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CD4+Foxp3+ Treg cells are essential for maintaining self-tolerance and preventing exces-
sive immune responses. In the context of Th1 immune responses, co-expression of 
the Th1 transcription factor T-bet with Foxp3 is essential for Treg cells to control Th1 
responses. T-bet-dependent expression of CXCR3 directs Treg cells to the site of inflam-
mation. However, the suppressive mediators enabling effective control of Th1 responses 
at this site are unknown. In this study, we determined the signature of CXCR3+ Treg cells 
arising in Th1 settings and defined universal features of Treg cells in this context using 
multiple Th1-dominated infection models. Our analysis defined a set of Th1-specific 
co-inhibitory receptors and cytotoxic molecules that are specifically expressed in Treg 
cells during Th1 immune responses in mice and humans. Among these, we identified the 
novel co-inhibitory receptor CD85k as a functional predictor for Treg-mediated suppres-
sion specifically of Th1 responses, which could be explored therapeutically for selective 
immune suppression in autoimmunity.

Keywords: Treg cells, cXcr3, T-bet, Th1, co-inhibitory receptors, cD85k, lag-3

inTrODUcTiOn

CD4+Foxp3+ regulatory T  cells (Treg) play a pivotal role in maintaining immune self-tolerance 
and homeostasis by modulating the action of T effector cell subsets. Defects in Treg cell function 
or numbers are key factors in the development of autoimmunity (1). During acute infections, Treg 
cells keep the delicate balance of allowing for effective anti-pathogenic immune responses and 
preventing immune pathology (2). In contrast, increased Treg numbers restrain protective immune 
responses in chronic infections and tumor settings, resulting in compromised pathogen and tumor 
clearance (3, 4).

The suppressive mechanisms of Treg cells are highly diverse and target various effector popula-
tions, depending on the context of their activation, the anatomical location, and specific environ-
mental signals. These functions include (i) the secretion of suppressive cytokines (IL-10, TGF-β, 
IL-35) (5, 6), (ii) competition for stimulatory signals with effector T cells and antigen-presenting 
cells (APCs) through high and sustained expression of co-inhibitory receptors (CTLA-4, PD-1) (7, 8)  
(iii) metabolic disruption (IL-2 deprivation, generation of pericellular adenosine through CD73 and 
CD39) (9) as well as (iv) granzyme-mediated cytolysis (10). In response to specific cues from the  
immune environment, Treg cells acquire co-expression of Foxp3 with T helper cell lineage-specific 
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transcription factors and che mokine receptors such as T-bet/
CXCR3 (Th1) (11), Stat3/CCR6 (Th17) (12), IRF4/CCR4 (Th2) 
(13), which enables them to differentiate into subsets that are 
functionally specialized for suppression of the corresponding 
effector responses.

During infections eliciting polarized Th1 responses, the cyto-
kines IFN-γ and IL-27 trigger expression of T-bet in Treg cells 
(11, 14). T-bet in turn promotes induction of the homing receptor 
CXCR3, which enables migration to sites of inflammation (11). 
While T-bet was initially thought to only be expressed transiently 
in the steady-state (15), recent work revealed that T-bet expressing 
Treg cells are stably maintained under physiological conditions 
(16). These Treg cells represent a distinct subset of highly acti-
vated cells with the capacity to selectively suppress production of 
Th1 cytokines, such as IFN-γ, by activated effector T cells (16).

While T-bet deficiency does not generally impair Treg func-
tion (17), T-bet-deficient Treg cells fail to specifically control Th1-
driven inflammation (11). These findings promoted the concept 
that Treg cells specialize parallel to their effector counterparts, 
which equips them with superior migratory and yet unknown 
functional properties that allow for tailored control of certain 
aspects of the immune response while leaving others intact. 
Importantly, these findings translate to the human system where 
CXCR3-expressing Treg cells represent a major fraction of the 
circulating effector/memory Treg population (18). Thus, this 
selectivity bears great therapeutic potential, as it allows for selec-
tive suppression of excessive Th1 responses such as those driving, 
e.g., type 1 diabetes, without the negative side effects of general-
ized immune suppression. However, it is critical to understand 
the fundamentals of the Treg specialization process and identify 
the molecules that serve as markers for the ability of Treg cells to 
exert this selective suppression.

