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Retinoic acid receptor-related orphan receptors (RORs) include RORα (NR1F1), RORβ 
(NR1F2), and RORγ (NR1F3). These receptors are reported to activate transcription 
through ligand-dependent interactions with co-regulators and are involved in the devel-
opment of secondary lymphoid tissues, autoimmune diseases, inflammatory diseases, 
the circadian rhythm, and metabolism homeostasis. Researches on RORs contributing to 
cancer-related processes have been growing, and they provide evidence that RORs are 
likely to be considered as potential therapeutic targets in many cancers. RORα has been 
identified as a potential therapeutic target for breast cancer and has been investigated 
in melanoma, colorectal colon cancer, and gastric cancer. RORβ is mainly expressed 
in the central nervous system, but it has also been studied in pharyngeal cancer,  
uterine leiomyosarcoma, and colorectal cancer, in addition to neuroblastoma, and recent 
studies suggest that RORγ is involved in various cancers, including lymphoma, mela-
noma, and lung cancer. Some studies found RORγ to be upregulated in cancer tissues 
compared with normal tissues, while others indicated the opposite results. With respect 
to the mechanisms of RORs in cancer, previous studies on the regulatory mechanisms 
of RORs in cancer were mostly focused on immune cells and cytokines, but lately there 
have been investigations concentrating on RORs themselves. Thus, this review sum-
marizes reports on the regulation of RORs in cancer and highlights potential therapeutic 
targets in cancer.

Keywords: retinoic acid receptor-related orphan receptors, RORα, RORβ, RORγ, cancer

inTRODUCTiOn

Cancer incidence and mortality rates are increasing worldwide with the growing and aging of the 
population, as well as risk factors such as outdoor pollution, tobacco smoke, and physical inactivity 
(1). Due to early detection and advanced treatments, cancer survival rates continue to grow, although 
a better understanding of carcinogenesis may lead to more effective treatment options for cancer.

The nuclear receptors (NRs) have been demonstrated to play essential roles in cancer-related 
progresses and to be potential therapeutic targets for many malignancies (2–5). The retinoic acid 
receptor-related orphan receptors (RORs) are a subfamily of the thyroid hormone receptor, which 
is a subfamily of the NRs and belonging to the orphan NR family (6). The ROR subfamily contains 
three members: RORα (NR1F1), RORβ (NR1F2), and RORγ (NR1F3).
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Members of the RORs are typically regarded as noteworthy 
in inflammation, autoimmune diseases, metabolism disorders, 
circadian rhythms, development of neuron cells, and immune 
cell differentiation. Although RORs share some common seq-
uences, the three RORs present a wide assortment of features. 
RORα and RORγ are important regulators of the immune 
system. For instance, the development and differentiation of 
Th17  cells are dependent on these factors (7–9). Moreover, 
studies show that RORγ is expressed in lymphoid tissue inducer 
cells, innate lymphoid cells, invariant natural killer T cells, and 
γδ T cells, which contribute to inflammation and autoimmune 
disease (10).

RORα, RORβ, and RORγ are all involved in the modulation 
of circadian rhythms. RORα functions as a positive regulator 
of the circadian modulator Bmal1 through binding to ROR-
responsive elements (ROREs) (11, 12). RORβ mRNA expression 
levels were found to oscillate with true circadian rhythms, peak-
ing at night-time (13), and modulation of circadian rhythms was 
disrupted in RORβ-deficient mice (14). Recent studies have pro-
posed that RORγ1, but not RORα, is periodically expressed, and 
RORγ regulates several clock genes, such as Cry1, Bmal1, and 
Npas2, directly in a Zeitgeber time-dependent manner through  
these ROREs (15, 16).

Accumulating evidence shows that RORα and RORγ are 
involved in lipid/glucose metabolism, insulin sensitivity, and 
cardiometabolic control (17). A report showed that RORα could 
repress the transcriptional activity of PPARγ, leading to dysregu-
lation of hepatic lipid metabolism (18). Recently, studies have 
shown that metabolic disorders affected by circadian rhythms 
might be attributed to RORα and RORγ, partly because of their 
modulation in both circadian and metabolic diseases. Moreover, 
earlier studies suggested that RORα was directly involved in 
melatonin-mediated anti-fibrotic processes (19) and beneficial 
manipulation in diabetic cardiomyopathy (20).

