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The immune systems of post-pubescent males and females differ significantly with 
profound consequences to health and disease. In many cases, sex-specific differences 
in the immune responses of young adults are also apparent in aged men and women. 
Moreover, as in young adults, aged women develop several late-adult onset autoimmune 
conditions more frequently than do men, while aged men continue to develop many 
cancers to a greater extent than aged women. However, sex differences in the immune 
systems of aged individuals have not been extensively investigated and data addressing 
the effectiveness of vaccinations and immunotherapies in aged men and women are 
scarce. In this review, we evaluate age- and sex hormone-related changes to innate and 
adaptive immunity, with consideration about how this impacts age- and sex-associated 
changes in the incidence and pathogenesis of autoimmunity and cancer as well as the 
efficacy of vaccination and cancer immunotherapy. We conclude that future preclinical 
and clinical studies should consider age and sex to better understand the ways in which 
these characteristics intersect with immune function and the resulting consequences for 
autoimmunity, cancer, and therapeutic interventions.
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iNTRODUCTiON

In developed countries, the population is aging, with the number of people over the age of 65 dou-
bling in size from 2012 to 2050 (1). In developed and even developing countries, lifespan is longer 
for women than men (2, 3). Both sex (i.e., biological differences between males and females) and 
gender (i.e., social or cultural norms that define masculine and feminine) contribute to male–female 
differences in mortality rates among individuals 65 years and older. Why and how the sexes differ in 
the incidence and progression of immune-related diseases that are either specific to advanced age or 
that worsen with age, such as particular infections, autoimmune disease, and cancer, has not been 
well studied.

Aging is associated with the development of chronic inflammation and a general reduction in 
immune function. The effect of sex on immune function during the aging process has not been 
well studied. But, some studies indicate that the innate immune system of aged females may be 
more inflammation-prone when compared with aged males. However, aging of the adaptive immune 
system may occur at a faster rate in men, when compared with women. Several diseases that are 
associated with age are also sensitive to changes in the immune system. Therefore, herein, we will 
discuss the effects of age and sex on the innate and adaptive immune systems and the contribution 
of sex hormones to these effects. We will also examine the functional consequences of age- and 
sex-related changes to immunity in the contexts of vaccination, autoimmunity, cancer, and cancer 

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.01269&domain=pdf&date_stamp=2018-06-04
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.01269
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:melaniegubbelsbupp@rmc.edu
https://doi.org/10.3389/fimmu.2018.01269
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01269/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01269/full
https://loop.frontiersin.org/people/495813
https://loop.frontiersin.org/people/551647
https://loop.frontiersin.org/people/265733


FigURe 1 | Summary of aging-related changes to the immune systems of mice (A) and humans (B). Increases or decreases in cell numbers or particular functions 
are indicated by upward- or downward-pointing arrows, respectively. Abbreviations: Fxn, function; GC, germinal center; Mem, memory; ABC, age-associated B cell; 
NC, no change.
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immunotherapy. We conclude that sex and age should be con-
sidered in future clinical and preclinical studies to improve our 
understanding and treatment of age-associated diseases.

Age-ReLATeD CHANgeS iN iMMUNe 
FUNCTiON

With age, there is a decline in the functioning of the immune 
system (4) that has, until recently, been assumed to occur equally 
in males and females. “Inflammaging,” as defined by aberrant 
chronic low-grade inflammatory responses, is one of the most 
well-characterized attributes of an aging immune system (5). 
The activity of dendritic cell (DC) subsets, macrophages, and 
neutrophils, each of which are associated with inflammation, 
also become altered with age (6–9). Inflammatory responses 
are necessary to clear pathogens and repair tissues; chronicity 
of inflammatory responses, however, can contribute to tissue 
damage and disease, especially among aged individuals. Similarly, 
adaptive immunity becomes less functional with age (10, 11). 
Reductions in lymphopoeisis along with exposure to pathogens 
throughout the lifespan contribute to reduced numbers of 
naïve lymphocytes with increased proportions of memory and 
memory-like lymphocytes that are associated with less robust 
functional outcomes (12, 13). Overall, age-associated changes to 
the functions of innate and adaptive immune cells (summarized 
in Figure 1) likely contribute to increased risk of specific autoim-
mune diseases and cancer, as well as altered vaccine and cancer 
immunotherapy efficacy.

