 
centrosome to the periphery. Vesicular traffic allows secretion and mitochondria can provide the adenosine tri-phosphate (ATP) needed for Myosin IIA activation.  
The forces exerted by these motors between the organelles and the cytoskeleton constitute the cytosolic pulling forces, that may provide a docking mechanism  
for the centrosome. The translocated centrosome provides the IS with multiple signaling, scaffold and modifying proteins that can regulate relevant post-translational 
modifications (PTMs) for actin or tubulin cytoskeletons, such as endothelial nitric oxide synthase (eNOS) for β-actin nitrosylation, histone deacetylase 6 (HDAC6) for 
deacetylation, or inverted formin-2 (INF2) to allow detyrosination of MTs. The images in the figure are not scaled.
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showed that Fyn is relevant for centrosomal polarization mainly 
in the absence of Lck. Full localization of centrosome at the IS is 
prevented in CD8 Fyn-deficient T cells when anti-CD3ε-coated 

beads are used. Moreover, Fyn-deficient OTI CD8 cells show 
maximal inhibition of centrosomal polarization under low stimu-
lation conditions, such as partial agonist and antagonist peptides, 
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but only mild effect when activated with agonist peptide (31). 
Thereby, other elements involved in the activation of the T cell, 
such as LFA-1 integrin and MHC-TCR interaction may direct the 
complete stimulation of centrosomal polarization.

A dual action of the centrosome on actin dynamics may exist. 
On the one hand, it can provide positive regulators from the 
associated Golgi apparatus and secretory machinery to increase 
cell–cell adhesion. On the other hand, negative regulators of actin 
polymerization such as nitric oxide produced by endothelial 
nitric oxide synthase (eNOS) (32) can help the fine-tuning of 
actin dynamics to prepare the clearance of actin structures at the 
center of the contact for secretion. The final recovery of actin at 
the IS and the switch off of the activated T cell can be achieved 
through the delivery of negative regulators, such as cytotoxic 
T-lymphocyte-associated antigen 4, to the IS from the endosomal 
associated systems (33). The organization of the polar retrograde 
flux of actin in the geometrical shape generated at the interface 
between the T cell and the APC generates a low-viscosity “sink” 
for inward flow of signaling microcluster in the T cell (34). There, 
actin regulators probably cluster, such as cofilin, profilin, and 
coronin. Golgi-resident eNOS coordinates centrosomal position-
ing at the IS with actin dynamics by decreasing the actin retro-
grade flux through modification of the actin binding to profilin 
by β-actin nitrosylation (32). Profilin is a major actin-binding 
protein in different cells (35), which makes it a predominant sub-
strate for actin polymerization. Recently, two independent studies 
have demonstrated its collaboration with Ena/VASP complex and 
with formins to organize actin polymerization rather than Arp2/3 
complex. Through cooperation with profilin, actin increases its 
ratio of incorporation to formin-bound filaments and helps Ena/
VASP complex to elongate the distal lamellipodia (36, 37). The 
ability of different formins to increase actin polymerization can 
also help the initiation of finger-like protrusions at the plasma 
membrane in coordination with lamellipodia extension. FMLN3 
formin, in cooperation with mammal diaphanous-related-
formin (mDia)2, favors this process; however, this is not the case 
for FMLN2 (38). FMLN1 and mDia1 targeting showed no effect 
on filopodia formation and actin accumulation during T  cell 
interaction with APC. The knockdown of either Arp2 or Arp3 
converted the lamellipodia-based scanning of the APC into a 
filopodia-based interaction (39). It has been described that the 
formation of Arp2/3-dependent F-actin foci at TCR microclus-
ters at the IS may facilitate the formation of protrusions toward 
the APC (40). Filopodia—also referred as microvilli or micro-
spikes—seem relevant to the initial scan of the APC by the T cell 
through a tyrosine kinase- and actin-independent TCR–pMHC 
interaction (41). Therefore, the actin organization upon activa-
tion relies largely in Arp2/3 and formin activities. Recently, FRAP 
analysis of the cell cortex of T cells has determined the presence 
of two F-actin subsets: formin-nucleated, long filaments of about 
500  nm showing long turnover times and Arp2/3-nucleated, 
short filaments of 50 nm with fast turnover times and actin free 
barbed ends. Also, Arp2/3 activity was more prominent than 
formin upon TCR activation, but the formin activity endorsed 
longer filaments on the external lamellipodia. The use of both 
super-resolution stimulated emission depletion (STED) micros-
copy and lattice light-sheet microscopy (LLSM), allowed the 

identification of a more internal network of actin at the IS, differ-
ent from the lamellipodia and complementary to it, that may help 
the intracellular traffic (42). In this regard, profilin ability to bind 
formins can help the interconnection between F-actin and MTs, 
as formins can bind simultaneously both elements through their 
formin homology (FH)1 and FH2 domains (43), which may be 
also a relevant mechanism to generate protrusions at the plasma 
membrane (see Figure 2).