In this study, we characterized the phenotype and function of 
specialized Treg cells arising in polarized Th1 immune environ-
ments upon different classes of infectious challenges. We show 
that responding Treg cells universally upregulate T-bet and 
CXCR3, are highly activated and exhibit a distinct transcriptional 
signature, most prominently enriched for a set of co-inhibitory 
receptors and mediators of cytotoxicity. Among those, Lag-3, the 
novel receptor CD85k, and Granzyme B were identified as gen-
eral markers of specialized CXCR3+ Treg cells across the different 
Th1-dominated infectious models in mice. These findings also 
translated to human Treg cells as we could observe induction of 
CD85k and Granzyme K on human Treg cells following influenza 
vaccination. Importantly, Treg cell expression of the Th1-specific 
co-inhibitory receptor CD85k correlates with their suppressive 
capacity specifically toward Th1 effector T cells. Hence, we have 
identified a set of Th1-specific co-inhibitory receptors induced 
in mouse and human Treg cells, of which the novel co-inhibitory 
receptor CD85k serves as a functional predictor for Treg-mediated 
suppression of Th1 responses.

MaTerials anD MeThODs

Mice, Pathogens, and infections
C57BL/6 (B6) mice were purchased from Janvier. Foxp3-GFP.KI 
reporter mice (19) and Rag1−/− have been described previously. 

All mice were housed and bred in SPF or OHB facilities at LASC 
Zurich, Switzerland. All experiments were reviewed and approved 
by the cantonal veterinary office of Zurich and were performed 
in accordance with Swiss legislation.

Lymphocytic choriomeningitis virus (LCMV) strain WE was  
propagated on L929 fibroblast cells, Vaccinia Virus (VV) on BSC40  
cells. An aflagellated mutant (ΔflaA) of Legionella pneumophila 
strain JR32 (20) was grown for 3 days at 37°C on charcoal yeast 
extract agar plates before use.

Sex- and age-matched mice of 6–12 weeks of age were infected 
with 200 pfu LCMV WE i.v., 2 × 106 pfu VV i.p., or 0.5 × 106 cfu 
of the L. pneumophila JR32 ΔflaA i.v.

For oropharyngeal C. albicans infection (OPC) the C. 
albicans laboratory strain SC5314 was grown in yeast peptone 
dextrose medium at 30°C for 15–18 h. Mice were infected with 
2.5 × 106 cfu C. albicans sublingually as described (21) without 
immunosuppression.

human samples
Peripheral venous blood was obtained from healthy volunteers 
in accordance with the Swiss laws for studies on human sub-
jects and the study was reviewed and approved by the cantonal 
ethics committee of Zurich (KEK-ZH-Nr. 2017-01813). Study 
participants were healthy subjects, 24–43  years old, were 
neither on medication nor pregnant, and did not have any 
pre-existing conditions. Appearance of disease symptoms 
resulted in study exclusion. Written informed consent was 
received from participants prior to inclusion in the study in 
accordance with the Declaration of Helsinki. Peripheral blood 
was collected from a cohort (n  =  18) of healthy volunteers 
before (day −1 or day 0) and 7 days after receiving the Fluarix 
Tetra® influenza vaccine (GlaxoSmithKline). Blood was col-
lected in EDTA tubes (BD) and processed for flow cytometry 
as described below.

Flow cytometry and cell sorting
Staining was performed on single cell suspensions from the 
indicated organs by extracellular staining for 20 min at RT, fixa-
tion/permeabilization for 45 min at RT using the Foxp3 Staining 
Buffer Set (eBioscience), followed by intracellular staining for 
40 min at RT.

For intracellular cytokine staining, isolated cells were 
restimulated using PMA, Ionomycin, and Brefeldin A or the 
LCMV-immunodominant peptides gp61 and gp33 (EMC micro-
collections) for 4 h at 37°C, before staining and fixation/permea-
bilization was performed using the BD Fixation/Permeabilization 
Solution kit (BD Bioscience).

