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The immune suppressants cyclosporin A (CsA) and tacrolimus (FK506) are used world-
wide in transplantation medicine to suppress graft rejection. Both CsA and FK506 inhibit 
the phosphatase calcineurin (CN) whose activity controls the immune receptor-mediated 
activation of lymphocytes. Downstream targets of CN in lymphocytes are the nuclear 
factors of activated T cells (NFATs). We show here that the activity of NFATc1, the most 
prominent NFAT factor in activated lymphocytes supports the acute rejection of het-
erotopic heart allografts. While ablation of NFATc1 in T cells prevented graft rejection, 
ectopic expression of inducible NFATc1/αA isoform led to rejection of heart allografts 
in recipient mice. Acceptance of transplanted hearts in mice bearing NFATc1-deficient 
T cells was accompanied by a reduction in number and cytotoxicity of graft infiltrating 
cells. In CD8+ T cells, NFATc1 controls numerous intracellular signaling pathways that 
lead to the metabolic switch to aerobic glycolysis and the expression of numerous lym-
phokines, chemokines, and their receptors, including Cxcr3 that supports the rejection 
of allogeneic heart transplants. These findings favors NFATc1 as a molecular target 
for the development of new strategies to control the cytotoxicity of T cells upon organ 
transplantation.

Keywords: nFaTc1, transplantation, heterologous, cD8+ T cells, chiPseq, metabolism

inTrODUcTiOn

The worldwide application of cyclosporin A (CsA) and tacrolimus (FK506) as immune suppressants 
in transplantation medicine saved the lives of thousands of patients. CsA and FK506 prevent organ 
rejection by inhibiting the activity of phosphatase calcineurin (CN) that orchestrates the activation 
of peripheral lymphocytes upon antigen contact (1). In cells, CsA binds to CypA, a low molecular 

Abbreviations: Ab, antibody; AICD, activation-induced cell death; BAC, bacterial artificial chromosome; CsA, cyclosporin 
A; CN, Calcineurin; ECAR, extra cellular acidification rate; FK506, tacrolimus; GICs, graft-infiltrating cells; NFATs, nuclear 
factors of activated T cells; NGS, next-generation sequencing; OXPHOS, oxidative phosphorylation; qRT-PCR, quantitative 
real-time polymerase chain reaction; T  +  I, 12-O-tetradecanoylphorbol-13-acetate (TPA)  +  Ionomycin; TF, transcription 
factor; tg, transgenic; WT, wild type.
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weight immunophilin, and these complexes bind to CN and sup-
press its enzymatic activity (2). However, due to the numerous 
side effects caused by CsA and FK506, sustained applications of 
both immune suppressants not only lead to severe complications 
in transplant patients, in particular to nephrotoxicity, but also to 
neurotoxicity, hypertension, fibrosis, and cancerogenesis (3, 4). 
Although CsA and FK506 inhibit in lymphocytes primarily the 
activation of nuclear factors of activated T cell (NFAT) transcrip-
tion factors (TFs), NFATs are not the only TFs whose activity 
is affected by CsA. Since CN supports the induction of NF-κB 
factors upon TCR stimulation, CsA interferes also with their 
TCR-mediated activation (5, 6).

Due to the many deleterious side effects of CsA and FK506 in 
therapy, numerous searches have been undertaken for novel CN 
inhibitors, or for inhibitors that suppress directly the activation 
of NFATs. One set of such inhibitors are cell-penetrating peptides 
that interfere with the interaction between CN and NFATs (7). 
Based on the affinity-driven selection of peptides correspond-
ing to the main interaction site of NFATs with CN (8), several 
peptide versions of general structure PxIxIT (where x represents 
any natural amino acid) were shown to inhibit the interaction 
between CN and NFATs (9). They interfere with the binding of 
CN to an NFAT peptide that is highly conserved between all 
NFAT proteins and, thereby, those inhibitory peptides do not 
distinguish between individual NFAT members. Since, however, 
the individual NFAT proteins differ remarkably in their activity 
in vivo (10), for therapeutic interventions inhibitors have to iden-
tified that allow the specific block of individual NFAT proteins.

Among the treatments that suppressed the rejection of allo-
geneic transplanted hearts in mice (3) there are several therapies 
that affect the activation of NFATs and/or their targets in T cells. 
Apart from the use of CN inhibitors CsA and FK506, metabolic 
inhibitors and the inactivation of NF-κB or Cxcr3, a chemokine 
receptor gene, led to acceptance of transplanted allogeneic hearts 
(11–13). We showed previously that NF-κB factors support the 
induction of short NFATc1/αA in B lymphocytes (14). We will 
show here that NFATc1 ablation prolongs allograft survival, 
impairs the metabolic switch from oxidative phosphorylation 
(OXPHOS) to aerobic glycolysis in activated CD8+ T cells and 
the expression of chemokine receptor Cxcr3 in CTLs. These data 
indicate NFATc1 as a key factor in activated T cells that controls 
the rejection of transplanted allogeneic hearts.