Microtubules are polymers of α- and β-tubulin heterodimers 
bound in a head-to-tail manner. This organization gives rise to 
MT polarity, with plus- and minus-ends, depending on their rate 
of polymerization (44). The conventional formin mDia has been 
shown to bind end-binding 1 (EB1), CLIP170, and APC, a group 
of proteins involved in the growth of MTs at their plus-ends, or 
tips (43). mDia-deficient mouse presents different alterations in 
T cell development and activation (45). Indeed, Arp2/3 accounts 
for TCR recycling and cell–cell adhesion in conjugates, without 
affecting centrosomal positioning, whereas mDia and formin-like 
protein 1, two canonical formins, affect centrosomal localization. 
Their effect on actin is antagonistic (39). Inverted formin-2 
(INF2), a non-canonical formin, regulates the centrosome trans-
location, but does not seem to affect actin during IS in T cells 
(46). At any rate, Rac1 activity seems relevant for centrosomal 
polarization to the IS (39, 46). Both actin exclusion and centro-
some recruitment at the center of the IS, together with the vesicle 
and secretory machinery of the cell, allow the correct signaling 
and recycling of receptor microclusters and also focus secretion 
(6, 47, 48). In cytotoxic T-lymphocytes (CTLs), the secretion of 
lytic granules recruited to the polarized centrosome at the target 
cell area (49) is facilitated by the clearance of central cortical actin 
in coordination with calcium influx (50, 51). On the other hand, 
local clearance of actin at the site of docking and delivery of the 
granules has been defined in the killing immunological synapse 
organized by NK cells. This effect is dependent on the action of 
Coronin 1A, a protein able to interact with F-actin and MTs that 
uses Arp2/3 to destabilize F-actin (52, 53). Coronin 1A seems to 
be dispensable in T cells for antigen-recognition events, but not 
for migration (54). To fulfill their ability to engage different target 
cells serially, CTLs seem to recover cortical actin upon secretion, 
thereby stopping this process (55). The role of the centrosome in 
driving the localization of the lytic granules at the target cell area, 
and the possible role of centrosome-associated, Golgi-resident 
eNOS in actin clearance point to a role of tubulin skeleton in 
fine-tuning actin-based cytoskeleton dynamics.

DYNeiN MOTORS SHAPe THe iS

Experimental evidence on this issue arises from the observation 
of the polarization of the cytoskeleton at the IS and the associated 
changes of intracellular organization. In the T  cell, the centro-
some, together with the Golgi apparatus, secretory and recycling 
machinery and mitochondria, localize at the IS. An active growth 
of MTs from the centrosomal area organizes an MT network 
that helps traffic at the IS (56). An array of molecular motors 
is able to walk between the two ends of MTs, transporting dif-
ferent organelles along these trails. Also, actin-based molecular 
motors can act on actin structures to increase tracking forces at 
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the IS, probably helping movement. These molecular motors are 
important for cell polarity and are mostly represented by dyneins, 
kinesins, and myosins (Figures 1 and 2).

Cytoplasmic dynein complex belongs to a large family of MT 
motor proteins involved in intracellular transport; it is an MT 
minus-end directed, motor protein complex of about 1 MDa, that 
comprises two heavy chains containing the AAA motor and MT 
binding site, two different intermediate chains, among them the 
p74 subunit (DIC) and several light and intermediate light chains. 
These chains provide interaction with a plethora of proteins in 
cells, conferring to the motor the ability to interact with multiple 
cargoes. p74 interacts with dynactin p150Glued subunit, and p150Glued 
is able to interact with MT through its first 200 amino acid residues 
at the N-terminus CAP-Gly (cytoskeleton-associated protein gly-
cine rich) domain and a basic region. Dynactin complex enhances 
dynein processivity while regulating its localization (57, 58). 
Cytoplasmic dynein accumulates at the periphery of the T-APC 
contact and associates with ADAP (adhesion and degranulation 
promoting adaptor protein; SLAP130/Fyb) (59), as does dynactin 
(60). This interaction may generate the pulling force needed to 
polarize the centrosome to the IS; e.g., cortex pulling forces 
(Figure  1). These cortex pulling forces would be exerted from 
the ring of activated LFA-1 integrin, favored by ADAP upon TCR 
activation. Accordingly, the knockout mouse for ADAP shows 
deficient T cell LFA-1-mediated adhesion (61, 62). Although actin 
polymerization is normal in the knockout cells, the absence of 
ADAP is essential for T cell proliferation and adhesion. Indeed, 
ADAP is a scaffold protein that connects to SKAP55 and regulates 
its stability and half-life by preventing its degradation at the pro-
teasome (63). SKAP55 connects with the actin cytoskeleton and its 
deficiency causes an effect similar to that of ADAP (64). Therefore, 
it is conceivable that, through connection with ADAP, cytoplasmic 
dynein might exert a regulatory role on interconnecting MTs and 
cortical actin at the IS, producing the pulling forces at the cortex. 
The disruption of the dynein/dynactin complex de-localized 
LFA-1 from the external zone of the IS, showing a scattered pat-
tern (60). In these conditions, the centrosome was not polarized 
at the IS, without affecting the number of conjugates formed with 
APCs. Indeed, dynein has also been proposed to move TCR/CD3 
complexes along MT toward the center of the IS, enhancing their 
motility and signal termination in mouse cells (65). Coordinated 
dynein/dynactin activity was also found essential for sustained 
T cell activation, based on centrosome polarization (60).