For human samples, 3 ml of whole blood were washed twice 
with FACS buffer (PBS, 4 mM EDTA, 2% BSA) before lysis of red 
blood cells with ACK buffer (155 mM NH4Cl, 10 mM KHCO3, 
0.1  mM Na2EDTA, pH  =  7.4). Extracellular staining was per-
formed in FACS buffer for 30 min on ice, followed by fixation/
permeabilization for 30  min at RT using the Foxp3 Staining 
Buffer Set and subsequent intracellular staining in eBioscience 
Perm/Wash buffer for 1 h at RT.

All fluorescently labeled antibodies against murine CD4 (RM4-5 
or GK1.5), CD103 (2E7), CTLA-4 (UC10-4B9), PD-1 (J43), CD39 
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(Duha59), CD44 (IM7), CD73 (TY/11.8), CD8 (53-6.7), CD85k 
(H1.1), CXCR3 (CXCR3-173), Foxp3 (FJK-16s), GzmB (GB11), 
IFN-γ (XMG1.2), IL-17 (TC11-18H10.1), Ki-67 (16A8), Lag-3 
(C9B7W), T-bet (4B10), TIGIT (1G9), Tim-3 (R&D Systems), 
TNF-α (MP6-XT22) and against human CD3 (SK7), CD4 (SK3), 
CD127 (eBioRDR5), CD25 (M-A251), CXCR3 (G025H7), LAG-3 
(11C3C65), CD85k (ZM4.1), Tim-3 (F38-2E2), GzmB (GB11), or 
GzmK (G3H69) were purchased from BioLegend, eBioscience, or 
R&D Systems. The Zombie-NIR fixable dye was used to exclude 
dead cells. Data were acquired on a BD LSRFortessa or BD 
FACSCanto II cytometer (BD Bioscience) and analyzed using the 
Flowjo software (Flowjo, LLC). Cell sorting was performed on a 
BD FACS Aria III 5L cytometer (BD Bioscience).

analysis of rna-seq Data
CD4+ T cells were pre-purified from splenocytes and LNs of naïve 
or LCMV WE infected (day 14) Foxp3-GFP.KI reporter mice 
using anti-CD4 beads (Miltenyi) and CD4+Foxp3+CXCR3+ and 
CD4+Foxp3+CXCR3− cells were sorted by flow cytometry. RNA 
was extracted using the Qiagen RNeasy Micro Kit and libraries 
were prepared and sequenced by the Functional Genomics Center 
Zurich (Zurich, Switzerland). RNA-Seq reads were mapped to the 
mouse reference genome (Ensembl_GRCm38.75) using STAR 
(22) and sorted/indexed by samtools. Expression levels were 
quantified at the gene-level using the featureCounts function of 
the Rsubread package (23) (via NCBI Entrez IDs) and gene-level 
differential expression (DE) analysis was performed using edgeR 
(24). Targeted geneset (pathway) analysis was conducted using 
camera (25) on a subset of the genesets from the curated mouse 
version of MSigDB (26).

Quantitative real-Time Pcr (rT-Pcr)
RNA was extracted using the ReliaPrep RNA Tissue Miniprep 
System (Promega) and analyzed by RT-PCR according to the man-
ufacturer’s instructions (Applied Biosystems). Thermal cycling 
was performed with a C1000 Touch CFX384 Real-Time platform 
(Bio-Rad). Primers-probe mixtures were purchased from Applied 
Biosystems: Gzmb (Mm00442837_m1), GzmK (Mm00492530_
m1), Metrnl (Mm00522681_m1), Pdcd1 (Mm01285676_m1), 
Arnt2 (Mm00476009_m1), Fgl2 (Mm00433327_m1), Ccl5  
(Mm01302427_m1), Runx3 (Mm00490666_m1), Lilrb4 
(Mm01 614371_m1), Havcr2 (Mm00454540_m1), Lag3 
(Mm00493071_m1), Il12rb2 (Mm00434200_m1), Ebi3 (Mm0046 
9294_m1), Ccr5 (Mm01963251_s1), Ccl4 (Mm00443111_m1),  
and β-actin (Mm00446968-m1). For TIGIT, the following  
primers and probe were used: forward primer: 5′-CTGATACA 
GGCTGCCTTCCT-3′, reverse primer: 5′-TGGGTCACTTCAG 
CTGTGTC-3′, probe: 5′-AGGAGCCACAGCA GGCACGA-3′ 
(FAM, TAMRA).