The expression sites and producing cells of RORs are also dis-
tinct from each other, consistent with their functions in the various 
diseases mentioned above. RORα and RORγ are expressed in all 
skin cell types, including epidermal keratinocytes, melanocytes, 
dermal fibroblasts, and several established lines of malignant 
melanomas. The expression levels of RORα/γ are dependent on 
the skin cell type and can be regulated by hydroxy derivatives 
of vitamin D3 (5, 21–24). Vitamin D3 formation is regulated 
by UVB (25); vitamin D3 metabolites are inverse agonists for 
RORα/γ; therefore, RORα and RORγ expression level could be 
regulated by UVB (5).

Other expression sites of RORα include the liver, skin, pancreas, 
brain, adipose tissue, islet cells, and the pineal gland. In addition 
to its expression and modulation in melanoma described above, 
RORα has been researched in breast cancer (BC) (26), melanoma 
(5), hepatocellular carcinoma (HCC) (27), and colon cancer (28).  
RORβ is mainly expressed in the brain and pineal gland (29). 
RORβ is upregulated or downregulated in cancers such as pri-
mary leiomyosarcoma of the uterus (30), a pharyngeal cancer cell 
line (31), and colorectal cancer (28). RORγ is expressed in the 
thymus and lymphoid organs, and RORγ production in cancer 
cells is detected in lung cancer (4), lymphoma (32), melanoma (5),  
and BC (33).

The RORs have been widely investigated in cancer and have 
shown varying influences in cancer-related processes, these dif-
ferences may be due to their structures and their tissue-specific 
expression. Some studies suggest that RORα is a tumor suppressor  
and a potential therapeutic target for BC; and based on the 
limited researches on RORβ in cancer, RORβ might be a tumor 
suppressor as well. Others have proposed that activating RORγ 
may exert antitumor immunity (34), while RORγ is considered as 
protumor candidates in prostate cancer and lung cancer (4, 35). In 
this review, we summarize and discuss the structures of RORs and 
their roles in cancer-related processes, highlighting the potential 
therapeutic targets for cancer treatment.

STRUCTURe AnD LiGAnDS OF RORs

The three ROR family members contain sequences similar to the 
retinoic acid receptor, with certain differences. The three ROR 
family members contain sequences similar to the retinoic acid 
receptor, but in minor details, the structures of each are distinct 
(36). The RORα gene maps to human chromosome 15q22.2, 
covering a large genomic region of 730 kb and generating four 
human RORα isoforms: RORα1—RORα4, while only RORα1 
and RORα4 are found in mice (17). The RORβ and RORγ genes 
map to human q21.13 and 1q21.3, covering 188 and 24 kb, respec-
tively. RORβ and RORγ each generate two isoforms: RORβ1/
RORβ2 and RORγ1/RORγ2 (RORC2 in human and RORγt in 
mice). The isoforms of RORs differ in their amino terminals due 
to alternative exon splicing and promoter usage and their distinct 
expression and function in different tissues. However, if cells 
co-express RORs, the co-expressed RORs may overlap in several 
functions.

Receptor-related orphan receptor genes encode proteins of 
similar amino sequences ranging from 459 to 556 amino acids 
according to the different isoforms, and they all consist of four 
domains. These domains include an N-terminal domain, a highly 
conserved DNA-binding domain, a ligand-binding domain (LBD),  
and a hinge between the domains. Transcription is regulated by 
binding to RORE as a monomer (36).

No cognate ligands of RORs had been identified until 
crystallography studies on the LBD of RORα indicated that 
cholesterol and cholesterol sulfate function as natural ligands 
(37). Several retinoids, including all-trans retinoic acid and the 
synthetic retinoid ALRT 1550 (ALRT), have been identified to 
bind RORβ, reversibly and with high affinity (38). Thus, the 
retinoids have been identified as ligands of RORβ, although 
their specific regulation is not clearly understood. RORγ has 
been found to be co-expressed with RORα, and the ligands of 
RORα and RORγ have been reported as sterols or their deriva-
tives and secosteroids (5, 6). Endogenously produced novel D3 
hydroxy derivatives can act as both “biased” agonists of the 
vitamin D receptor and inverse agonists of RORα/γ (22), and 
hydroxylumisterols can act as ligands of RORα and RORγ (39). 
Melatonin was once considered a ligand for RORα (40, 41).  
However, contrasting reports showed that melatonin was 
not a natural ligand for RORα because melatonin could not 
activate RORα directly (42, 43). The docking scores calculated 
from molecular modeling of interactions between melatonin 
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and its metabolites with RORα and RORγ predicted weak 
binding affinities (5), and the structures of melatonin and its 
metabolites were not similar to the sterols that were identified 
as natural ligands (37).