MaTerials anD MeThODs

Mice and isolation of T cells
Male C57BL/6J (B6, H-2b) and BALB/c (H-2d) wild-type (WT) 
mice were purchased from Janvier (France). Nfatc1flx/flx and 
Nfatc2−/− mouse lines have been described previously. Nfatc1flx/flx 
mice were crossed with CD4-cre mice for inactivating the Nfatc1 
gene in all T cells, and with mb1-cre mice in all B cells (15–20). In 
dlck-cre x Nfatc1flx/flx mice, the Nfatc1 gene is inactivated in periph-
eral T cells. In mice of the dlck-cre x Nfatc1flx/flx x caNfatc1-STOPflx/flx  
line, a constitutively active version of NFATc1/αA is expressed 
from the Rosa26 locus upon removal of a “floxed” STOP sequence 
and inactivation of endogenous Nfatc1 gene in peripheral T cells 

(21, 22). Nfatc1P2Δ mice carry an Nfatc1 P2 promoter deletion  
and, due to a CMV-promoter-driven cre are deficient for 
P2-directed transcripts [see Figure S1 in Supplementary Material 
and Ref. (23)]. Bacterial artificial chromosome (BAC) transgenic 
(tg) mice expressing NFATc1/A-Bio protein [and BirA, the 
biotin-ligase from E. coli (24)] have been described previously in 
Ref. (25). All mice were maintained in the Central Animal Facility 
of the Medical Faculty (ZEMM), University of Wuerzburg, 
according to the institutional guidelines (acceptance AKZ 55.2-
2531.01-80/10 from 22.10.2010).

For CD8+ T cell isolation, the “CD8 (Ly2) microbeads, mouse” 
kit (Miltenyi Biotech) was used. For αCD3/CD28 stimulation, 
5 µg CD3ε (clone 145-2C11) and 2 µg CD28 (clone 37.51) (both 
BD Pharmingen) were used to coat multi well plates. T cells were 
also stimulated with 10  ng/ml tetradecanoylphorbol-13-acetate 
and 0.5 µM ionomycin (normally for 5 h).

heterotopic Murine heart Transplantation
Abdominal heterotopic heart transplantation into mice was 
performed as described previously in Ref. (26).

isolation of graft-infiltrating cells (gics)
Heart grafts cut into small pieces were incubated in 100  U/ml  
collagenase at 37°C for 30 min. Cells were washed with phosphate-
buffered saline (PBS), counted, and purified on a Ficoll-Hypaque 
gradient.

histologic and immune histochemical 
analysis
Freshly explanted heart grafts were fixed in 4% paraformaldehyde 
and embedded in paraffin. For hematoxylin–eosin staining, 4-µm 
sections were de-paraffinized with xylene, rehydrated in absolute 
ethanol, stained in hematoxylin solution, and counter-stained 
with eosin. For immune histochemical staining, de-paraffinized 
and rehydrated sections (1 µm) were heated for antigen unmask-
ing in 10 mM sodium citrate buffer (pH 6.0), and stained with 
αCXCR3 (CD183, #bs-2209R, Bioss Antibodies, Inc. MA, USA), 
diluted 1:200 in antibody (Ab) dilutent (DAKO, Hamburg, 
Germany) at 4°C overnight. Sections were washed in PBS and 
incubated with 1:100 diluted horseradish-labeled goat anti-rabbit 
IgG (DAKO, P0448) at room temperature for 1 h. Staining was 
developed by adding 3,3′diaminobenzidine (DAB ready to use, 
DAKO) and counterstaining was done with hematoxylin.

confocal Microscopy of cD8+ T cells
Upon isolation, splenic CD8+ T cells were stimulated with αCD3/
CD28 Abs for 24  h, attached to poly-l-Lysin-coated chamber 
μ-slides, fixed in 4% formaldehyde, permeabilized with 0.2% 
Triton-X100, and blocked with 5% BSA. Samples were incubated 
with primary mouse anti-NFATc1 Ab 7A6 in 1% BSA at 4° 
overnight.