Age-Related Changes in innate immunity
Aging is associated with the secretion of pro-inflammatory 
cytokines, such as TNF, IL-6, and IL-1β, the cellular source of 
which has not yet been clearly identified (14). Innate immune 
cells, including DCs, neutrophils, and macrophages, become less 

functional and, paradoxically, more inflammatory with age. It has 
been difficult to determine whether systemic inflammation causes 
innate cell dysfunction or vice versa. Recent evidence discussed 
below suggests that inflammaging may alter the development and 
signaling potential of innate cells, contributing to inflammation 
in the absence of infection and, at the same time, a reduced ability 
to clear infections (15–17). Together, the elevated levels of inflam-
matory cytokines and diminished ability to resolve infections or 
local inflammation likely contribute to less functional innate 
responses to vaccination and increased risk of certain autoim-
mune diseases.

The number and proportion of plasmacytoid DCs declines 
during healthy aging, while frailty appears to be associated with 
reduced numbers of conventional DCs (8). Regardless of their 
number, conventional DCs from aged mice and humans migrate, 
phagocytose, express costimulatory molecules, secrete cytokines, 
and prime T cells poorly in response to exogenous antigens when 
compared with DCs from young conspecifics (6, 18–32). At least 
some of these defects appear to be cell intrinsic and related to the 
altered expression of toll-like receptors (TLRs) and dysregulated 
downstream signaling [reviewed in Ref. (33)].

Neutrophils from aged individuals have defects in accurately 
migrating to inflamed tissues, phagocytosing microbes, produc-
ing reactive oxygen species (ROS), and capturing microbes using 
neutrophil extracellular traps (9, 34–38). Like neutrophils, many 
functions of macrophages are negatively affected by aging includ-
ing migration, phagocytosis, production of ROS and cytokines, 
and expression of major histocompatibility complex class II and 
costimulatory molecules (15, 39–43). Studies examining the 
cytokine response of monocytes isolated from older patients have 
yielded mixed results, likely due to differences in health status, 
isolation techniques, assay conditions, and stimuli between 
studies [reviewed in Ref. (33)]. Some studies have revealed 
a diminished ability of aged monocytes and macrophages to 
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secrete pro-inflammatory cytokines robustly after exposure to 
pathogens, LPS, or other TLR ligands (44–50). Chronic exposure 
to inflammatory cytokines such as IL-6 and TNF-α and dysregu-
lated expression and/or function of TLRs have been discussed as 
possible causes (44, 45, 48).

Several recent reports have suggested that at least in mice, 
inflammaging may precede and perhaps even cause dysregulation 
of innate immune cells, which may further contribute to inflam-
mation. For example, aging is also associated with increased 
proportions of pro-inflammatory monocytes of non-classical 
and intermediate phenotypes (i.e., CD14+CD16+ or CD16++ in 
humans and Ly6Chi in mice) that are less mature, poorer phago-
cytes, and may be more prone to secreting pro-inflammatory 
cytokines at baseline and in response to stimuli (15–17, 47, 51). 
In mice, aged Ly6Chi monocytes both contribute to age-associated 
inflammation and are impaired by the inflammation with nega-
tive consequences for bacterial clearance (16). Circumstantial 
evidence indicates that in humans, premature migration of 
intermediate phenotype monocytes (CD14++CD16+) is driven 
by TNF-α-mediated upregulation of CCR2, as also occurs in 
mice (16), and may contribute to worsened disease outcomes in 
rheumatoid arthritis patients (52, 53).

Additional age-related changes to monocyte function may 
contribute to increased susceptibility to infection concomitant 
with a reduced ability to resolve inflammation. For example, the 
production of specialized pro-resolving mediators, including lipid 
signaling molecules produced by macrophages and monocytes, 
is reduced in aged mice and is associated with delayed resolu-
tion of acute inflammation (54). In addition, aged macrophages 
isolated from mice and humans phagocytose infectious agents 
and apoptotic cells less efficiently than young macrophages  
(15, 40, 55–59). The phagocytosis of infectious agents and apoptotic 
cells by macrophages is important for resolution of inflammation 
and restoration of tissue integrity, which is reduced with aging.

Age-Related Changes in Adaptive 
immunity
Aging is accompanied by a decline in the production of new lym-
phocytes as well as increased expansion and survival of antigen-
specific memory lymphocytes in mice and humans (60–72). Despite 
reduced lymphopoeisis (73–76), the overall number of peripheral 
lymphocytes is maintained in aged mice (11) and humans [reviewed 
in Ref. (77)], with the exception of peripheral B cell numbers being 
reduced in older humans (78, 79). The diminished functionality 
of older adaptive cells may be related to age-associated changes in 
lymphocyte development.