Treg suppression assays and In Vitro  
T cell Differentiation
Cells were cultured in DMEM medium supplemented with 10% 
heat-inactivated FCS, 50 mM β-mercaptoethanol, 1 mM sodium 
pyruvate (Gibco), non-essential amino acids (Gibco), MEM  

vitamins (Gibco), penicillin (50  U/ml, Gibco), streptomycin 
(50  µg/ml, Gibco), gentamicin (50  µg/ml, Sigma-Aldrich), and 
2  mM glutamine (Gibco). CD4+ T  cells from splenocytes and 
LNs were isolated using anti-CD4 beads (Miltenyi). CD4+Foxp3− 
responder cells and CD4+Foxp3+ Treg cells were flow sorted from  
Foxp3-GFP.KI reporter mice based on GFP expression. CD4+ 
Foxp3− (4  ×  104/well) and CD4+Foxp3+ cells were cultured in 
triplicate in the presence of soluble anti-CD3 (1 µg/ml, BioXcell) 
and irradiated splenic APCs (2 × 105/well) at 37°C, 5% CO2. After 
48 h, cells were pulsed with 1 μCi [3H]thymidine (PerkinElmer) 
for an additional 18–22 h, harvested and [3H]thymidine incor-
poration was analyzed to assess proliferation. Percentage of 
suppression  =  (mean C.P.M. of wells with CD4+Foxp3− effec-
tors alone −  C.P.M. of well with the indicated ratio of effector 
T:Treg cells/mean C.P.M. of wells with CD4+Foxp3− effectors 
alone) × 100. Cytokine secretion was determined in supernatants 
using cytometric bead array according to the manufacturer’s inst-
ructions (BD Biosciences).

For in vitro differentiation of Th17 cells, cells were cultured in 
complete RPMI medium supplemented as above. CD4+ T cells 
(2 × 105/well) were isolated from pooled spleen and LNs of naïve 
C57/BL6 mice using anti-CD4 beads (Miltenyi) and cultured in 
the presence of soluble anti-CD3 (2 µg/ml, BioXcell), irradiated 
splenic APCs (1.2 × 106/well), IL-6 (25 ng/ml), and TGF-β (3 ng/
ml) at 37°C, 5% CO2 for 3–4 days. Cells were washed and cultured 
for 2–3 additional days in the presence of IL-23 (10 ng/ml) and 
correct differentiation was verified by intracellular cytokine stain-
ing after restimulation with PMA/Ionomycin in the presence of 
Brefeldin A on day 5–6 using flow cytometry.

adoptive cell Transfers
Total CD4+ T cells from infected and total CD4+ and CD8+ T cells 
from naïve Foxp3-GFP.KI mice were pre-purified from spleno-
cytes and LNs using anti-CD4 or Pan T  cell beads (Miltenyi), 
respectively. CD4+ and CD8+ effector T  cells were flow sorted 
as CD4+GFP− and CD8+ T cells, Treg cells from naïve mice as 
CD4+GFP+ and from days 12–14 LCMV-infected mice as CD4+ 
GFP+CD85k+ or CD4+GFP+CXCR3−CD85k+ Treg cells. 1 × 105 
Treg cells and 5 × 105 effector T cells each were adoptively trans-
ferred i.v. into Rag1−/− recipient mice.

Expansion and activation of effector T  cells was assessed 
10 days post transfer in the presence or absence of the indicated 
Treg subsets.

statistical analysis
Statistical significance was assessed using GraphPad Prism 6 soft-
ware. Differences between individual groups were determined 
using two-tailed Mann–Whitney test or between more than two 
groups using one-way ANOVA with Tukey’s multiple compari-
son post test. Statistical significance values indicated as follows: 
p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***). Power calculations 
were performed before the beginning of the experiments to deter-
mine the sample sizes for experiments using human samples or 
animals. Experiments were performed without randomization or 
blinding.
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Data availability
Raw data files from RNA-Seq experiments are available from 
the ArrayExpress database at EMBL-EBI via accession number 
E-MTAB-6156.