Cytoplasmic pulling forces are now matter of study and exem-
plify a mechanism via dynein/dynactin complexes to generate 
traction during intracellular transport and cell shape maintenance 
(Figure 1). Cytoplasmic pulling forces are based on the net forces 
applied by molecular motors to get together the components of 
organelles such as the Golgi, as well as the traction exerted on skel-
etons for movement. Dynein/dynactin-mediated cytosolic pulling 
forces may be relevant for the localization of the centrosome, given 
the high number of organelles and vesicles which are intercon-
nected by MTs around it, and their proximity to the IS (24, 66).  
The study of large protein complexes in cells is difficult due to the 
high number of subunits and the ability of cells to compensate 
some effects when protein complexes are disturbed or the protein 
expression of their subunits diminished. In the case of dynein/

dynactin, either the silencing of cytoplasmic dynein heavy chain 
1 or a high overexpression of the p50-dynamitin-GFP subunit 
of dynactin in human T cells prevented the correct polarization 
of the centrosome. A sustained, long-term overexpression of 
p50-dynamitin-GFP [obtaining a ratio of more than 4:1 for p50-
dynamitin:p150Glued proportions in the dynactin complex (67, 68)]  
in Jurkat cells prevented the interaction between p74-dynein 
intermediate chain and p150Glued. This effect correlated with a 
dispersed localization of the TCR, as well as with a de-localized 
centrosomal positioning (60). A recent study shows that dynein 
motor, which can form different complexes in cells by changing its 
partners, may play a dual role in T cell activation, depending on 
whether the interaction is with nuclear distribution protein nudE 
homolog 1 (NDE1) or p150Glued (69). NDE1 protein is involved 
in the intracellular organization of the Golgi through interaction 
with nuclear distribution protein nude-like 1 (NDEL1), lyssen-
cephaly-1 protein, and dynein; silencing of NDE1 and NDEL1 
disorganizes the Golgi, makes the endocytic compartment 
collapse toward the plasma membrane and abrogates cortical 
dynein localization (70). The palmitoylation of either NDE1 or 
NDEL1 prevents interaction with dynein and intracellular traffic 
(71), thereby pointing to a relevant spatial mechanism to regulate 
dynein complexes composition and action. In this regard, the 
silencing of p150Glued does not seem to exert an effect on centro-
some localization at the IS in this study (69). Other authors have 
observed that the direct knockdown of dynein heavy chain does 
not affect the translocation of the centrosome in mouse cells (65). 
However, a number of studies support dynein/dynactin role in 
centrosome polarization in lymphocytes (25, 60, 69, 72, 73).

The full deletion of p150 or Glued is lethal early in embryo 
development in D. melanogaster. Genetic experiments to analyze 
the survival of deficient cells in wild-type adult tissues were 
unable to recapitulate the cell functionality (74). This indicates 
that p150Glued is essential for cells to survive, divide, or participate 
in tissue-level organization, although dynactin complex is not 
required for dynein sustained motility (75). Therefore, a partial 
silencing of p150Glued would allow the initial activity of some 
dynein/dynactin complexes, without major requirements for 
later movement and generation of pulling forces, but with a high 
replacement/interchange rate of dynactin between complexes. 
Dynein/dynactin supercomplex has a definitive different behav-
ior in the use of different MTs as tracks, which can be due to 
the different post-translational modifications (PTMs) of tubulin 
(Figure 3); partly through the action of different carboxipepti-
dases at α-tubulin ends (α-Tub-EEY) (6, 76). Dynein can move 
on detyrosinated MTs once the movement is initiated without 
the participation of dynactin. The movement of centrosomes in 
C. elegans embryos depends on the interaction of dynactin with 
tyrosinated MTs, the cytoplasmic pulling forces exerted through 
its binding to dynein complex and the initiation of intracellular 
traffic (77). Also, dynactin interacts preferentially with tyrosi-
nated MTs through p150Glued or with the EEY-ends of end-binding 
(EB) proteins bound to MTs (75). The formin INF2 regulates the 
tyrosinated state of MTs in T cells during activation; MTs near 
the translocated centrosome are detyrosinated (α-Tub-EE) and 
TCR activation promotes the increase of detyrosinated MTs 
(46). A possibility is that dynactin would help dynein to initiate 
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FigURe 3 | Signaling at the centrosome area to fuel tubulin polymerization. In T cells, the polymerization of microtubules (MTs) from the centrosome is controlled  
by casein kinase Iδ (CKIδ) through phosphorylation of end-binding 1 (EB1). AKAP450 anchors CKI to the pericentrosomal matrix. Aurora A also promotes the 
incorporation of α/β-tubulin heterodimers into MTs at the centrosome through its kinase activity. AKAP450 can also dock at the Golgi apparatus where it may 
collaborate with GM130 to facilitate tubulin polymerization. The Golgi apparatus is formed by diacylglycerol (DAG)-enriched membranes, where protein kinase C 
(PKC)ε anchors. AKAP450 binds to hypophosphorylated PKCε, which can constitute a reservoir for the non-activated kinase. The post-translational modifications  
of the MTs can affect the binding of molecular motors; kinesin likely interacts preferentially with acetylated MTs and dynein/dynactin interact with tyrosinated MT 
(α-tubulin-EEY) through dynactin binding, although dynein can move along detyrosinated (α-tubulin-EE) and tyrosinated MTs. Both motors are in charge of 
movement around the centrosomal area, of organelles such as vesicles and mitochondria, whereas dynein is the main responsible for Golgi apparatus shape  
and stability. The images in the figure are not scaled.
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its processive movement to transport cargoes on tyrosinated 
MTs until the area of detyrosinated MTs near the centrosome 
is reached. Alternatively, dynactin can use EB1 or EB3 at the 
plus-ends of MTs. Conceivably, high inhibition of dynactin/
dynein interaction by sustained overexpression of p50-dynamitin 
or complete knockdown of p150Glued would affect dynein initial 
interaction with MTs, preventing intracellular traffic and localiza-
tion of the centrosome at the IS and the organization of organelles 
due to lack of cytosolic pulling forces.