The ability of aged T cells to proliferate robustly, differentiate 
appropriately, and generate memory is generally diminished  
(10, 12, 13, 80–85). However, all T cell functions are not impaired 
by aging. T regulatory (Treg) and, in some cases, T helper 17, cells 
increase in number and/or function with age (81, 85–93). It was 
recently proposed that naïve T cells produced in neonates form a 
long-lived, self-renewing population of “incumbent” naïve T cells 
that are resistant to replacement by T  cells produced after the 
neonatal period (94). It is conceivable that accumulated damage 
in these long-lived incumbents may contribute to reduced naïve 
T  cell function with age. In addition, accelerated homeostatic 

proliferation, as may be more likely to occur in aged individuals 
(95, 96), is associated with the selection of autoreactive T cells, 
at least in mice (97–99) and may also affect overall T  cell 
functionality.

Changes in aged naïve T cell function likely contribute to defec-
tive memory generation and also partially explain the observa-
tion that antibodies elicited from older mice and humans are 
less protective compared with those from the young individuals 
(100–106), even though serum IgG levels increase with age in 
both mice and humans (107, 108). In addition, aged B  cells 
demonstrate intrinsic defects in germinal center formation, class 
switch recombination, and somatic hypermutation (109–112). 
Aged B cells from mice and humans do not sufficiently upregulate 
expression of activation-induced cytidine deaminase (AID, the 
enzyme required for class switch recombination and somatic 
hypermutation) due to diminished levels of the necessary tran-
scription factor (107, 110, 113, 114). With age, there are also more 
long-lived antigen-experienced B cells, including age-associated 
B cells (ABCs) (60, 115–120). ABCs are responsive to TLR7 and 
9 ligands but less so to T cell-dependent signals and have been 
hypothesized to be generated by nucleic acid-containing antigens 
during inflammation (118, 121).

SeX DiFFeReNCeS iN Age-ReLATeD 
CHANgeS iN iMMUNe FUNCTiON

Both innate and adaptive immune responses differ between 
males and females at young and advanced ages (summarized 
in Table  1). Most published studies of immune system differ-
ences between the sexes utilize young adults and do not address 
whether sex differences in immune function change with aging. 
Overall, the available data indicate that young adult females dem-
onstrate a more reactive, inflammatory profile when compared 
with young adult males. A clear consensus has not emerged 
regarding whether these sex differences are maintained during 
advanced age, but the immune systems of aged women on hor-
mone replacement therapy (HRT) and monocytes isolated from 
aged women, regardless of HRT status, appear to remain skewed 
toward an inflammatory phenotype (16, 122–124). The currently 
available data also indicate that the adaptive immune response of 
aged women may be preserved to a greater extent than in aged 
men. These studies are discussed in more detail below.

Sex Differences in Age-Related Changes 
to innate immunity
As mentioned above, at least among young adults, innate immune 
responses differ between the sexes. Using murine model sys-
tems, it has been shown that the activity of pattern-recognition 
receptors, production of inflammatory proteins (e.g., IFN-α, 
IFN-γ, and TNF-α), activity of macrophages, including antigen 
presentation and phagocytosis is higher in females than males 
(132–138). Studies evaluating innate immune system differ-
ences between the sexes are scarce. But, at least one small study 
demonstrated that aged females display elevated concentrations 
of inflammatory proteins compared with males, as also occurs in 
young men and women (139). Several cytokines show differential 
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TABLe 1 | Sex differences in innate and adaptive immune responses in young and aged individuals.

Dendritic cells Monocytes and  
macrophages

granulocytes innate lymphoid cells Natural killer cells B cells T cells

Young adults ♀ > ♂ ♀ > ♂ ♀ > ♂ ♀ > ♂ ♀ > ♂ ♀ > ♂
TLR7 activity (H) Activation (M) Phagocytic capacity (M) Type 2 cytokine levels 

upon stimulation (M)
B cell numbers (H, M) CD4+ T cell count (H, M)

Type 1 IFN activity (H) Phagocytic capacity (M) Neutrophil count (M) Antibody production (H, M) CD4+/CD8+ T cell ratio (H)
IL-10 production (M) Nitric Oxide production  

post stimulation (H, R, M)
% switched memory B  
cells (H)

Activated T cell count (M)

M2 polarization (M) T cell proliferative capacity (M)
Cytotoxic T cell activity (H)