Except for the natural ligands of RORs mentioned above, 
there are also some synthetic RORγ ligands with therapeutic 
potential identified in literatures (6, 44). For instance, the inverse 
agonists of RORα and RORγ, SR2211 has been reported to inhibit 
the expression of IL-17A and cell viability in lung cancer (4) and 
suppress inflammation in a collagen-induced arthritis mouse 
model (45). And RORα and RORγ agonist SR1078 can induce 
cancer cell apoptosis and p53 stability (46). Inverse agonists or 
agonists like these two are promising therapeutic reagents for the 
diseases that RORs involved in, but there are still lack of studies 
to investigate their treatment potentials in cancer.

CAnCeR ReLevAnCe

As illustrated above, RORs have been implicated in autoimmune 
or immune-mediated disease, the circadian rhythm, and meta-
bolic disorders. RORs are also important regulators in various 
cancers due to their pivotal roles in immunity, the circadian 
rhythm, and metabolic homeostasis, which contribute to tumor 
progression.

RORα has been found to be downregulated in keratinocyte-
derived skin cancer (47) and is expressed in prostate cancer 
cells (48), melanoma cell lines (5, 49), and BC (50) (Table  1). 
Decreased expression of RORα is positively related with mela-
noma progression and shorter disease-free and overall survival 
(23, 24). RORα is also involved in inhibiting cell proliferation as 
a tumor suppressor (51). In human hepatoma cells, RORα was 
found to be upregulated after hypoxia induction (52), while RORα 
expression was lower in tumor tissues than in adjacent tumor 
tissues. It was also determined to be involved in the reprogram-
ming of glucose metabolism and inhibiting hepatoma growth 
both in vitro and in a xenograft model in vivo (53). However, in 
one report, the production of RORα mRNA in colorectal cancer 
patients was unchanged (54), while RORα phosphorylation was 
found reduced and might be involved in colon cancer progres-
sion (55). In another report about BC, RORα was found to be 
downregulated, and low expression of RORα mRNA was associ-
ated with a poor prognosis (26). RORα is commonly considered 
a repressor (Figure 1), according to investigations into its role in 
cancer illustrated above.

The natural expression of RORβ is exclusively restricted to neu-
ronal tissues; therefore, activation of RORβ transcription is pre-
dominantly found in neuroblastoma cell lines (56), and literature 
on the role of RORβ in cancer is not much. Nevertheless, primary 
uterine leiomyosarcoma showed high RORβ expression (30), 
pharyngeal carcinoma cells and colorectal cancer cells showed 
modulated RORβ expression (29, 31), and RORβ was related to 
metastasis in a metastatic colorectal cancer cell model (28), which 
are summarized in Table  1. Based on the studies mentioned 
above, RORβ shows features of a tumor suppressor (Figure 1), 
but the potential roles of RORβ in various cancers related 
processes such as tumor proliferation and metastasis warrant  
further investigation.

RORγ in various Cancers
On the contrary, RORγ and its isoforms are extensively found 
in various kinds of malignancies. The diverse roles of RORγ in 
distinct cancers are specifically described below and summarized 
in Table 1 and Figure 1.

Hematological Malignancies
RORγ was found to function as an important element in lym-
phatic tumors (32), and mice deficient in RORγ were shown 
to have a high incidence of lymphoma metastasis and death 
within 4 months (57). Moreover, RORγ is frequently studied in 
tumor-infiltrating immune cells. RORγ mRNA expression in total 
lymphocytes was found unchanged between multiple myeloma 
and healthy controls (58, 59), but it was identified upregulation in 
peripheral blood monocyte cell (PBMC) from multiple myeloma 
comparing with healthy controls (60).

Breast Cancer
RORγ was found to be significantly overexpressed among infil-
trating IL-17+ T  cells, which drive immunosuppression in BC 
(61), and in breast tumor tissues compared with control tissues 
(62). An investigation related to group 3 innate lymphoid cells 
(ILC3) in BC revealed a role for RORγt  +  ILC3 in promoting 
lymph node metastasis by modulating chemokines in the tumor 
microenvironment (63). RORγ was found to be decreased in 
basal-like and grade 3 BCs, and inhibition of RORγ blocked 
cell viability, migration, and epithelial–mesenchymal transition 
(EMT) (64). However, an earlier study suggested that high expres-
sion of RORγ1, but not RORγt, by cancer cells was related to a 
high distance metastasis-free survival and was inversely corre-
lated with decreased expression of PRMT2, which could suppress 
cell migration in BC (33). Accordingly, the different functions 
of RORγ in BC may be due to distinct cell origins and isotypes. 
For instance, when expressed by immune cells, RORγ acts as an 
immune suppressor, although when produced by cancer cells, it 
acts as a potential survival factor.