rna seq Transcriptome analysis
Graft-infiltrating cells were isolated from heart grafts at day 
5 after transplantation. Purification of RNA from GICs and 
transcriptome assays were performed at TRON GmbH (Mainz, 
Germany) as described previously in Ref. (27).
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chiP seq assays
CD8+ T  cells from BAC tg mice expressing BirA, or from tg 
mice expressing BirA and Nfatc1/A-Bio, a Bio-tagged version 
of NFATc1/αA [(25); Figure S4 in Supplementary Material] 
were differentiated to CTLs in  vitro. Upon re-stimulation with 
T  +  I (5  ng/ml and 0.5  µM) for 5  h, chromatin from 1  ×  107 
fixed cells was prepared and sonicated, followed by precipitation 
of chromatin on streptavidin beads (M-280, #11205D, Thermo 
Fisher Scientific, MA, USA) (28). After cDNA library preparation 
(using a NEBNext® Ultra™ DNA Library Prep Kit for Illumina®) 
sequencing was performed as a 50-bp single read run on an 
Illumina HiSeqTM2500 (Illumina, San Diego, CA, USA) using 
a TruSeq® Rapid SBS Kit v2 and a HiSeq Rapid Flow Cell v2. 
50 bp sequence reads that passed the Illumina quality filtering 
were aligned to the mouse genome assembly version of July 2007 
(NCB I37/mm9), using the map with Bowtie for Illumina 1.1.2. 
Results were visualized with the “Integrative Genomics Viewer” 
IGV version 2.3.81 (29).

immunoblotting
Western blots were performed using the NFATc1-specific mAbs 
7A6 and NFATc2 mAb (# 556602 and 5062574, BD Pharmingen) 
for NFAT detection.

Flow cytometry
Lymphocyte stainings were performed by incubation for 20 min on 
ice using conjugated the following mAbs (eBioscience, San Diego, 
CA, USA): CD8-FITC (#11-0081-82), CD4-FITC(#MCD0401), 
CXCR3-APC (#17-1831-82), CCR5-PE (#12-1951-81), CD62L-PE 
(#12-0621-81), CD44-APC (#17-0441-81), CD25-APC (#17-
0251-82), B220 FITC (#11-0452-82), CD5-PE (#12-0051-82), 
CD23-APC (#MCD2305).

cytotoxicity assays
The mineral oil induced murine MOPC-315.BMP2.FUGLW55 
plasmacytoma cell line (H2b) expressing eGFP and luciferase 
was used as target cell line. To measure luciferase during 
coculture the assays were performed by cultivating MOPC-
luciferase target cells together with equal numbers of GICs 
isolated from WT B6 or Nfatc1flx/flx x CD4-cre recipient mice 
during the acute rejection phase (d6, effector/target ratio 4/1, 
followed by 20 or 36 h incubation). After centrifugation, the 
cell pellet was washed once with PBS and finally re-suspended 
in 100  µl harvesting buffer to lyse cell membranes. 50  µl of 
supernatant was transferred into a white, non-transparent 
96-well plate. The LUMIstar Omega was primed with 1  ml 
of ready-to-use luciferin solution before luciferase-activity 
measurement was performed. 50  µl of luciferin solution per 
well were automatically added to the sample and measurement 
was performed.

extracellular Flux assays
The extra cellular acidification rate (ECAR) of CD8+ T cells was 
measured in a XF96 analyzer (Seahorse Bioscience) as described 
previously in Ref. (25).

statistical analysis
Student’s t-test or the Mann–Whitney U test was used for statisti-
cal analysis with the software GraphPad Prism 6. P values above 
0.05 were considered not significant.

resUlTs

nFaTc1 supports the rejection of 
allogeneic heart Transplants
In a previous report on the survival of heterotopic heart and 
skin transplants, in Nfatc2- or Nfatc3-deficient recipient mice 
a moderate prolongation of allogeneic transplant survival was 
described in Ref. (30). These observations prompted us to 
investigate whether NFATc1, the most prominent NFAT factor 
in activated peripheral T and B cells, plays a role in the rejection 
of allogeneic organ transplants. In a model of heterotopic heart 
transplantation, we used Nfatc1flx/flx mice crossed with the CD4-
cre or mb1-cre mouse lines to ablate the expression of NFATc1 
in peripheral T or B lymphocytes, respectively (18, 20, 22). Fully 
allogeneic hearts from donor BALB/c mice transplanted into 
WT B6 recipient mice are normally rejected within 7 days by the 
recipient’s immune system. However, BALB/c heart allografts 
transplanted into Nfatc1flx/flxxCD4-cre mice bearing both NFATc1-
deficient CD4+ and CD8+ T cells survived significantly longer for 
more than 50 days, and more than 50% of the allografts for more 
than 120 days. In contrast, transplantation of allogeneic hearts 
into Nfatc1flx/flx x mb1-cre mice bearing Nfatc1−/− B cells had only 
a minor positive effect on the survival of transplanted allogeneic 
hearts (Figure 1A).