♂ > ♀ ♂ > ♀ ♂ > ♀ ♂ > ♀ ♂ > ♀ ♂ > ♀
IL-10 production (R, H) TLR4 expression (M) NK cell activity (R)

Pro-inflammatory cytokine  
production (M)

Neutrophil attractant 
chemokines (R)

Type 2 ILC count (H) ♀ = ♂ CD8+ T cell count (M)

M1 polarization (M) TLR9 expression (M) IL-13 production upon 
stimulation (M)

NK cell count (H) Treg count (M)

Aged adults ♀ > ♂ ♀ > ♂ ♀ > ♂ ♀ > ♂ ♀ > ♂
Nitric oxide synthesis (H) CD62L, CD115 (H)  

expression
NK cytotoxicity (H) Antibody production (H) CD3+ T cell count (H)

Mammalian family of mitogen-
activated protein kinases  
(MAPK) signaling (H, M)

Immunosurveillance (H) Age-associated B cell  
count (H, M)

CD4+ T cell count (P)

CD4+/CD8+ T cell ratio (P) TH1 
response (M)

IL-15 production (H) TH1 response (M)
ND ND Naïve CD8+ T effector memory 

cells (p)
T cell proliferative capacity (H, P)

♂ > ♀ ♂ > ♀
CD38 expression (H) CD8+ T cell count (P)
Non-classical monocyte  
count (H)

Data are from studies of mice (M), rats (R), non-human primates (P), and humans (H) (125–131).
ND, not determined.
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levels in circulation between the sexes. For example, IL-15 is an 
important homeostatic cytokine in T cells, NK cell, and memory 
responses and is significantly upregulated in aged females when 
compared with age-matched males (122, 123). However, upon 
exclusion of individuals on HRT, such differences between sexes 
were no longer significant (122). After menopause, there is a 
significant increase in IL-1, IL-6, and TNFα, and reduction in 
IFNγ in women (140, 141). Testosterone has an immunosuppres-
sive effect on inflammatory cytokine production and its decline 
with aging is associated with an increase in serum soluble IL-6 
receptor (142). Monocyte and leukocyte subpopulations in aged 
males and females express different levels of receptors; males 
show higher CD38 expression, whereas females show higher 
CD62L and CD115 expression, indicating differences in their 
activation profiles and memory phenotypes (124). Sex differences 
among monocyte subsets have also been reported in aged indi-
viduals. Aged females have a higher proportion of intermediate 
(CD14hiCD16low) monocytes than similarly aged males, which 
have been shown to exhibit pro-inflammatory tendencies, as 
mentioned above (16, 124). Finally, NK cells in older women are 
superior at cancer immunosurveillance when compared with 
cells in older men. CD56dim NK cells are more cytotoxic and more 
responsive to leukemic cells in aged females compared with aged 
males, which may explain the higher incidences of cancer in aged 
men compared with women in populations (143).

Sex Differences in Age-Related Changes 
to Adaptive immunity
Both humoral and cell-mediated immune responses to antigenic 
stimulation, vaccination, and infection are typically higher 
among females than males (135). Females also typically demon-
strate higher basal levels of immunoglobulin (144) and higher 
antibody responses to viruses and vaccine antigens than males at 
any age (145–147). Among humans, absolute CD3+ T cell counts, 
frequencies of CD4+ T cells, helper T cell type 1 responses, and the 
ratio of CD4+:CD8+ T cells are all lower in men when compared 
with women (148–151).

As already mentioned, sex or gender has not traditionally been 
considered when evaluating age-related changes to the adaptive 
immune system [reviewed in Ref. (14)]. However, several groups 
have reported that in some ways, aging occurs at an accelerated 
rate in males when compared with females. For example, aged 
males experience a more dramatic decrease in total numbers of 
T and B cells and a larger increase in senescent CD8+ T effector 
memory cells that re-express the naïve marker CD45 RA (TEMRA) 
when compared with females (14, 150, 152–154). In addition, a 
greater proportion of aged males than females demonstrate an 
inverted CD4:CD8 T  cell ratio, an age-related phenotype that 
is also associated with decreased levels of CD19+ B  cells and 
CD8+CD28− senescent T cells (152). Also, the capacity of T cells 
to proliferate is preserved to a greater extent in women than men 
throughout the aging process (154), which may be an important 
consideration for infectious diseases and related interventions. 
On the other hand, transcriptional analyses of peripheral blood 
mononuclear cells from aged males and females revealed several 
pro-inflammatory pathways, including NF-κB signaling, NO 

synthesis, and p38 MAPK signaling, that are reduced to a greater 
extent in aged females than aged males (123). Moreover, aged 
females have greater numbers of ABCs than young females and 
males of all ages (118, 119).