Skin Cancer
RORγ1 regulated tumor-promoting “emergency” granulo-
monocytopoiesis by suppressing negative (Socs3 and Bcl3) and 
promoting positive (C/EBPb) regulators of granulopoiesis and 
RORγ1 promoted expansion of tumor-promoting MDSCs  
and TAM in fibrocarcinoma mice models (65). In a study explor-
ing the function of Th17 cells in antitumor immunity, RORγt was 
found to be expressed by tumor-infiltrating Th17 cells. Th17 cells 
did not exhibit in vitro tumor cell killing activity, although CD8+ 
cytotoxic T cells stimulated by Th17 cells could activate the tumor 
killing response in a mouse B16 melanoma model (66).

In another study, RORγ-deficient mice showed inhibited mela-
noma growth, and this effect was identified to be IL-9 dependent 
(67). Together with RORα, RORγ was found to be expressed in 
melanoma cell lines and could bind with vitamin D3 derivatives, 
including 20(OH)D3 and 20,23(OH)2D3 (5), active forms of 
secosteroids and lumisterol can have anti-melanoma activity 
through action on RORα and RORγ (22, 24, 25, 39). In another 
study, RORγ and RORα expression levels were decreased during 
melanoma progression, with the lowest expression levels in stages 
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FiGURe 1 | Expression and function of receptor-related orphan receptors (RORs) in tumor microenvironment. The expression of RORα and RORβ from  
tumor cell and the modulated expression of RORγ in group 3 innate lymphoid cells (ILC3), Th17, regulatory T cell (Treg), myeloid cell, and tumor cell from tumor 
microenvironment are presented as reviewed in the text. The downregulation of RORα and RORβ induce antitumor effect in hepatoma, breast cancer (BC), 
melanoma, and colon cancer. The upregulation of RORγ in ILC3 leads to protumor effect by chemokines in BC. The downregulation of RORγ in Th17 indicates 
antitumor effect by IL-17 in colon cancer. The upregulation of RORγ in Treg shows protumor effect in colon cancer. The expression of RORγ in myeloid cell has 
protumor effects via Socs3, Bcl3, and C/EBPb. The expression of RORγ in tumor cell is either increased or decreased depending on the cancer type. Increased 
expression of RORγ in lung cancer, prostate cancer, and gastric cancer results in protumor effect, while decreased expression of RORγ in BC and melanoma could 
induce antitumor effect via TGFβ/epithelial–mesenchymal transition (EMT) or vitamin D3 derivatives. The question mark refers to unknown mechanisms. The up or 
down black arrow refers to upregulation or downregulation. Antitumor: inhibits tumor progression; protumor: promotes tumor progression.
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III and IV primary melanomas and in melanoma (68). These 
studies of RORα and RORγ in melanoma suggest that RORα and 
RORγ could be important modulators affecting melanomagen-
esis, contributing to the anti-melanoma activity of vitamin D3 
and act as potential therapeutic targets in adjuvant melanoma 
therapy (23, 24). The investigation of RORγ in skin cancer seems 
to be concentrated on melanoma and the isotype RORγ1, thus, 
there is a need for further exploration focusing on the regulation 
of RORγ and its roles in other types of skin cancer.

Lung Cancer
Our previous study showed that RORγ2 was highly expressed 
in non-small cell lung cancer (NSCLC) cells and also served as 
a prognostic factor (4). The expression of RORγt mRNA and 
protein was found to be downregulated in PBMCs from NSCLC 
patients compared with controls (69). However, RORγt mRNA 
was found to be upregulated in the peripheral blood of patients 
with NSCLC compared with that of healthy controls (70), which 
was confirmed in other studies (71, 72). Moreover, in a recent 
report, RORγt, together with Th17/IL-6R/pSTAT3/BATF, was 
upregulated in the tumor region of adenocarcinomas, except for 
squamous carcinomas of lung cancer (73). Studies focused on 

cancer cell-derived RORγt are infrequent and require additional 
attention.