In lymphocytes, the Nfatc1 gene is expressed in six individual 
α- and β-isoforms at the RNA and protein levels. These are 
generated under the control of two alternate promoters, P1 
and P2, and polyA sites, pA1 and pA2, and, therefore, differ in 
their N- and C-terminal peptides (Figure S1 in Supplementary 
Material) (31). In T  cells from Nfatc1flx/flx x CD4-cre mice, the 
expression of all isoforms should be ablated (Figure  1B and 
unpubl. data), but upon staining of immunoblots or cytospins 
prepared with NFATc1−/− CD8+ T cells using the 7A6 NFATc1 
mAb various shorter protein bands or stained dots were detected. 
However, these NFATc1-like proteins were not imported into the 
nucleus upon activation of NFATc1−/− T cell cells (Figure 1C) 
and, therefore, should play a minor, if any role in transcriptional 
regulation.

To identify the role of individual NFATc1 isoforms in trans-
plant rejection, we crossed Nfatc1-P2flx/flx mice created in our 
laboratory (32) with CMV-cre mice for the deletion of P2 
promoter and exon 2 sequences. In such Nfatc1P2Δ mice, the 
generation of NFATc1/β isoforms was inhibited [see Figure S1 
in Supplementary Material and Ref. (23)]. Nfatc1P2Δ mice were 
born at expected Mendelian ratios, were viable and developmen-
tally indistinguishable from their Nfatc1P2flx/flx littermates, and 
their lymphoid compartments remained unaffected. Both T and 
B cells from Nfatc1P2Δ mice could be normally activated ex vivo 
and did not reveal any defects in proliferation or induction of 
Activation-Induced Cell Death (Figure S2 in Supplementary 
Material). However, the rejection of allogeneic hearts upon 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FigUre 1 | NFATc1 deficiency in T cells prevents acute rejection of allogeneic heterotopic heart transplants. (a) Syngeneic (C57BL/6, Syn) or fully allogenic 
(BALB/c, Allo) heart grafts were transplanted into wild-type (WT) C57BL6, Nfatc1flx/flx x mb1-cre, Nfatc1flx/flx x CD4-cre, or Nfatc1P2Δ recipient mice (n = 5–9 
recipients per group). While Nfatc1flx/flx x mb1-cre mice bear NFATc1-deficient B cells, Nfatc1flx/flx x CD4-cre mice bear NFATc1-deficient CD4+ and CD8+ T cells. 
Nfatc1P2Δ mice carry an Nfatc1 P2 promoter deletion and, therefore, are deficient for P2-directed transcripts (23). The survival of heart function was monitored  
daily during the first 3 weeks after transplantation, then four times per week. (B) Representative western blot showing the efficient NFATc1 ablation in cytotoxic 
T cells (CTL) from Nfatc1flx/flx x CD4-cre (c1-ko) mice. Cytoplasmic (CP) and nuclear proteins (N) from CTLs of WT, Nfatc1flx/flx x CD4-cre (c1-ko) and Nfatc2−/− (c2-ko) 
mice were fractionated. For the generation of CTLs in vitro, splenic CD8+ T cells were stimulated by αCD3/CD28 antibodies (Abs) for 3 days, followed by culture in 
IL-2 containing medium for further 3 days. They were left un-induced (CTL-) or induced by T + I (CTL+) for 5 h (see Materials and Methods). The prominent band of 
NFATc1/αA, the inducible, short NFATc1 isoform, is indicated. (c) Staining of splenic CD8+ T cells from WT or Nfatc1flx/flxxCD4-cre mice activated for 24 h by αCD3/
CD28 Abs in vitro. Cytospins of cells were stained with Abs raised against F-actin or NFATc1 (7A6 mAb), and counter-stained by DAPI. One typical stain of more 
than 50 cells analyzed is shown. Bar, 10 µm.
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transplantation into Nfatc1P2Δ mice was detected on the same 
day as upon transplantation into WT B6 mice (Figure 1A). This 
led us to conclude that NFATc1/β proteins play a minor role in 
graft rejection.