THe iS AND iTS AXONeMAL 
CONNeCTiONS

The connection between IS and axonemal components is being 
established. Axonemal dynein is very important to allow the 

movement of flagella, based on its interaction with the axonemal 
MTs and its AAA motor activity; a “coup de force” (57, 58), 
which may be also a possible mechanism at the IS. During the 
biogenesis of the cilium, including centrosomal and acentroso-
mal processes, the basal body connects to cenexin–centriolin–
Rab11a–Rabin8–Rab8 complex and organizes the retrograde and  
anterograde transport of vesicles along MTs through dynein and 
kinesin, respectively. These molecules also act at the IS; Rab8 
and vesicle-associated membrane protein (VAMP)3 complex 
regulates recycling of TCRs (78). Rab8a and Rab11a dissociate 
from the pericentriolar region by casein kinase 1 (CK1δ) action 
(79). The centrosomal docking of CK1δ is mediated by AKAP450 
(80) (Figure  3) and is needed to form the basal body of the 
primary cilium. In CD4 T cells, AKAP450 inhibition delocalizes 
the centrosome from the IS and decreases TCR and integrin 
activation and clustering (81). In other cell types, AKAP450 has 
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an important role in MT polymerization from the centrosome 
and through the Golgi mediated by interaction with GM130 (82). 
Therefore, it can be also of relevance for cytosolic pulling forces. 
CK1δ silencing causes a 50% reduction in the centrosomal posi-
tioning at the IS in Jurkat cells. CK1δ forms a complex with EB1, 
phosphorylates it, and activates its function. It might interact with 
dynein/dynactin directly or through EB1, but these can repre-
sent different complexes recovered by co-immunoprecipitation 
and EB1-GST pulldown, respectively. CK1δ phosphorylation of 
EB1 can activate the protein and promote MT growing from the 
centrosome (Figure 3). This effect is dependent on the dynam-
ics of CK1δ localization at the centrosome since its persistent 
localization at this organelle prevents the correct centrosomal 
polarization at the IS (83). The deletion of EB1 does not prevent 
centrosomal positioning at the IS, but abrogates TCR signaling at 
linker for activation of T cells (LAT)/phospholipase C (PLC)γ1 
signalosome and regulates the traffic of CD3ζ vesicles at the IS 
(18). EB3, which is also expressed in T cells, could replace EB1 
in allowing centrosomal positioning, since overexpression of 
EB1-CT as a dominant negative mutant for EB1 protein–protein 
interactions has an effect on centrosomal positioning (39, 84). 
Polymerization of MTs has been described to be important for 
centrosomal polarization, assayed through the use of low doses 
of nocodazol (25). In this study, the centrosomal relocation at 
the IS was defined through two different phases with different 
mean speeds: a first one to position the centrosome near the 
synapse and a second one to center and dock it. In this work, 
the silencing or chemical inhibition of dynein with ciliobrevin D 
and overexpression of a dominant negative mutant of p150Glued 
had a negative effect on centrosomal positioning and docking 
(25), corroborating previous results (60). Major effects on both 
phases were observed upon taxol and ciliobrevin D treatment to 
prevent depolymerization of MTs and dynein-driven force. Taxol 
alone prevented partly the repositioning, as did low doses of 
nocodazol (loss of polymerization); therefore, a kind of internal 
“scanning” of the cell cortex from MT plus-ends in collaboration 
with dynein/dynactin was proposed as a model for docking the 
centrosome at the IS (25).

Acetylation, a PTM of α-tubulin, is a hallmark of stable MTs 
which is also detected in the cilium. HDAC6, a histone dea-
cetylase with activity on α-tubulin or cortactin (85), is able to 
interact with dynein to transport unfolded proteins (86) and is 
also important for lymphocyte migration as a scaffold protein 
(87). Its role in migration in other cell types is linked to EB1 pro-
tein (88). Notably, HDAC6, which also has a role in the cilium 
disassembly under the control of Aurora A (89), influences CD4+ 
T cell activation at the IS, since its overexpression precludes cen-
trosome positioning and the interaction of important signaling 
molecules from the TCR pathways with MTs. HDAC6-silenced 
CD4 T cells showed a similar hyper-acetylation of tubulin than 
taxol-treated cells and even higher centrosome polarization than 
control cells (90). Likewise, in HDAC6-deficient CD8 T cells, the 
polarization of the centrosome is also higher than in control cells 
(it is closer to the IS) and tubulin acetylation is increased (91). 
Taxane (paclitaxel and docetaxel) binding to MTs was mapped to 
the β-tubulin subunit on the MT inner surface (92); the initially 
accepted model proposed that taxanes and other MT-stabilizing 

