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Cellular lipid homeostasis is maintained through an intricately linked array of anabolic and 
catabolic pathways. Upon flavivirus infections, these are significantly altered: on the one 
hand, these viruses can co-opt lipid metabolic pathways to generate ATP to facilitate 
replication, or to synthesize membrane components to generate replication sites; on the 
other hand, more recent evidence suggests counter strategies employed by host cells, 
which actively modulate several of these networks in response to infection, enhancing 
interferon signaling by doing so, and thus creating an antiviral environment. In this review, 
we discuss recent data on mechanisms of alteration of lipid metabolic pathways during 
infection by flaviviruses, with a focus on cholesterol and fatty acid biosynthesis, which 
can be manipulated by the invading viruses to support replication, but can also be mod-
ulated by the host immune system itself, as a means to fight infection.
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inTRODUCTiOn

Metabolic reprogramming in immune cells is a recurrent phenomenon when exposed to pro-
inflammatory stimulants in the form of pathogens or cytokines. Macrophages and dendritic cells in 
particular are well-equipped to sense and respond to impending danger by pathogens, thus establish-
ing the frontline of host defenses. Recent studies have highlighted the extraordinary contribution 
that multiple host metabolic pathways confer toward the ability of innate immune cells to respond to 
infections (1). Not surprisingly, some of the very same pathways that function to eradicate infection 
are often rewired by the invading pathogen.

Most viruses are known to induce aerobic glycolysis akin to the Warburg effect (2, 3). More 
recently, perturbation in lipid metabolic pathways has also been reported for several classes of 
pathogens (4, 5). Intracellular lipid homeostasis is achieved through a balance in biosynthetic, 
transport, and degradation processes. Current evidence increasingly points toward an intricate 
relationship between host lipid metabolism and intracellular pathogens, including bacteria, viruses, 
and parasites. While the mechanistic details are yet to be unraveled, it is hypothesized that these 
pathogens, on account of their limited genome sizes, co-opt the host metabolic network to meet 
the energy demands and procure precursors for their anabolic processes including replication and 
intracellular transport. In addition, viruses alter lipid metabolism to facilitate amplification and 
evade the host immune response. This has been decidedly observed in cases of positive strand RNA  
virus infections, such as dengue, West Nile, Hepatitis C, and several coronaviruses (6–10). Marked 
alterations in cholesterol and fatty acid biosynthesis occur upon infection, accompanied by the 
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appearance of distinctive compartments, believed to be their 
replication sites (11–14).

Despite diversity in their genome organization, many viruses 
share certain salient features, primary of which is their depend-
ence on host factors to undergo replication, assembly, intracel-
lular transport, and release (15–20). The intracellular life cycle 
of positive strand RNA viruses is largely confined to the cytosol, 
within or on the surface of virus-induced organelle-like structures 
regarded as replication compartments (21–26). Notwithstanding 
differences in transmission, host cell tropism, and pathogenesis, 
these viruses employ similar strategies for replication and assem-
bly, often accompanied by reorganization of the host secretory 
pathway (13, 24, 25, 27, 28). The replication sites serve multiple 
purposes that function in a concerted fashion to facilitate efficient 
virus propagation. Primarily, they offer spatial segregation of the 
different steps in the intracellular life cycle, such as RNA transla-
tion, replication, and packaging of the viral genome into virions 
during assembly. Viral replication compartments also enable a 
high local concentration of the necessary components—both 
viral and host—in a physically constrained space, ensuring 
efficient RNA amplification. An equally important feature of 
these replication sites is to limit exposure of viral RNA to the 
hostile cytoplasmic environment that contains cellular nucleases 
and sensors of the innate immune surveillance. Degradation of 
dsRNA replication intermediates is minimized by protection in 
membrane-delimited compartments.

Although lipid metabolism has received particular attention 
with Gram-negative bacterial infection, several recent reports 
highlight their function in viral infections (29). Analogous to 
lipopolysaccharide (LPS)-mediated downregulation of sterol syn-
thesis in case of viral infections, limiting cholesterol biosynthesis 
in human macrophages and fibroblasts via genetic knockdown 
of sterol regulatory element-binding proteins [sterol-regulatory 
element-binding proteins (SREBPs), discussed in a later section], 
was reported to spontaneously engage type I IFN signaling and 
restrict infection (30–33). Initiation of anti-viral immunity thus 
displays a clear link with intracellular cholesterol biosynthesis, 
in a way that the induction of cholesterol synthesis would 
allow subversion of host immune responses and facilitate viral 
multiplication.