In order to demonstrate that—as we assumed—the induction 
of the short NFATc1 isoform NFATc1/αA, the most prominent 
NFATc1 protein in cytotoxic T  cells (Figure  1B) (25), plays 
an important role in the rejection of allogeneic heart trans-
plants, we used caNfatc1-STOPflx/flx mice as recipients. Those 
mice express a constitutive active (ca) version of NFATc1/αA 
(caNFATc1) from the murine Rosa26 locus upon cre-mediated 
removal of a “floxed” STOP sequence (21). However, to our 
surprise (over-) expressing caNFATc1/αA in thymocytes of 
CD4-cre mice was not tolerated since all T  cells expressing 
solely caNFATc1/αA were eliminated during positive selection 
and did not appear in peripheral organs of mice (unpubl. data). 
Therefore, we crossed caNfatc1-STOPflx/flx mice with dlck-cre x 
Nfatc1flx/flx mice that express cre under the control of distal lck 
promoter and, thereby, caNFATc1/αA in peripheral T cells (but 
no endogenous NFATc1). In peripheral CD8+ T cells from all 
dlck-cre x Nfatc1flx/flx x caNfatc1-STOPflx/flx mice that we inves-
tigated, we observed caNFATc1/αA expression. In addition, 
each transplantation of allogeneic BALB/c hearts into dlck-cre 
x Nfatc1flx/flx x caNfatc1-STOPflx/flx mice led to acute rejection 
around day 9 (mean survival time, MST), comparable to MST 
observed in C57BL/6 WT mice expressing endogenous NFATc1 
(Figures 2A,B).

Compared to the sustained survival of allogeneic transplanted 
hearts in the majority of Nfatc1flx/flx x CD4-cre recipient mice for 
60 days and longer (Figure 1A), we detected a long-term survival 
(>60 days) of heart allografts in two out of five dlck-cre x Nfatc1flx/flx  
recipient mice (Figure  2A). In immunoblots using protein of 
activated CD8+ T cells from five dlck-cre x Nfatc1flx/flx mice, we 
detected numerous, albeit weak bands with the same or a similar 
size of the endogenous NFATc1 (Figure 2C). This might be due 
to an incomplete ablation of endogenous NFATc1 in splenic 
CD8+ T cells of dlck-cre x Nfatc1flx/flx mice. A deletion efficiency 
of approximately 80% has been reported for the dlck-cre line 
in CD8+ T cells, whereas a markedly higher efficiency rate was 
detected for the murine CD4-cre line (33).

nFaTc1 ablation in T cells leads to a 
Decrease in Transcripts of genes of  
T cell activation signature in gics
In allogeneic BALB/c hearts, we observed a threefold to fivefold 
increase of GICs at days 5 and 6 during the acute rejection phase, 
compared to the number of GICs in transplanted syngeneic hearts 
(Figures  3A,B). However, approximately the same number of 
GICs we detected in allogeneic hearts transplanted into Nfatc1flx/flx  
x CD4-cre mice (Figure  3B), and in long-term accepted heart 
transplants (>100 days after transplantation) a further decrease 
in number of GICs was detected (Figure  3B). Compared to 
GICs isolated from rejected hearts, the cytotoxicity of GICs from 
accepted hearts of Nfatc1flx/flx x CD4-cre mice was significantly 
impaired, reaching approximately one-third of cytotoxicity of 
GICs from rejected hearts (Figure 3C).

To define molecular targets of NFATc1 in GICs of transplanted 
hearts, we determined by next-generation sequencing (NGS) the 
transcriptomes of GICs isolated from syngeneic and allogeneic 
grafts on day 5 after transplantation, i.e., during the acute rejection 
phase of allogeneic grafts, and from allogeneic grafts of Nfatc1flx/flx  
x CD4-cre mice. Some of the B6 WT recipients of allogeneic grafts 
were treated with CsA (n = 5). In GICs from untreated allografts, 
the transcript levels of T cell signature genes (e.g., of Cd3g,d,e, 
Cd4, Cd8a,b, and Il2ra,rb genes) and of genes coding for signal 
molecules in T cells (of Lck, Zap70, and Fyn genes) were found 
to be increased, compared to GICs from syngeneic mice. In GICs 
from Nfatc1fl/fl x CD4-cre and CsA-treated WT recipients the 
transcript levels were lower, compared to GICs from untreated 
allogeneic recipients (Figure 4A). This is also true for the Gzmb 
and Prf1 genes encoding the most prominent granzymes and 
perforins in CTLs.