THe iMPACT OF SeX HORMONeS ON 
Age-ReLATeD CHANgeS iN iMMUNe 
ReSPONSeS

Immunological differences between males and females can arise 
from diverse mechanistic causes, including genetic, hormonal, 
and even microbiome differences between the sexes. Partly because 
of the ease of measuring and manipulating, sex steroids, particu-
larly testosterone, estradiol, and progesterone, have been most 
well characterized as mediators of sex differences in immune 
responses and are the focus of this review. Sex steroids affect 
immune function by binding to specific hormone receptors 
expressed in diverse immune cells (155). With age, the hormonal 
milieu of females and even males changes, with an overall decline 
in concentrations of estrogens and progesterone in females and tes-
tosterone in males (156–158). We hypothesize that the changes in 
sex steroid concentrations and sex steroid receptor signaling with 
age may contribute to age-associated dysregulation of immune 
function (159). Although this has been considered in females 
through the comparison of pre- and post-menopausal women, 
few studies have considered hormonal changes in men as playing 
a role in age-associated changes in immune responses. Among 
women, with menopause, numbers of B and T cells are reduced 
and concentrations of IL-1β, IL-6, and TNF-α are significantly 
increased (141, 160, 161). Treatment of post-menopausal females 
with hormone replacement therapies that contain formulations 
of estrogen affects immune function by increasing circulating 
numbers of B cells and reducing baseline concentrations of pro-
inflammatory cytokines when compared with post-menopausal 
females not on HRT (140, 161). Whether testosterone replace-
ment therapy affects immune responses in aged human males 
has not been reported. In non-human primates, aged male rhesus 
macaques have lower frequencies of naïve CD4+ and CD8+ T cells 
than young males, with supplementation of androgens in aged 
male resulting in increased numbers of naïve T cells presumably 
by increasing thymic output (162). Whether treatment of aged 
individuals with hormone replacement therapies affects the out-
come of vaccines or immunotherapies in either females or males 
has not been reported.

Studies in mice and humans have shown that the diversity 
and richness of intestinal microbiota differs between males and 
females after puberty, presumably due testosterone, but not estro-
gen (163–168). Moreover, in mice, exposure to specific micro-
biota at early ages also results in elevated levels of testosterone 
(164). Thus, testosterone appears to influence the composition 
of the gut microbiome and, in a positive feedback loop, specific 
microbes elevate testosterone levels (164). Sex-specific enrich-
ment for particular microbes is likely to have significant influence 
on sex-specific immune function since particular commensals 
and their metabolites can dramatically modify host innate and 
adaptive immune function [reviewed in Ref. (169)] with serious 
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TABLe 2 | The female-to-male patient ratio for select mid-adult and late-adult onset autoimmune diseases.

Autoimmune disease Autoimmune target Mean age of onset (range) years Female:male ratio Reference

Mid-adult onset
Multiple sclerosis Myelin sheath 37 (25–45) 1.8:1 (205)
Myasthenia gravis Neuromuscular junction 40 2.7:1 (205)
Systemic lupus erythematosus Nuclear contents (systemic) 40 (30–50) 9:1 (205, 206)
Neuromyelitis optica Optic nerve/spinal cord 32.6–45.7 2.4:1

ratio highest after age 65
(207, 208)

Graves’ disease Thyroid 48 7.3:1 (205)
Systemic sclerosis Connective tissue (systemic) 50 (35–65) 11.5:1 (209)

Late-adult onset
Granulomatosis with polyangiitis (GPA)  
(formerly Wegener’s granulomatosis)

Cytoplasmic contents of neutrophils  
(systemic, vascular)

55 (40–70) 1:1
M > F after age 70

(205)

Rheumatoid arthritis Joints 58 (42–74) 3:1 (210)
Polymyalgia rheumatica Selected muscle groups 70–80 2.3:1 (211)
Giant cell arteritis Vascular system 70–80 2.3:1 (211)
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consequences for autoimmunity, vaccine efficacy, cancer, and 
cancer immunotherapy [reviewed in Ref. (170, 171)]. The com-
position and richness of commensal microbiota is sensitive to 
many environmental factors as well, including diet. Importantly, 
dietary effects on the relative abundance of specific microbial taxa 
also differ by sex in humans and, to a lesser extent, in mice (172). 
Sex-specific differences in microbial composition and richness 
have also been reported in humans over the age of 60 and aged 
mice (163, 165, 166, 173).