With the advent of omics-based studies, it is increasingly 
becoming obvious that viruses induce large-scale alterations in 
host cellular metabolism (3, 34–37). Among other examples are 
the induction of fatty acid synthesis by hepatitis C virus (HCV) 
in human hepatocytes, and the utilization of cellular lipid stores 
of hepatocytes by dengue virus. The effects of these events have 
been experimentally demonstrated by genetic and pharmaco-
logical inhibition of lipid biosynthetic pathways that attenuate 
viral pathogenesis (5, 38). These viral adaptation strategies can 
effectively increase available energy for virus replication and 
assembly, provide specific components for progeny particles, and 
for creating replication sites while suppressing antiviral signal-
ing cascades. These reports highlight the intricate link between 
viruses and lipid metabolism. In the following sections, we 
discuss emerging data on fatty acid and cholesterol biosynthetic 
pathways that are upregulated by certain viruses to facilitate 
infection.

UPReGULATiOn OF CHOLeSTeROL  
AnD FATTY ACiD SYnTHeSeS DURinG 
viRUS inFeCTiOnS

Fatty Acid Synthase (FASn)
Intracellular contents of fatty acids and cholesterol contribute to fuel 
storage as well as a source of components necessary for increased 
membrane production. The core reaction of fatty acid synthesis is 
catalyzed by FASN starting from acetyl CoA and malonyl CoA. 
Once synthesized, palmitate can have several different fates, includ-
ing further elongation to long chain fatty acids, which can be used 
for membrane production or storage in lipid droplets (LDs) in the 
form of triacylglycerols and esterified cholesterol. LDs are storage 
organelles consisting of triacylglycerols and steryl esters, and func-
tion as inert storage depots of excess cellular lipids. Abundance and 
size of LDs could be indicative of increased fatty acid synthesis, 
which might poise the cell for rapid membrane generation if needed 
and also maintains energy reserves (39). According to cellular states 
and their corresponding energy demands, fatty acids undergo 
β-oxidation to generate acetyl CoA and NADH and FADH2 mol-
ecules in the mitochondrial matrix, for ATP production via oxida-
tive phosphorylation. Viruses induce and require availability of 
fatty acids at several stages of their lifecycle—either to supplement 
energy requirements for their anabolic processes or to generate viral 
replication compartments, most notably observed during infection 
by positive strand RNA viruses (40, 41). This is primarily due to 
the process of replication—confined to the cytoplasm—where such 
viruses alter the host intracellular lipid composition to create a 
beneficial environment. This phenomenon is exemplified by HCV, 
where all aspects of the viral lifecycle, including entry, replication, 
assembly, and release are host lipid associated (8). HCV requires 
low density lipoprotein receptor as a co-factor for entry into target 
cells (42). Its replication occurs in membranous web-like compart-
ments referred to as double membrane vesicles (13, 43) and they 
assemble using LDs as platforms (18, 44). To generate replication 
sites, HCV triggers synthesis of fatty acids, cholesterol, and LDs 
(45–48). Another member of the Flaviviridae family, dengue, has 
also been reported to induce production of fatty acids (49, 50). 
FASN and ACC1 were identified through a targeted siRNA screen 
as necessary factors for efficient dengue virus replication (38, 51). 
Drugs that inhibited FASN activity resulted in a significant attenu-
ation in virus replication (49). Infection with dengue virus does 
not affect FASN expression levels, but rather its redistribution to 
virus-triggered structures referred to as convoluted membranes 
(50). This phenomenon appears to be Rab18-mediated, a member 
of the GTPase family that typically resides in the ER and LDs. Upon 
infection dengue NS3 was found to interact with Rab18, which 
allowed recruitment of FASN to viral replication sites, thus pro-
moting fatty acid biosynthesis to increase their local concentration  
(51, 52). Inhibiting FASN activity has a similar effect in mosquito 
cells with loss of infectious progeny virion production (53).