agents reach the binding pocket by diffusing through the MT 
wall. However, the kinetics of binding determined that diffu-
sion could not account for the process (93). More recently, the 
application of different computational techniques to the MT 
structure showed that a possible external binding pocket would 
allow an initial binding and later the entry of the drugs (94). 
Therefore, depending on the amount of drug present, taxol may 
be affecting the binding of different microtubule-associated 
proteins (MAPs) at both surfaces of the MT. This may account 
for the different consequences of taxol treatment depending on 
the amount of drug used (from 1 to 20 nM; minutes to hours), 
as known for stimulation of MT growth in vitro (95), formation 
of MT bundles due to high polymerization and stabilization 
(96) and cell death and mitotic inhibition (97). In the work 
of Yi et  al., the concentration of taxane used did not seem to 
provoke great changes in the overall shape of MT skeleton (pre-
treatment with 0.5 µM for 10 min and then, stimulation), but 
prevented catastrophes, and therefore stabilized MT growth. 
They observed a defect in both phases: repositioning and dock-
ing. The combined treatment with ciliobrevin D and taxane 
produced the major effect, blocking centrosome movement. 
Indeed, inhibition of dynein with ciliobrevin D promoted the 
disorganization of intracellular organelles and vesicles (25). In 
sum, treatment with taxanes initially promotes an ever-growing 
MT skeleton, depending on the dose and time of treatment, with 
a resulting paralyzed skeleton and high acetylation of MTs. In 
addition, the inhibition of molecular motors such as dynein/
dynactin prevents correct organellar disposition. This may have 
differential consequences on the activity of molecular motors 
both on cytosolic and cortical pulling forces, depending on the 
status of the MT cytoskeleton, the organelle positioning, and the 
interaction with cortical surfaces.

MOTORiNg THe SYNAPTiC ORgANeLLeS 
TO FUeL CYTOSKeLeTAL DYNAMiCS

Mitochondria localize at the IS (98) and this localization is 
also dependent on the centrosome polarization to the IS, since 
mitochondria are accumulated around the de-localized centro-
some and perinuclear region in T cells overexpressing p50-dyna-
mitin (72). The perinuclear localization of mitochondria upon 
p50-dynamitin-GFP overexpression was primarily observed in 
Hela cells. The recruitment of dynamin-related protein 1 (drp1), 
a protein involved in fission of mitochondria, to the dynactin/
dynein complex was shown to sustain the retrograde transport. 
The size and shape of mitochondria was irregular in these cells, 
with some of them presenting T- and V-shapes (99). Drp1 
helps the correct localization of mitochondria at the uropod, 
the trailing edge of migrating polarized lymphocytes, prior to 
stimulation to form an IS. Through mitochondria localization 
at the uropod, the lymphocyte regulates its ability to migrate 
(100). These mitochondria surround the centrosomal area, and 
can provide adenosine tri-phosphate (ATP) to the intracellular 
traffic for LFA-1 recycling and Myosin II contraction needed to 
sustain the motility and polarity of the lymphocyte (101). Upon 
TCR activation, drp1-disrupted T cells allowed the centrosomal 
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localization during IS formation, but mitochondria were not 
correctly polarized to the IS. There was no effective movement 
of the mitochondria toward the minus-end of MTs. The required 
ATP production for energy fueling at the IS was also diminished 
(72). The effect of drp1 delocalization from mitochondria upon 
p50-overexpression may also be due to a defective fission of mito-
chondria, which are then poorly transported in an anterograde 
mode by kinesin-1.

Kinesin-1, also called conventional kinesin, is a MT plus-end-
oriented motor complex with different subunits. Kinesin-1 is a 
heterotetramer of ~380  kDa and comprises two kinesin heavy 
chains (KHCs) with motor activity and two kinesin light chains 
(102). It is important to note that kinesins are an extended family 
of proteins, with about 45 genes coding for them. Most of them 
[kinesin family members (KIFs)] have their motor domain at the 
N-terminus, but also as a central domain or at the C-terminus, 
determining whether they walk toward the plus-ends (N-KIF) 
or the minus-end (C-KIF) of the MT (103). Kinesin-1, an N-KIF, 
uses adaptor proteins to fix the cargo; for mitochondria effective 
movement forward to the cell cortex (MT plus-ends), Miro-1 
forms a triade with Milton and kinesin-1 (104). The role of 
Miro-1 protein has been reported in the localization of mitochon-
dria during T cell–endothelial contact for transmigration from 
blood vessels to tissues during inflammation. Miro-1 is needed 
to relocate the mitochondria around the centrosome, which is 
recruited from the uropod (trailing edge) to the T cell–endothe-
lial cell contact area and congregates the mitochondria there (73). 
Miro-1 interacts with the dynactin subunit p150Glued and dynein 
heavy chain in these lymphocytes, but the possible complex 
formed with kinesin-1 was not explored. Therefore, motors might 
coordinately interchange at the surface of the cargoes, to regulate 
the retrograde and anterograde transport through MT, using the 
centrosome as a crossroads.

Kinesin-1 is indeed involved in the final transport and delivery 
of lytic granules at the killing IS in CTLs, forming a complex with 
Slp3 and Rab27a (105). In fact, the knockout mouse for Kif5b, 
the KHC involved, is embryonic lethal, showing perinuclear 
clustering of lysosomes and mitochondria. Kinesin-1 is helped in 
the transport of lytic granules to the IS by the action of HDAC6 
(91). In HDAC6 knockout T  cells, the acetylation of MTs is 
highly increased, but the centrosomal polarization to the IS of 
either silenced CD4 or knockout CD8 T cells was even enhanced  
(90, 91). Kinesin-1 ability to bind and move over MT is increased 
by acetylation at Lys40 of α-tubulin in the lumen of MTs (106). 
This is in concert with the long-term increase in acetylated MTs 
at the IS (90) and would facilitate the kinesin-driven movement of 
vesicles from centrosomal region to the plasma membrane at the 
IS. Indeed, the use of cell-extracts of intact MT networks and sin-
gle fluorescently labeled motor proteins to study motility through 
total internal reflection fluorescence microscopy (TIRFm) 
unveiled that acetylated MTs are predominantly bundled, which 
enhances the number of kinesin binding sites and run lengths of 
the motor (107). However, in the case of HDAC6 knockout CD8 
T  cells, the kinesin-1 interaction with p150Glued was defective, 
correlating with a defect in the final delivery of lytic granules at 
the IS and their degranulation, even though acetylation of MTs 
was highly increased (91).