FUNCTiONAL SigNiFiCANCe OF SeX 
DiFFeReNCeS iN iMMUNe ReSPONSeS 
AMONg AgeD iNDiviDUALS

vaccine Responses
In aged individuals, sex differences in antibody responses to 
vaccines are less consistent and depend on the vaccine antigen. 
The influence of sex and age has been most well studied for 
inactivated influenza virus vaccines as they are administered 
annually. For example, among individuals 65+ years of age, 
hemagglutinin inhibition antibody titers to both the standard 
and high dose seasonal trivalent inactivated influenza (TIV) 
vaccine are significantly higher in aged females when compared 
with males (174). Because influenza virus vaccines are available 
on an annual basis, a greater number of exposures (i.e., the  
behavioral act of seeking out vaccination) combined with 
the slower decline in immunity that occurs in aged females 
(see above) may contribute to sex differences in the antibody 
response to the TIV vaccine. By contrast, aged males have higher 
antibody responses to the tetanus diphtheria and pertussis (Td/
Tdap) vaccines as well as the 7-valent and 23-valent pneumococ-
cal vaccines (175–179). There is an insufficient number of studies 
from which to draw conclusions to understand why sex differ-
ences in vaccine-induced antibody responses are higher in aged 
females than males for a viral vaccine (i.e., the TIV vaccine), 
but lower in females than males for bacterial vaccines (i.e., the 
Td/Tdap and pneumococcal vaccines). If more vaccine studies 
were designed with a priori hypotheses about sex differences in 
vaccine-induced immunity, then we could begin to understand 

discrepancies in the findings following exposure to differential 
vaccine antigens.

Adverse reactions to vaccines, which are typically mild to 
moderate, can include both local (i.e., at the site of vaccination) 
and systemic reactions. Adverse reactions are reported by aged 
women more than their male counterparts in response to the 
seasonal and pandemic influenza vaccines (180–188), the pneu-
mococcal vaccines (189, 190), the herpes zoster vaccine (191), 
or the tetanus and pertussis vaccines (192–194). While the types 
of adverse reactions experienced by aged males and females are 
typically similar, the proportion of females reporting redness, 
swelling, and injection site pain locally as well as headache, 
fever, chills, joint or muscle pain, headache, back and abdominal 
pain, or hypersensitivity reactions systemically is often greater 
than males. The prevailing hypothesis for differences in adverse 
reactions among aged males and females is that this reflects a 
gender-based reporting bias.

The efficacy of a vaccine is measured by the percent reduction 
in disease incidence in a vaccinated population (195). Sex-
specific differences in vaccine efficacy are rarely considered, with 
most data coming from studies of influenza vaccines. Vaccine 
efficacy, which is defined by hospitalization and mortality rates 
post-vaccination, is lower in aged females than males, at least 
for the influenza vaccine (196–200). For other vaccines that are 
not administered annually, including the pneumococcal and 
herpes zoster vaccines, there are considerably less data. Overall, 
the efficacy both the herpes zoster and pneumococcal vaccines 
tends to be higher in aged females than their male counterparts 
(191, 201, 202).

Autoimmunity
Most autoimmune patients are diagnosed between the ages of 20 
and 60 years (203). For those whose autoimmune disease devel-
ops later, the disease tends to be milder and more easily controlled 
(203). Women are disproportionately affected by autoimmune 
disease, and this holds true for several autoimmune diseases with 
late-adult onset as well, including rheumatoid arthritis, polymy-
algia rheumatica, and giant cell arteritis (Table 2). Regardless of 
the age of onset, the cellular and molecular basis of autoimmunity 
is complicated and distinct for each specific disease [reviewed 
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in Ref. (204)]. Here, we focus on the impact of age and sex on 
autoimmune conditions with late onset.

Although several theories have been proposed to explain sex 
differences in the cellular and molecular basis of aging [reviewed 
in Ref. (212)], perhaps most relevant to the sex-specific develop-
ment of autoimmunity in the aged is that estrogen upregulates the 
activity of several antioxidant systems (213, 214). Dramatic loss of 
estrogen (such as during menopause) could be expected to result 
in increased cell death due to unchecked ROS-induced DNA 
damage. Indeed, fewer lymphocytes are detected in the blood 
of post-menopausal women compared with younger women 
(160, 215) and T cell apoptosis increases after natural or surgical 
menopause (216). This could especially explain increased female 
incidence of autoimmune diseases that may occur as a result of 
lymphopenia-induced homeostatic proliferation in the aged, 
although more studies are needed to test this hypothesis.