3-Hydroxy-3-Methylglutaryl-CoA 
Reductase (HMGCR)
3-hydroxy-3-methylglutaryl-CoA reductase is the rate-limiting 
enzyme for cholesterol biosynthesis and is regulated via a negative 
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feedback mechanism mediated by products of the mevalonate 
pathway. In mammalian cells, HMGCR activity is suppressed 
by cholesterol imported through receptor-mediated endocyto-
sis of low density lipoproteins (54). Dengue infection inhibits 
phosphorylation of HMGCR at an inactivating site, generating 
a cholesterol-rich environment in the process (55, 56). This 
was further corroborated through inactivation of AMPK and 
a subsequent increase in HMGCR activity, respectively (56). In 
comparison, West Nile virus infection has a more direct impact 
on intracellular cholesterol distribution. Infection was accom-
panied by redirecting cholesterol from the plasma membrane 
to virus replication sites (12). In mammalian cells cholesterol 
homeostasis is tightly regulated in a feedback mechanism via 
transcription factors that sense intracellular cholesterol levels 
(57, 58). These transcription factors are termed SREBPs that asso-
ciate tightly with the sterol-sensing SREBP cleavage-activating  
protein (SCAP) within the ER membrane, via an additional 
interaction with the ER-resident protein Insig, which functions 
as an inhibitor of SREBP (59, 60). SCAP has an additional role 
as a chaperone that mediates transport of the SREBP–SCAP 
complex to the Golgi network, where SREBP is proteolyti-
cally cleaved by two resident Golgi proteases (S1P and S2P) to 
release the transcriptionally active fragment of SREBP from the 
membrane. The released forms of SREBPs are transported to 
the nucleus and activate transcription of target genes required 
for cholesterol and fatty acid biosynthesis, including HMGCR 
and FASN, respectively. When cholesterol levels are high, SCAP 
binds to cholesterol in the ER, promoting an association with 
Insig, and retains the complex within the ER, thus reducing 
the synthesis of cholesterol. Conversely, when cholesterol levels 
are low, binding of SCAP to Insig is disrupted, and cholesterol 
synthesis is initiated (61–63). The authors of these studies pos-
tulated that de-enrichment of cholesterol from sites harboring 
sensory molecules, such as the SCAP–SREBP–Insig complex, 
results in activation of this signaling pathway, enabling the host 
cell to increase cholesterol levels to accommodate proliferation 
of intracellular membranes.

MODULATiOn OF LDs DURinG  
viRUS inFeCTiOnS

Lipid droplets are multifunctional organelles present in most 
organisms from bacteria to eukaryotes (64–66). These structures 
are particularly abundant in mammalian adipocytes and insect fat 
body cells. LDs are mainly composed of a phospholipid monolayer 
and structural proteins, such as Perilipins, which are involved in 
LD biogenesis and degradation. Despite previous notions on a 
rather static role of LDs in the maintenance of lipid homeostasis, 
more recently, it has become evident that LDs are also present 
in immune cells, such as neutrophils and macrophages, where 
they regulate inflammatory or infectious processes (65, 67). Upon 
stimulation with different challenges, they display an increase 
in abundance and thereby serve as reliable markers of immune 
cell activation. Autophagy dependent degradation of LDs has 
been reported for dengue virus infection in human hepatocytes 
(38). A similar activation of the autophagy pathway was recently 

described for Zika virus infection as well (68). Our own data 
(accepted, queued for publication) support a drastic upregula-
tion of LD consumption through induction of autophagy upon 
both dengue and Zika virus infections. This pathway appears to 
operate in an ancient ubiquitous protein 1 (Aup1)-dependent 
manner, and is dictated by its ubiquitylation status. Unmodified 
Aup1 enabled dispersion of LDs, which underwent lipophagy 
upon infection. This virus-triggered pathway is essential for 
assembly and production of newly synthesized progeny virions 
(in press). Current consensus, therefore, supports a model where 
mobilization of LDs in combination with increased synthesis of 
fatty acids and cholesterol provides a proviral environment for 
production of progeny virions (53) (Figure 1).

ReCOnFiGURinG CHOLeSTeROL 
MeTABOLiSM AS HOST ReSPOnSe  
TO inFeCTiOn

The interdependence of innate immune signaling processes and 
the regulation of sterols and fatty acid metabolism is increasingly 
being consolidated through emerging data (30). Their role in 
production of inflammatory mediators has been reported by 
several groups (69–71). Interferons (IFNs) modulate the expres-
sion of a multitude of IFN-stimulated genes including viperin, 
which has been observed to be highly upregulated in response 
to bacterial LPS, double-stranded DNA, and RNA analogs, 
and also possesses antiviral activity against a range of viruses 
including HCV and dengue virus (72). In a similar vein, inhi-
bition of cholesterol biosynthesis also exerts an antiviral effect  
(12, 73, 74). SREBPs are involved in coordinating the regulation 
of the sterol and fatty acid biosynthesis pathways; IFNs effectively 
inhibit SREBP2 at both mRNA and protein levels. Interestingly, 
WNV-induced redistribution of cellular cholesterol was found 
to downregulate IFN-stimulated JAK–STAT antiviral signaling 
response to infection, potentially by removing cholesterol from 
their usual microenvironment.