resUlTs

Th1-Dominated infections With Different 
classes of Pathogens Uniformly induce 
Treg specialization
T-bet expressing Treg cells have been shown to be essential for 
control of Th1 immune responses and are marked by expression 
of CXCR3 (11, 16). Less is known about the phenotypic charac-
teristics of this Treg subset or whether there are general markers 
that can serve as predictors of their suppressive capacity specifi-
cally toward Th1 responses. We, thus, first systematically analyzed 
whether the induction of T-bet+CXCR3+ Treg cells is a common 
feature of Th1 responses independent of the class of pathogen 
eliciting the immune response. To this end, we acutely infected 
wild-type mice with two viral and one bacterial pathogen that 
all elicit polarized Th1 responses (Figure S1A in Supplementary 
Material). LCMV induces an extremely potent Th1 response 
that is dominated by high levels of type I IFN (27), vaccinia 
virus (VV) infection is more dependent on IL-12 (28), and the 
immune response to systemic infection with the Gram-negative 
bacterium L. pneumophila (Lpn) requires IL-12 and IL-18 (29). 
We found Treg specialization into T-bet+CXCR3+ Treg cells to be 
a mutual feature of all three infections but the peak of activation 
was observed at different time points depending on the infectious 
setting (Figures 1A–D). In LCMV infection, expression of T-bet 
and CXCR3 in Treg cells peaked on day 10 and 14, respectively, 
while in VV and Lpn infection they peaked earlier, at around 
day 7. In all three infections, the peak in CXCR3 expression also 
coincided with peak expression of Treg effector molecules such 
as the ectonucleotidase CD39, the receptor CD103, which is 
expressed on activated and highly suppressive Treg cells (30), and 
the co-inhibitory receptors CTLA-4 and PD-1, which have also 
been shown to promote the suppressive function of Treg cells (31, 
32) (Figure 1E). Furthermore, peak expression of CXCR3 also 
coincided with enhanced Treg proliferation (Ki-67) and CXCR3+ 
Treg cells expressed high levels of the activation marker CD44 
(Figure 1E). The specialization into CXCR3+T-bet+ Treg cells is 
thus a common feature of Th1 responses, independent of the class 
of pathogen inducing it. Furthermore, CXCR3+T-bet+ Treg cells 
represent a highly activated Treg subset with high expression of 
Treg signature molecules.

Transcriptional Profile of Treg cells During 
lcMV infection
To obtain a more comprehensive and unbiased view of the func-
tional and phenotypic properties of T-bet+CXCR3+ Treg cells 
arising in Th1 responses, we performed in depth transcriptional 
profiling of CXCR3+ Treg cells using RNA-Seq analysis. RNA-Seq 
samples were sorted from LCMV-infected mice as the induction 
of the CXCR3+ Treg subset was strongest in this infection model. 