In mice, lymphopenia and the subsequent homeostatic pro-
liferation of lymphocytes has been shown to contribute to the 
development of autoimmunity in many contexts [reviewed in Ref. 
(217)]. Certainly, there is an association between autoimmunity 
and lymphopenia in humans, but a strong case has not been 
made that lymphopenia is causative, or even occurs prior to, the 
onset of autoimmunity (218–224). However, evidence gathered 
by the laboratories of Goronzy et al. support a model whereby 
accelerated T  cell loss in the aged, either due to telomerase 
deficiency, disruption to DNA repair responses, or menopause, 
may be sufficient to enable autoreactive T cells already present in 
the pool to respond to low-affinity self-antigens in rheumatoid 
arthritis patients [reviewed in Ref. (225)]. First, there is evidence 
of accelerated aging, or increased homeostatic proliferation in 
RA patients. The telomeres of naïve and memory T cells isolated 
from RA patients are shorter than age-matched controls (226) 
and T cell receptor diversity is reduced as well (227). Moreover, 
T  cells from RA patients are more prone to apoptosis and are 
less capable of repairing dsDNA breaks (228). Finally, end-
differentiated effector T  cells that may be the consequence of 
homeostatic proliferation appear to be major participants in late 
onset autoimmune pathogenesis (229–232).

Cancer
Sex and age influence cancer incidence and mortality, but the 
specific effects vary by cancer type. It is widely accepted that 
the probability of developing cancer increases with age (233). 
Although few studies have examined cancer incidence in those 
with very advanced age, it seems that cancer prevalence actually 
declines for those over the age of 85 (234, 235). There is some evi-
dence to indicate that tumors may also be generally less aggressive 
in the extremely aged (236). Indeed, breast and prostate cancer 
patients over the age of 55 are more likely to develop tumors 
with characteristics associated with favorable treatment and/or 
survival outcomes (237, 238). However, it is not clear that tumors 
associated with other types of cancer, including bladder cancer, 
lung cancer, and acute myeloid leukemia, are indolent in older 
patients (239–242).

Overall, young men generally experience higher rates of can-
cer incidence and mortality than women (243–245). At advanced 
ages, men continue to experience higher incidences of most types 

of cancers, especially colorectal cancer, when compared with 
women (245, 246), but relative cancer mortality rates between 
older men and women differ by the particular cancer. Mortality 
differences between men and women diminish with age (espe-
cially after the age of 70) for colorectal cancer, stomach cancer, 
and leukemia (247). However, the male-to-female mortality ratio 
for brain cancer and myeloma decreases after middle age, but 
then increases again after the age of 70 (247).

The loss of sex hormones (especially due to menopause in 
women), age-associated immunosuppression, and chronic inflam-
mation may contribute to sex- and age-specific patterns of cancer 
incidence and mortality. Indeed, the male preponderance of 
cancer incidence and mortality before menopause has been at 
least partially attributed to the protective effect of estrogen (248), 
presumably due to its ability to enhance immunosurveillance, 
as well as tissue-specific effects (249, 250). Purim et al. suggests 
that it takes 20–25  years for some cancers (such as colorectal) 
to develop and since changes in sex-specific incidence ratios for 
those cancers occur approximately 25 years after menopause, the 
loss of estrogens at approximately age 55 contributes to increased 
female cancer incidence after the age of 80 (246). On the other 
hand, age- and sex-related diminishment of the effectiveness of 
the immune system may not contribute a great deal to increased 
cancer incidence in the aged, since the types of cancers observed 
in the aged are not the same of those observed in immunocom-
promised patients. HIV-induced immunodeficiency is associated 
with lymphoma and Kaposi’s sarcoma, while most age-related 
malignancies in the aged are carcinomas (251). Finally, older 
persons with chronic inflammation may demonstrate increased 
risk of cancer, as it is clear that inflammation induced by viruses, 
bacteria, tobacco smoke, and obesity increases cancer risk 
(252–255). Overall, more studies are certainly warranted to better 
understand the factors that contribute to cancer incidence and 
mortality in older men and women.