Recent evidence suggests that alterations to cellular lipid 
metabolism have a more direct role in host defense, through 
positive regulation of the type I IFN-mediated antiviral response: 
for example, activation of type I IFN signaling can induce 
upregulation of β-oxidation and inhibition of cholesterol 
synthesis, in order to create a hostile cellular environment for 
viruses (31, 75). Intracellular pathogens are known to stimulate 
de novo lipid and cholesterol biosynthesis to ensure their own 
survival. Accordingly, repressing these anabolic pathways can 
inhibit the evolution of intracellular infections. Activation of 
type I interferon receptors has been correlated to inhibition of 
cholesterol biosynthesis; however, repression of lipid metabolism 
in this manner is accompanied by an increase in the influx of 
environmental lipids, which maintain intracellular lipids and 
cholesterol at normal levels. Thus, type I IFN signals reprogram 
cellular lipid metabolism, but this does not function to limit lipid 
availability to pathogens. It, therefore, remains unclear whether 
IFN-I linked repression of cholesterol biosynthesis, in the context 
of intracellular infection, is meant to limit nutrient availability to 
pathogens, or if it serves a different purpose.
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FiGURe 1 | Schematic illustration of the different lipid metabolic pathways exploited during flavivirus infections. Virus-triggered activation of lipophagy results in 
generation of cholesterol and free fatty acids, which undergo β-oxidation in the mitochondrial matrix to increase cellular energy levels. Activation of the sterol-
regulatory element-binding proteins (SREBP) pathway at the endoplasmic reticulum is followed by transport of the SREBP cleavage-activating protein-SREBP 
complex to the Golgi network, proteolysis, and translocation of the transcription factor to the nucleus, where it turns on genes for cholesterol and fatty acid 
biosynthesis. Several flaviviral factors have been implicated in exploitation of this pathway. Increased FA production provides energy supplies necessary for virus 
replication and components necessary for generation of replication sites.
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Type i interferon Response and Lipid 
Homeostasis During infection
Bone marrow-derived macrophages (BMDMs), when chal-
lenged with IFN-β, poly:IC, or viral infection, showed decreased 
intracellular synthesis of fatty acids and cholesterol, as well as 
increased uptake of extracellular lipids and cholesterol. This 
was also demonstrated by a lower expression of genes related to 
cholesterol and fatty acid metabolism and an enhanced expres-
sion of genes related to cholesterol and lipid import, post viral 
challenge. Suppressing interferon alpha/beta signaling, while 
infecting BMDMs with virus, nullified all changes in lipid and 
cholesterol intracellular balance, including the gene expression 
level, which proves that type I IFNs can shift lipid homeostasis 
from biosynthesis to import, despite not significantly altering the 
intracellular levels of cholesterol and fatty acids (31).

Crosstalk Between Lipid Metabolism  
and the Type i interferon Pathway
The SCAP protein acts as a sterol-sensing element, as well as a 
chaperone, which associates with immature SREBP transcrip-
tion factors in the ER membrane. By knocking out or knocking 
down SCAP in macrophages, SREBP activity is lowered, as 