Histone deacetylase 6 may also play a role in the biogenesis 
and degradation of organelles through interaction with dynein/
dynactin. These proteins are well-known partners for the trans-
port of ubiquitinated, misfolded proteins to the aggresome 
formed near the centrosome for degradation through autophagy. 
Its interaction with dynein/dynactin takes part through a region 
different from its two catalytic domains for acetylation and its 
C-terminus (86). Parkin coordinates the E2 enzyme UbcH13/
Uev1a to mediate K63-linked polyubiquitination of misfolded 
proteins (108). Under conditions of proteasomal impairment, 
the machinery and membranes for autophagosome are recruited 
to the aggresome and the fusion with lysosomes allows protein 
clearance. Indeed, the recruitment of Parkin to the centrosome 
in these conditions is dependent on HDAC6. This accumulation 
was reversible and HDAC6 used either dynein or kinesin-1 for 
bidirectional movements (109). HDAC6 binds preferentially 
to K63-ubiquitin modified proteins (instead of K48) through 
its ubiquitin-binding domain, at the C-terminal (110). It may 
bind both mono or polyubiquitin chains (111, 112), although it 
seems that it prefers polyubiquitinated chains (108). This precise 
relationship between HDAC6 and the dynein motor is likely to be 
of relevance for mitochondrial shape and health, since HDAC6 
and Parkin are both involved in the process of mitophagy (56). 
Therefore, the possible connections in the cytosolic and cortex 
pulling forces generated by dynein and their relationship with 
kinesin complexes and their ability to interconnect organelles and 
to move components inside the cell is a field for intense research. 
In this context, the MTs, their PTMs, and enzymatic modifiers 
will be extremely relevant.

Myosins are a superfamily of motor proteins that bind to actin 
and use the energy of ATP hydrolysis to generate force and move-
ment along actin filaments. There are about 18 classes of myosins. 
They play significant roles in cell movement, muscle contraction, 
cytokinesis, membrane trafficking, and signal transduction (113). 
They consist of a motor domain, a neck region, and a tail region; 
most myosins form a dimer of two heavy chains with the sup-
plementary binding of two light chains (MLC) per heavy chain 
to their neck region. Regulatory MLCs can be phosphorylated 
for regulation of the motor activity (103). Non-muscle myosin 
IIA (encoded by gene Myh9) has been involved in the accumu-
lation of the TCR to the center of the IS to be recycled (114). 
The lack of mitochondria polarization at the IS by inhibition of 
drp1 prevented MLC phosphorylation at Ser19 at the actin-rich 
lamella, thereby unleashing TCRs from the retrograde flow, which 
showed a less concentrated appearance. However, the centrosome 
was correctly positioned at the IS (72). The collaboration between 
myosin IIA and dynein has been recently shown in mouse cells 
through the use of photoactivatable peptide-MHC complexes. 
This evidence supports the action of Myosin IIA in pushing the 
centrosome toward the IS while dynein would pull it from the IS. 
The inhibition of each one separately did not exert apparent high 
effects on centrosomal positioning in this study. Indeed, inhibi-
tion of Myosin IIA did not alter the signaling from the TCR (115). 
Dynein localization at the plasma membrane has been suggested 
to precede the centrosome polarization at the IS rapidly upon 
TCR activation. The gradient of diacylglycerol (DAG) organized 
at the IS by active PLCγ1 would be the polarizing signal to direct 
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centrosomal localization (116). In this sense, the MAP4 knock-
down reduces the stability of MTs and makes the centrosome 
to move slower until it reaches the IS, although PLCγ1 is more 
active and DAG accumulation increases at the IS. It is feasible that 
centrosomal polarization acts as a negative regulator for DAG 
production. DAG accumulation at the IS is also observed when 
Ct-AKAP450-GFP is overexpressed in T cells (117), a construct 
that displaces AKAP450 from the centrosome and prevents 
its translocation to the IS (81). Indeed, if DAG production is 
disturbed, the centrosome does not position correctly (116). To 
control centrosomal positioning, there is a specific and temporal 
recruitment of three different protein kinases C (PKCs) to the IS; 
essentially PKCε and PKCη come first followed by PKCθ (118). 
All of them bind to DAG and phorbol esters and need phos-
phorylation by 3′-phoshoinositide-dependent protein kinase 1 
at their activation loop to be fully active (119). PKCε controls 
its localization through second messengers and is dependent on 
G-protein-coupled receptors activation. It can bind to Myosin IIA 
and actin in fibroblasts, thereby connecting to actin cytoskeleton 
(120). In this regard, the exposure to the CXCL12 chemokine 
strengthens the IS shape, as an additive signal to CD3 and CD28 
(121), and CXCR4, the G-protein-coupled receptor for CXCL12, 
is localized at the IS through connection with actin cytoskeleton 
(122). CXCL12 binding to its receptor allows Ca2+ influx and rapid 
activation of Rac1 (123) and its internalization seems dependent 
on MIIA interaction (124). Immature hypophosphorylated PKCε 
associates to AKAP450 (125) and this can be related to its high 
basal localization to DAG-enriched membranes, such as the 
Golgi (126) (Figure 3). PKCθ is a well-known modulated kinase 
during T  cell activation, which recruitment to the IS depends 
on CD28 costimulation (127). PKCθ clustering at the center of 
the IS correlates with its activity (127) and is highly dependent 
on actin dynamics; Golgi-resident eNOS translocated to the IS 
together with the centrosome lowers the actin retrograde flux 
and enhances PKCθ activity (32). The regulation of PKCθ down-
stream activity by the control of Carma1 localization at the IS by 
the plus-end directed, kinesin molecular motor GAKIN has also 
been described. GAKIN can walk on the MTs toward the periph-
ery of the IS, displacing Carma1 from Bcl10 and the central part 
of the IS (128). Recently, the identification of a protein complex 
comprising CD28, Lck, and PKCθ has explained the dependence 
of PKCθ on CD28 activation. The unique domain V3 from PKCθ 
interacts with the SH3 domain of Lck, which in turn docks at 
the phosphorylated tail of CD28 (129). The mutation of the PI3K 
interaction site in CD28 prevented the recruitment of PKCθ at 
the IS and transcription of IL-2 mRNA (130), determining the 
relevance of the targeting to the IS in T  cells. The localization 
through Lck at the IS may explain also why PKCθ docks at the IS in 
CD28-deficient Jurkat T cells (32). A different mechanism seems 
to operate in regulatory T cells (Tregs), with PKCθ preferentially 
located at the distal pole of the T cell, far from the T-APC contact 
(131). The use of knockout mice or chemical inhibitors for PKCθ 
has rendered distinct results in the Treg subset. Hence, Tregs 
from Pkcθ−/− showed similar activity than wild type, although 
their numbers were diminished due to developmental problems 
(132), while chemical inhibition clearly enhanced Treg function 
(131). IL-2 production by effector T  cells is essential for CD4 