Cancer Immunotherapy
Cancer immunotherapy trials typically involve younger patients 
with no co-morbidities, even though these characteristics are not 
representative of most cancer patients (256). This is particularly 
important because the effectiveness and dose of any particular 
immunotherapy is likely to be affected by age-associated changes 
in immunity and metabolism (256). In addition, few clinical 
trials are designed to compare the efficacy and safety of cancer 
immunotherapies between women and men of any age (257). 
The currently available data regarding the sex- and age-specific 
effectiveness of several immunotherapies are discussed below.

Checkpoint blockade therapies in young or middle-aged 
men and women appear to be beneficial, but the benefits may 
be stronger in men (258–261). Blockade of PD1/PDL1 with 
nivolumab was more effective in male melanoma and renal cell 
carcinoma patients than in female patients (258, 260). However, 
these studies were not designed to compare efficacy in male versus 
female patients, and the sample size for female patients was small. 
Preclinical studies of anti-PDL1 treatment revealed that mela-
noma tumor growth was more robustly reduced in female mice 
when compared with males (262). Estrogen upregulates PD-1 on 
Tregs and Teffs. The authors speculated that anti-PDL1 treatment 
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TABLe 3 | Variables to consider when designing clinical studies related to 
immunity in the aged.

Clinical study considerations

Age Clearly defined age categories
Young: 20 to ≤45 years
Old: >45 to ≤85 years
Very old/elderly: >85 years

Health status Frailty: three of the five following characteristics: 
weight loss, weakened handgrip, exhaustion, 
reduced gait speed, and reduced activity
Concentrations of serum inflammatory proteins: 
IL-6, TNF-α, IL-1β, and C-reactive protein

Sex hormone status Time of menopause
Serum concentrations of sex hormones
Hormone replacement therapy
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was more effective in females because of the greater contribution 
of PD-1 to Treg suppression of antitumor responses in females 
(262). In addition, as mentioned above, the microbiome varies 
with age and sex and has recently been shown to significantly 
influence cancer immunotherapy success. Indeed, recent antibi-
otic use and the absence of specific microbial taxa correlates with 
reduced efficacy of PD1/PDL1 blockade and certain immune-
reliant chemotherapies in both humans and mice [reviewed in 
Ref. (170, 263)]. Therefore, it is critical to more formally evaluate 
the effect of cancer immunotherapies in men and women and to 
assess the suitability of various cancer models for predicting the 
success of particular immunotherapies in the sexes.

As already mentioned, few clinical immunotherapy trials enroll 
patients of advanced age and studies that did include older 
patients reach different conclusions about the efficacy of check-
point blockade in the aged. Meta-analyses of heterogeneous 
groups of cancer patients over the age of 65 or 70 treated with 
immune checkpoint inhibitors (biologicals targeting PD1, PDL1, 
or CTLA4) compared with similarly aged patients enrolled in the 
control arm of the studies revealed that checkpoint inhibitors 
reduced the risk of death by 34–37% in patients with advanced 
age (264, 265). Moreover, in at least one meta-analysis, the overall 
survival rate of patients over the age of 65 or 70 and younger 
patients treated with immune checkpoint inhibitors did not differ 
(264). However, other studies have reported significantly worse 
overall survival rates in patients over the age of 75 treated with 

checkpoint inhibitors (266). Finally, there is concern that treat-
ment of older cancer patients with checkpoint inhibitors could 
actually enhance tumor growth, as occurred in one subset of 
cancer patients (267) or prompt immune-related adverse events, 
as occurs in mouse models (268).

CONCLUSiON

For most, the aging process is accompanied by alterations in 
the function of the immune system. Many experience chronic 
inflammation and a general impairment of immune cell function. 
The immune systems of young men and women are quite differ-
ent, and it appears that aging affects the cellular composition and 
function of the immune system in sex-specific ways as well. This 
is likely because of pre-existing differences in immunity between 
men and women as well as differences in how menopause and 
andropause unfold. Age- and sex-specific changes to immunity 
may have consequences for late-adult onset autoimmunity and 
cancer, as well as for the efficacy of vaccinations and cancer immu-
notherapies. However, our understanding of the ways in which 
sex and age intersect with immune function and the consequences 
of this for autoimmunity, cancer, and therapeutic interventions 
is severely limited by the lack of inclusion of these variables in 
clinical and preclinical studies. Therefore, preclinical and clinical 
studies related to vaccination, autoimmunity, and cancer thera-
pies must be powered to detect sex effects, in accordance with the 
sex and gender equity in research (SAGER) guidelines (269). Age, 
sex hormone concentrations, hormone replacement therapies, 
and health status must be considered as well, given the known 
impact of these variables on immune-related conditions common 
in the aged (Table 3).
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