well as expression of genes involved in lipid metabolism. As 
anticipated, de novo synthesis of cholesterol and fatty acids went 
down in the absence of SCAP, but total intracellular lipid levels 
remained unchanged. Loss of SCAP also correlated with height-
ened resistance to viral infection in in vitro and in vivo models, 
confirming the functional equivalence between activation of 
type I interferon pathway and inhibition of lipid metabolism. 
Culture medium supernatants from SCAP−/− macrophage 
cultures were enough to markedly increase resistance to viral 
challenge, when supplied to wild-type BMDMs, suggesting that 
the higher type I interferon-mediated viral resistance was a 
causal effect of a secreted effector molecule, such as interferon-
beta (IFNβ). In light of this, qPCR analysis revealed that both 
SCAP−/− BMDMs and alveolar macrophages extracted from 
SCAP−/− mice constitutively express higher levels of IFNβ and 
interferon-stimulated genes (ISGs), compared to wild-type mac-
rophages. Finally, blocking the interferon alpha/beta receptor 
(IFNAR) was enough to restore interferon and ISGs expression 
back to normal levels, as well as losing resistance to viral infec-
tion. These data strongly suggested that the absence of SCAP 
activity spontaneously triggers type I interferon production, 
which translates into a constitutive state of higher resistance to 
viral infection in macrophages (31).
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Deficiency in Cholesterol Metabolism 
Triggers Type i interferon Response
SREBP1 generally drives transcription of genes related to fatty 
acid metabolism, whereas SREBP2 activates transcription of 
genes linked to cholesterol biosynthesis. RNA-seq and qPCR 
analysis revealed that knockdown of SREBP1 in macrophages did 
not significantly impact IFNβ or ISG expression, whereas knock-
down of SREBP2 caused a distinct increase in expression of IFNβ 
and several ISGs, not only in immune cells (macrophages) but 
also in non-immune cells (fibroblasts). Resistance to viral chal-
lenge was highly increased in SREBP2-deficient macrophages and 
SREBP2−/− mouse fibroblasts (31). Moreover, blocking IFNAR in 
SREBP2-deficient cells restored ISGs to normal expression levels, 
decreasing resistance to virus infection to wild-type levels as well. 
This suggests that a higher type I interferon response is specifically 
caused by an inhibition of cholesterol metabolism (31, 32). In 
support of this hypothesis, cells (immune and non-immune) with 
deficiency in the mevalonate pathway showed a constitutively 
exacerbated type I interferon response. Also, addition of free 
cholesterol to SREBP2-deficient cells, or to cells with genetically 
impaired cholesterol metabolism, causes the exaggerated type I 
interferon response to decrease to basal levels (31, 71).

Stimulator of interferon genes (STING) is an ER resident 
kinase, which activates interferon regulatory factor 3 (IRF3) 
through phosphorylation of Tank binding kinase-1 (TBK1) (76). 
STING kinase activity is stimulated by cyclic dinucleotides, which 
are synthesized by cyclic GMP-AMP synthase (cGAS). cGAS, 
STING, and phosphorylated TBK1 (pTBK1) exist in higher basal 
levels in SREBP2−/− cells compared to wild-type cells; in addition, 
knocking down either cGAS or STING in enough to drastically 
lower pTBK1 presence in SREBP2-deficient cells. Also, knock-
down of cGAS, STING, or TBK1 in SREBP2−/− cells caused the 
expression of Ifnb1 and ISGs to decrease to levels similar to those 
in wild-type cells (31).

Addition of free cholesterol to SREBP2-knockout cells sig-
nificantly decreased pTBK1, while blocking IFNAR had no effect 
on pTBK1 levels, reinforcing the idea that cholesterol directly 
influences STING-mediated activation of TBK1. These data 
support a model in which a lack of cholesterol in the cell makes 
STING more sensitive to cyclic dinucleotides, upregulating the 

STING-pTBK1-IRF3 signaling axis, and ultimately increasing 
expression of Ifnb1 and ISGs, conferring an intrinsic pro- 
inflammatory phenotype to cholesterol-deficient cells (77). 
Admittedly, most of these experiments used MHV68; however, 
these conclusions may very well be relevant in other virus infections.

TARGeTinG FATTY ACiD AnD 
CHOLeSTeROL MeTABOLiSM  
AS An AnTiviRAL STRATeGY

Repressing the cholesterol biosynthetic pathway through inhibi-
tors of HMGCR is a common treatment for cardiovascular diseases 
(78). The clinical success of these inhibitors for human disorders 
provides strong support that targeting lipid metabolism can effec-
tive for human therapy. Elucidating the specific alterations incurred 
upon virus infections would allow novel therapeutic approaches 
to emerge through targeted inhibition of such metabolic pathways. 
IFNs or viral infections often result in induction of 25-hydroxy-
cholesterol in macrophages—an antiviral effector, which broadly 
inhibits many enveloped viruses by interfering with membrane 
fusion (79). Whether it has an additional impact on activating 
the interferon signaling pathway is to be seen in future studies. 
Different strategies can be employed to interfere with virus infec-
tion, including those involving lipid utilization; notwithstanding, 
it is tempting to speculate that drugs already in clinical use against 
cholesterol and fatty acid metabolic pathways might be repurposed 
to boost antiviral immunity and provide resistance to infection.
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