The rejection of heart allografts is executed by various subsets 
of cells of adaptive and innate immune system. The population 
of GICs has been characterized by flow cytometry (34) but not 
at the transcriptome level. We hypothesized that the transcrip-
tion of numerous genes that control signaling pathways for the 
activation, survival, and migration of GICs become activated in 
the majority of GICs, and suppressed by CsA. Analyses of signal-
ing pathway activity (Figure 4B) revealed the expected activation 
and CsA-sensitivity of several T cell activation pathways, includ-
ing the signatures of NK  cell activity and activation of CD28 
co-stimulatory pathway (35). Among them are the NF-κB and 
NFAT signatures that were found to be activated during the acute 
rejection phase. However, while NF-κB signaling remained unaf-
fected, NFAT signaling in GICs was markedly suppressed by CsA 
treatment and in Nfatc1flx/flx x CD4-cre mice (Figure 4B). From 
these data, one may conclude that NFAT signaling is a major CsA-
sensitive transcriptional pathway activated in GICs during acute 
rejection phase of fully allogeneic heart transplants.

Among the genes whose transcript levels increased upon 
transplantation and decreased by CsA treatment or NFATc1 abla-
tion, there were numerous genes that encode enzymes of aerobic 
glycolysis (Figure  4C). This metabolic switch from OXPHOS 
to aerobic glycolysis is a typical sign of activated lymphocytes 
which have a high demand for energy and cellular building 
blocks, such as nucleotides and amino acids (36). To elucidate 
whether NFATc1 indeed plays a role in the control of aerobic 
glycolysis, we studied glycolysis by extracellular flux analysis in 
WT and Nfatc1−/− CD8+ T cells from dlck-cre x Nfatc1flx/flx mice 
that we used in transplantation experiments (Figure 2A). As seen 
in Figure 4D, NFATc1 ablation in peripheral T cells by dlck-cre 
led to a marked decrease in ECAR which reflects the metabolic 
switch to glycolysis upon T cell activation. However, when—on 
the background of deficiency of endogenous NFATc1—the 
ca version of NFATc1/αA was expressed (Figure  4B), ectopic 
expression of NFATc1/αA exerted an overall increase in ECAR 
(Figure 4D), reflecting a stimulation of glycolysis and glycolytic 
capacity of CD8+ T cells by NFATc1/αA. These data suggest that 
NFATc1 supports the switch from OXPHOS to aerobic glycolysis 
during activation of peripheral CD8+ T cells. They are in line with 
the observation that inhibiting aerobic glycolysis in T cells sup-
pressed the rejection of allogeneic heart transplants (37).
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FigUre 2 | Expression of NFATc1/αA in peripheral T cells leads to rejection of allogeneic heterotopic heart transplants. (a) Allogenic heart grafts (of BALB/c  
mice) were transplanted into five dlck-cre x Nfatc1flx/flx mice, or five dlck-cre x Nfatc1flx/flx x caNfatc1-STOPflx/flx mice expressing a constitutive active (ca) version of 
NFATc1/αA in peripheral T cells. (B) Immunoblots showing the expression of caNFATc1/αA in CD8+ T cells from two out of five dlck-cre x Nfatc1flx/flx x caNfatc1-
STOPflx/flx mice. In lanes 1 and 6, cytosolic protein, in lanes 2, 3, and 7 nuclear protein from wild-type (WT) CD8+ T cells stimulated by αCD3/CD28 antibodies (Abs) 
in vitro for 2 days was fractionated. In lanes 4 and 8, cytosolic protein, and in lanes 5 and 9 nuclear protein of CD8+ T cells activated for 2 days from dlck-cre x 
Nfatc1flx/flx x caNfatc1-STOPflx/flx mice was fractionated. (c) Immunoblot showing NFATc1 expression in CD8+ T cells from five dlck-cre x Nfatc1flxl/flx mice. In lane 1, 
whole cell protein of WT CD8+ T cells stimulated by αCD3/CD28 Abs in vitro for 2 days was fractionated, in lanes 2–6, whole cell protein of activated CD8+ T cells 
from dlck-cre x Nfatc1flx/flx mice.
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We were also interested in elucidating whether the transplan-
tation of an allogeneic heart at d6, i.e., during the acute rejection 
phase, affected the peripheral T cell compartment in WT mice, 
in WT mice treated with CsA and in Nfatc1flx/flx x CD4-cre mice 