Hepatocellular Carcinoma
RORγt mRNA was shown to be increased in HCC compared with 
a normal control group (74). By contrast, RORγt mRNA expres-
sion was found to be significantly lower in patients with steatosis/
steatohepatitis, liver fibrosis, and HCC (27). Investigations into 
RORγt in HCC are rare, although RORγt is known to be expressed 
in hepatocytes. There could be additional modulatory roles for 
RORγt in HCC progression, and further studies are warranted.

Gastrointestinal Cancer
The gene expression of IL-17A and RORγ was not altered in 
gastric cancer (75). Foxp3+IL-17+ cells in colorectal cancer were 
found to express RORγt (76). Another study described RORγt-
expressing regulatory T cells that were linked with the inability of 
these cells to suppress inflammation and were directly associated 
with the stage of human colon cancer (77). RORγt was also found 
to be involved in inhibiting colon carcinogenesis through binding 
with an E3 ubiquitin ligase, Itch, for ubiquitination (78). However, 
RORγt was not expressed within colorectal cancer tissues or by 
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colorectal cancer-infiltrating CD4+ T cells (79). The expression 
and regulation of RORγt in gastric and colorectal cancer remain 
controversial, which makes it difficult to conclude the extent of 
RORγ/RORγt expression or the involvement in tumorigenesis. 
However, the differences in results from different studies might 
be attributable to the diversity of detection methods from tissue 
samples when considering individual variation.

Genitourinary Cancer
In castration-resistant prostate cancer (CRPC), RORγ was examined 
as a therapeutic target due to its overexpression and was found to 
directly drive androgen receptor (AR) hyperactivity through bind-
ing to an exonic RORE and partly through the NR coactivators 
SRC-1 and -3 (35). Therefore, inhibition of RORγ may represent a 
possible treatment option for CRPC. The transcriptional expression 
of RORγ mRNA from PBMCs exhibited high levels in cervical can-
cer compared with healthy controls (80). Additional observations 
are needed to elucidate the functions of RORγ in genitourinary 
cancer, where it may serve as a valuable therapeutic target.

PeRSPeCTive

The three ROR family members are regarded as important regula-
tors of the circadian rhythm, metabolism, and tumorigenesis. As 
discussed in this review, the protumor or antitumor effects of RORα 
and RORβ in cancer have not been intensively explored, requiring 
further study and evidence. However, as the main transcription 
factor in IL-17-expressing immune cells, RORγ has been investi-
gated in various cancer cells and tumor-infiltrating cells (Figure 1), 
indicating that it might be a promising prognostic factor in lung 
and BC and a potential therapeutic target in prostate cancer.

Moreover, according to this review, we could conclude that 
the roles that RORs family members play in tumorigenesis vary 
in different cancers and, to some extent, depend on producing 
cells in the tumor microenvironment. Further concentration on 
the relationships between RORs and tumorigenesis should be 
meticulously organized and should deeply explore the clinical 
significance and the underlying mechanisms. More importantly, 
each RORs family members consists of several isoforms, and 
some previous studies have showed that different RORs isoforms  
present different biological functions (6). Thus, prospective reports on 
therapeutic targets of RORs in cancer should identify all isoforms 
of specific RORs.

Since RORα and RORγ are dysregulated in multiple cancer types 
based on published articles, they likely participate in carcinogenesis 
through modulating molecules such as IL-17, PRMT2, and AR or 
as receptors for sterols, such as vitamin D3 derivatives. Intriguingly, 
IL-17, AR, and vitamin D3 are therapeutic targets in rheumatoid 
arthritis and have potential, as a frontline treatment option for 
advanced prostate cancer and an adjuvant in melanoma manage-
ment. Agonists or inverse agonists for RORα and RORγ might be 
efficiently inhibiting tumor growth and progression through activa-
tion or inactivation so that their ligands or targets, such as vitamin 
D3 derivatives and AR, become valid or invalid. Another promising 
new strategy for anticancer therapy might involve directly targeting 
tumor cells with RORα- and RORγ-specific modulators due to the 
correlations between high or low expression of RORα and RORγ 
and tumor progression. Third, RORs are sometimes produced by 
immune cells in tumor microenvironments and then induce anti-
tumor or protumor activity by regulating tumor-related cytokines 
or chemokines. Accordingly, therapies targeting RORs producing 
immune cells could be novel treatments for certain cancers.
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