Treg differentiation and function (133), which could affect the 
numbers in the Pkcθ−/− mice. Naïve T cells from Pkcθ−/− mice have 
been analyzed for stability of the IS, and the absence of the kinase 
allows the IS to be formed for longer periods of time without loss 
of symmetry, therefore preventing the formation of different IS 
by the same T cell (134). Therefore, the interconnection between 
skeletons and signaling is clear again, but there is still much 
information lacking to understand precisely which is the signal-
ing cascades controlling the motor activities and the dynamics of 
the actin-based and tubulin-based skeletons at the IS.

PROTeiN MULTiPLeXiNg HigHLigHTS 
THe COMPLeXiTY OF TRANSPORT 
SYSTeMS

The use of different imaging techniques together with biochemical 
identification of proteins and different drugs against cytoskeletal 
components has allowed the understanding of different routes 
for transport of vesicles at the IS. The intracellular traffic at the 
IS has been analyzed mainly through wide-field fluorescence 
microscopy, laser scanning confocal microcopy (LSCM), and, 
to a lesser extent, TIRFm (48, 135). Endocytosed TCRs enter a 
pathway to recycling endosomes marked by Rab4 and Rab11. 
Rab4-positive endosomes are early endosomes involved in rapid 
shuttling of internalized receptors to the plasma membrane in 
an MT-independent manner. The endosomes marked by Rab11 
cluster deeper inside the cell (next to the centrosome) and 
follow a slower route to return to the plasma membrane along 
MT. Rab35 and other Rab GTPases regulate the endosomal traf-
ficking together with Wiskott–Aldrich syndrome protein and 
SCAR homolog (WASH), which controls actin polymerization. 
WASH activates Arp2/3 complex and also interacts with tubulin 
cytoskeleton in both early and late endosomes, promoting the 
local actin polymerization that may provide the force for their 
movement along MT (78). Later, actin clearance at specific sites of 
the IS allows the fusion of the vesicles with the plasma membrane. 
The corresponding N-ethylmaleimide-sensitive factor attach-
ment protein receptors (SNAREs) at the vesicles (v-SNARE) 
and on target membranes (t-SNAREs) mediate this process.  
A complex between two t-SNAREs (syntaxin-3 or -4 and SNAP-23 
in non-neuronal cells) and one v-SNARE such as VAMP3 (136) 
allows the docking and priming of the vesicle, which fuses with 
the plasma membrane in the presence of high Ca2+. In contrast to 
TCR/CD3 vesicles that are controlled by VAMP3, the endosomal 
recruitment and docking of LAT to the cortical region of the IS 
are dependent on the VAMP7 v-SNARE (although CD3 vesicles 
may also interact with VAMP7) (137). The presence of two 
traveling LAT pools at the IS was described through fluorescence 
microscopy (138). Endosomal pools of LAT are localized in dif-
ferent subpopulations of recycling endosomes marked by Rab27 
and Rab37. This suggests that early phosphorylation of LAT upon 
TCR activation depends on the clustering of the LAT pool at the 
plasma membrane rather than on the LAT subset at endosomes. 
The latter seems to be more involved, however, in stabilizing 
signaling mediators close to the TCR (19, 139). The growing of 
MTs at the IS, analyzed by TIRFm through imaging of EB1 and 
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EB3 (18), allows the movement of TCR/CD3-enriched cortical 
vesicles underneath the plasma membrane and their encounter 
with LAT-enriched vesicles, thereby helping sustained activa-
tion of LAT and PLCγ1 upon TCR triggering (18). Indeed, an 
important pool of Lck in Rab11b+MAL+ endosomes is detected 
during T cell activation. MAL is involved in the targeting of Lck to 
the plasma membrane and the correct sorting of Lck and LAT to 
membrane subdomains at the IS (84, 140). Rab11b interacts with 
myosin 5B, a motor protein able to interact with actin cables and 
vesicles, through the adaptor protein uncoordinated 119 (Unc 
119). This complex allows the final delivery of the vesicles, from 
the MTs of the pericentrosomal region to the cortical actin at the 
IS (4). This kind of collaboration between motors and skeletons 
for intracellular traffic is essential for correct T cell activation, and 
probably favors cytosolic pulling forces.