bearing NFATc1-deficient T cells. However, upon transplantation 
we detected only subtle differences in the composition of splenic 
T cells from these three types of mice (Figure S3 in Supplementary 
Material).
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FigUre 3 | Graft-Infiltrating Cells (GICs) in transplanted hearts. (a) Representative hematoxylin–eosin stains of grafts from syngeneic and allogeneic wild-type  
(WT) recipients, and from Nfatc1flx/flx x CD4-cre recipients during the acute rejection phase (d5), and from Nfatc1flx/flx x CD4-cre recipients at d110. Bar, 300 µm.  
(B) Quantification of GICs in transplanted allogeneic hearts with (+) and without (−) cyclosporin A (CsA) treatment of animals. (c) Cytotoxicity of GICs. Luciferase 
assays were performed after cultivation of MOPC-luciferase target cells together with equal numbers of GICs isolated from WT or Nfatc1flx/flx xCD4-cre recipient  
mice during the acute rejection phase (d6, effector/target ratio 4/1, followed by 20 or 36 h incubation).
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FigUre 4 | Cyclosporin A (CsA)-sensitive nuclear factors of activated T cell (NFAT) signaling is a major transcriptional pathway in Graft-Infiltrating Cells (GICs) from 
allogeneic heterotopic heart transplants. Syngeneic (C57BL/6, Syn) or fully allogeneic (BALB/c, Allo) heart grafts were transplanted into wild-type (WT) or NFATc1-
deficient (Nfatc1flx/flxxCD4-cre) C57BL/6 recipients. A subgroup of WT recipients was treated daily with CsA (15 mg/kg, Allo CsA). GICs were purified during acute 
rejection phase (d5) and subjected to next-generation sequencing (NGS) assays. (a) RNA expression profiles (“heat map”) of T cell signature genes. GICs were 
purified from syngeneic recipients (lane 1), allogeneic recipients in the absence or presence of CsA (lanes 2 and 3, respectively), and from recipients bearing 
Nfatc1−/− T cells (lane 4). Their RNAs were isolated and subjected to NGS. (B) Ingenious Pathway Analyses. Expression data were normalized to the transcriptome 
of GICs in syngeneic transplantations. (c) RNA expression of genes encoding glycolytic enzymes. (D) Extracellular flux analyses of activated CD8+ Ts from WT and 
dlck-cre x Nfatc1flx/flx mice (left), and from WT and dlck-cre x Nfatc1flx/flx x caNfatc1-STOPflx/flx mice (right). Data of three independent assays are shown.
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nFaTc1 controls the expression  
of Cxcr3 gene
The expression of chemokines and chemokine receptors plays 
a crucial role in the migration of peripheral T cells to inflamed 

organs. Cxcr3 expression was shown to determine the balance 
between effector and memory T  cells (38) and to be required 
for acute allogeneic heart rejection (12). Histochemical stains 
of Cxcr3 expression revealed high levels of Cxcr3 in cells of 
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FigUre 5 | The Cxcr3 gene is a direct NFATc1 target. (a) Representative immune histochemical stains of Cxcr3. Syngeneic (Syn) or allogeneic (Allo) heart grafts 
were transplanted into wild-type (WT) or cyclosporin A (CsA)-treated WT mice, or in recipient mice bearing NFATc1-deficient T cells (Nfatc1flx/flx x CD4-cre). Grafts 
and graft-infiltrating cells (GICs) were analyzed during the acute rejection phase on day 5. Bar, 500 µm. (B) Next-generation sequencing assays. Normalized RNA 
expression of Cxcr3 gene and of relevant ligand genes—Cxcl9, Cxcl10, and Cxcl11—in the transcriptome of GICs. RPKM, reads per kilobase per million reads.  
(c) Induction of Cxcr3 transcripts in CTL cells derived from WT, Nfatc1flx/flx x CD4-cre or Nfatc2−/− mice. Real-time PCR assays of RNAs were normalized to  
Actb expression. (D) Genomic organization of the Cxcr3 locus. The distribution of epigenetic modification histone mark H3K27Ac and the presence of DNaseI 
hypersensitive sites in non-expressing and cells expressing (as Th1 cells) is indicated. (e) Binding of NFATc1/A-Bio and NFATc2 (39) to the Cxcr3 locus in CTLs. 
ChIP seq assays using a bacterial artificial chromosome transgenic mice expressing NFATc1/A-Bio protein (see Figure S4 in Supplementary Material).
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allogeneic heart transplants whereas a strong decrease in Cxcr3 
levels was observed in heart allografts of CsA-treated B6 WT 
or in Nfatc1flx/flx x CD4-cre mice (Figure  5A). In addition, the 

data of transcriptome assays showed a strong increase in Cxcr3 
transcripts in GICs isolated from allogeneic heart transplants 
and much less Cxcr3 transcripts in GICs isolated from hearts 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


10

Baur et al. NFATc1 Rejects Heart Allografts

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1338

transplanted into CsA-treated or Nfatc1flx/flx x CD4-cre mice 
(Figure 5B). These findings are supported by quantitative real-
time polymerase chain reaction assays of RNAs from murine 
CTLs that show a marked decrease of Cxcr3 transcripts in 
Nfatc1−/− CTLs (Figure 5C).