An unexpected player was recently described as a regulator of 
TCR recycling at the IS: the intraflagellar transport (IFT) system. 
IFT are multimeric protein complexes relevant for the biogenesis 
and maintenance of the primary cilium. T cells express different 
IFT constituents such as IFT20, 52, 57, and 88, which participate 
in the recycling of the TCR to the endosomal system upon centro-
some positioning at the IS. The polarization of the Golgi apparatus 
and the centrosome drives the building of both structures, the 
IS and the cilium. They direct the growing of MT and the traffic 
of vesicles toward the plasma membrane. These membranes are 
both highly enriched in cholesterol and sphingolipids. They act 
as signaling platforms for extracellular cues (21). IFT20, together 
with IFT88, IFT52 and IFT57, are recruited to the IS in associa-
tion with the Golgi apparatus and centrioles (141). IFT20 sustains 
TCR clustering and signaling but is dispensable for polarization of 
the Golgi and the centrosome. IFT20 couples internalized TCR/
CD3 complexes with Rab5+ early endosomes and promotes their 
transit to recycling endosomes. Since IFT20 co-localizes with the 
TCR in Rab11+Rab4+ endosomes, it is possible that it accompanies 
this receptor during recycling. In this regard, IFT20 also interacts 
with the transferrin receptor (TfR), which also undergoes polar-
ized recycling at the IS (141, 142). Indeed, tubulin heterodimers 
can be transported by the IFT system to the end of the cilium, 
thereby facilitating its elongation (143). An increase of available 
heterodimers helps reaching the critical concentration needed for 
polymerization of MTs. A similar process may take place at the IS, 
providing the IFT proteins expressed by the T cell can also perform 
this task. Therefore, the transport of molecules and vesicles and its 
relationship with the centrosome and the MTs arising from it seem 
to be of special relevance in different cell systems used for sensing 
changes in the extracellular medium, such as the cilium and the IS. 
Intracellular traffic and the cytoskeleton are tightly related in the 
regulation of the IS and the cilium. Tubulin tracks, as identified 
by cryo-tomography or transmission electron microscopy near 
mitochondria and the endoplasmic reticulum (24, 66, 72) connect 
different organelles, and establish tensional forces between them, 
as well as with the plasma membrane. Pulling and pushing forces 
would help the scission and fusion of vesicles from and to Golgi 
or endosomes, respectively. For instance, EB1, which is involved 
in MT growth from the polarized centrosome and regulation of 
vesicular traffic in T cells, is also related to the vesicular transport 
for cilium formation (144). Indeed, during cilium formation, the 

tubule scission from the Golgi by spastin, an MT-severing protein, 
is achieved through the interaction with the ESCRT complex 
(145). Therefore, the linkage between intracellular organelles and 
cytoskeleton is needed to organize a productive IS, and this is in 
part mediated by different molecular complexes that coordinate 
their action.

CONCLUDiNg ReMARKS

Signaling constituents transported to the IS by polarized vesicles 
trafficking are a crucial piece of the information transmitted 
from the plasma membrane to the nucleus and other organelles  
(18, 19, 146). This is needed to sustain T cell activation and is acti-
vated from the TCR, costimulatory molecules such as CD28 and 
adhesive receptors such as LFA-1. The different cytoskeletal systems 
are absolutely required to coordinate and activate the plethora of 
molecules involved in these processes. Molecular motors facilitate 
these events by exerting forces of different orientations along the 
cytoskeletal track. These pulling and pushing forces are critical for 
cell shaping and movement. Future experimentation will profit 
from new technical advances to analyze complete cells in three 
dimensions with higher resolution and low toxicity for live cells 
such as LLSM or 3D-SIM. The super-resolution techniques such 
as STED and photo activated localization microscopy (PALM) or 
stochastic optical reconstruction microscopy (STORM) that have 
been developed will allow to analyze in more detail the already 
known structures [for revision of imaging techniques, see in this 
topic (147) and for protocols and methods (148)]. To unveil the role 
of motors in T cell organization, it is essential to study the specific 
composition of the complexes they form, the organelles they bind 
to and their relationship with the dynamics of the cytoskeleton 
systems, in particular with the PTMs that can fine-tune their func-
tional activity and direct the activation of T cells. Dynein/dynactin 
is a crucial motor complex in this context. It directs the rearrange-
ment of different MT-associated organelles, such as the Golgi and 
mitochondria. The sum of the forces exerted from the cell cortex 
and the cytosolic elements will determine the shape of the IS.
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