In murine T  cells, the Cxcr3 locus is characterized by 
numer ous DNase I hypersensitive chromatin sites in front of 
the Cxcr3 gene, and extended H3K27 acetylation both in front 
and within the gene (Figure  5D). However, we were unable 
to trans-activate the immediate upstream promoter region 
(spanning the nucleotides from +250 to −2100) cloned in front 
of a luciferase reporter gene by NFATc1 (over-) expression in 
Jurkat T cells (data not shown). ChIP seq assays of CTLs that 
were generated in  vitro from splenic CD8+ T  cells of a novel 
tg mouse line expressing NFATc1/A-Bio protein (Figure S4 in 
Supplementary Material) (25) revealed strong NFATc1 binding 
downstream of the Cxcr3 gene, approximately 1 kb 3′ from its 
poly A addition site (Figure 5E, below). These data suggest that 
NFATc1 plays a critical role in the expression of Cxcr3 gene in 
T cells (Figure 5A). Moreover, the data suggest that in part the 
effect of NFATc1 on heart allograft rejection is mediated by 
Cxcr3 expression.

DiscUssiOn

The findings of our study presented here showed that ablation of 
Nfatc1 induction in T cells prevented the rejection of heterotropic 
heart transplants. In contrast, the expression of a ca version 
NFATc1/αA in T cells supported heart graft rejection indicating 
an important function for NFATc1/αA in the T  cell-mediated 
immune reaction against allogeneic heart grafts.

The deficiency of NFATc1 in recipient mice resulted in an 
impaired infiltration of graft and decreased cytotoxicity of 
GICs. While during acute heart rejection GICs correspond to 
lymphocytes, monocytes, and neutrophils (40), organ graft 
rejection is a T  cell-dependent process (41, 42) and a massive 
CD8+ T cell infiltration and a high ratio of CD8+/CD4+ cells was 
reported for heart allograft rejection in mice (43). The fate of 
organ transplants is determined to a large part by the number 
of effector T cells. Regulatory T cells (Tregs) that are known to 
control the activation and expansion of effector T cells can also 
affect the fate of a transplanted organ. In a MHC class II- mis-
matched cardiac allograft model, acute rejection of the donor 
heart grafts was inhibited by CD4+CD25+ Tregs that restricted 
the clonal expansion of alloreactive T cells (44). While we did not 
observe an effect of NFATs on the generation of thymus-derived 
naturally occurring regulatory T cells (nTreg), the generation of 
peripherally induced Treg by TGF-β was highly dependent on 
NFAT expression (15). However, neither inactivation of NFATs 
did impair the suppressive capacity of Tregs (15, 45), nor did 
activation of Tregs lead to any NFATc1/αA induction (46). These 
findings prompted us to conclude that Tregs play only a minor, if 
any role during induction of transplant tolerance in mice bearing 
NFATc1-deficient T cells.

One may hypothesize that due to the MHC I and II mismatches 
of allogeneic graft, NFATc1 expression is rapidly induced in 
T  lymphocytes of peripheral lymphoid organs, in particular in 

spleen (47). This might lead to the fast re-stimulation of effector 
CTLs and their migration into the allograft in which CTLs destroy 
the graft (48, 49). Among the “best” target genes of NFATc1 that 
we determined by NGS and ChIP seq assays of murine CTLs gen-
erated in vitro we detected numerous lymphokine, chemokine, 
and chemokine receptor genes (25). We showed here that the 
expression of Cxcr3 gene, which was shown previously to play 
an important role in acute allograft rejection (12) is controlled 
by NFATc1 in T cells. However, Cxcr3 is not the only molecule of 
chemokine network that affects heart transplants (50). Ablation 
of Ccr4, a further chemokine receptor, led to prolonged survival 
of allogeneic murine hearts in a chronic transplant model (51), 
and priming of T  cells through the receptor of hepatocyte 
growth factor, c-Met, in vitro resulted in the generation of “T cell 
cardiotropism,” including Cxcr4 and Ccr4 expression (52). The 
priming through c-Met affected also the expression of Ccl3 and 
Ccl4, two ligands of chemokine receptor Ccr5 that are strongly 
induced by NFATc1 in murine CTLs (25). Among the direct 
targets immediately downstream of NFATc1 in T cells is the Irf4 
gene (25). The TF IRF4 has been shown recently to control the 
rejection of allogeneic murine hearts upon heterotopic trans-
plantation (53).

In summary, our data show that ablation of Nfatc1 induction 
in T cells is sufficient to prevent the rejection of allogeneic heart 
transplants, whereas (over-) expressing NFATc1/αA led to ful-
minant rejection. These findings favor NFATc1/αA as molecular 
target to prevent graft rejection upon heart transplantation.
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