Comparison between CXCR3+ Treg cells isolated from LCMV-
infected mice at the peak of their activation (day 14) and naïve 
Treg cells revealed distinct transcriptional profiles that clustered 
according to the two groups and showed 692 up- and 1,475 
downregulated genes in CXCR3+ Treg cells (absolute fold change 
≥2, estimated false discovery rate <5%; Figures 2A,B; Figure S2 
and Table S1 in Supplementary Material). Control transcripts 
for Cxcr3 and Tbx21 were highly enriched in the CXCR3+ Treg 
population while levels of lineage-specific genes, such as Foxp3 
were comparable in CXCR3+ and naïve Treg cells, confirming 
their purity. Differentially expressed genes could be catego-
rized into several functional groups (Figure 2C) and included 
genes coding for chemokines, cytokines, and their receptors, 
transcription factors, co-stimulatory/-inhibitory receptors and 
genes related to Treg function (Figure 2D). Pathway analysis of 
a targeted set of curated genesets suggested an enrichment of 
genes related to T cell exhaustion (Figure 2E), which is marked 
by expression of multiple co-inhibitory receptors (33, 34). 
CXCR3+ Treg cells expressed higher levels of these receptors 
than naïve Treg cells and included receptors that are known to 
enhance or modulate Treg function such as Tim-3, Lag-3, and 
TIGIT (35–39). In addition, we also observed a strong induc-
tion of CD85k (also known as LILRB4, ILT3, or gp49B), a novel 
co-inhibitory receptor, which has not previously been linked 
to Treg function. Differential expression of these co-inhibitory 
receptors could be confirmed on a transcriptional (Figure 3A) as 
well as on the protein level (Figure 3B). Importantly, differential 
expression was not uniformly observed among co-inhibitory 
receptors contributing to Treg function, but was limited to a 
selection of co-inhibitory receptors as expression of, e.g., PD-1 
and CTLA-4 was comparable between CXCR3+ and CXCR3− 
Treg cells (Figure  3B). In addition to enhanced expression of 
co-inhibitory receptors, pathway analysis also implicated an 
enrichment of genes relating to cytotoxicity in CXCR3+ Treg cells 
(Figure  2F). Induction of cell death in effector cells is indeed 
one of the suppressive mechanisms employed by Treg cells  
(10, 40) and we could observe an induction of Granzymes in 
CXCR3+ Treg cells both at the transcriptional (Figure 3C) and on 
the protein level (Figure 3D). Taken together, CXCR3+ Treg cells 
show a distinct transcriptional profile and upregulate a specific 
set of co-inhibitory receptors and cytotoxic effector molecules 
that might contribute to their ability to suppress Th1 responses.

Th1 infections induce common changes 
in Treg cells
Next, we wanted to test if induction of the co-inhibitory recep-
tors and cytotoxic effector molecules upregulated during LCMV 
infection was a common feature of Th1-dominated immune 
responses. We thus analyzed the expression of these proteins in 
the three different models of Th1-dominated infections—LCMV 
(viral infection, strong type I IFN), VV (viral infection, weak type 
I IFN), and Lpn (bacterial infection). While upregulation of the 
co-inhibitory receptor TIGIT was LCMV-specific, induction of 
Tim-3, CD85k, Lag-3, and Granzyme B was universally observed 
in all three Th1 responses (Figures 4A,B).
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FigUre 1 | CD4+Foxp3+ Treg cells specialize into T-bet+CXCR3+ Treg cells during Th1-dominated infections. C57BL/6 mice were acutely infected with LCMV WE 
(blue), Legionella pneumophila (Lpn, red), Vaccinia Virus (VV, black), or left naïve and expression of T-bet and CXCR3 (a–D) or the cell surface markers CD39, CD73, 
CTLA-4, PD-1, CD103, and activation/proliferation markers CD44 and Ki-67 (e) among live CD4+Foxp3+ Treg cells was determined by flow cytometry. (a–c) 
Frequencies of CD4+Foxp3+CXCR3+ or CD4+Foxp3+T-bet+ Treg cells over time and (D,e) peak expression levels of the indicated markers among splenic 
CD4+Foxp3+ Treg cells and representative FACS plots at the peak of activation (Lpn: days 5–7; VV: days 7–10; LCMV: days 10–14) or in naïve controls are depicted 
[mean ± SD, naïve: n = 10, Lpn, VV, LCMV: n = 4–5, biological replicates; plots display one representative of >3 independent experiments; *p < 0.05, **p < 0.01, 
***p < 0.001 (Mann–Whitney test)].
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FigUre 2 | CXCR3+ Treg cells show a distinct transcriptional profile. (a–D) Transcriptional profiling of CD4+Foxp3+CXCR3+ Treg cells from day 14 LCMV-infected 
mice and naïve CD4+Foxp3+ Treg cells sorted from pooled spleen and LNs of Foxp3-GFP reporter mice was performed using RNA-seq analysis. (a) Heat map of 
differentially expressed immune genes (log2 FC > 1, log2 cpm > 2). (B) Differential gene expression between CXCR3+ and naïve Treg cells. Control genes (blue), 
co-inhibitory receptor genes (red), and other immune genes (orange) are highlighted. (c) Pie-chart of differentially expressed genes (log2 FC > 1, log2 cpm > 2) 
assigned to the stated GO slim terms. (D) Heat map of transcription factor, chemokine (receptor) and cytokine (receptor), and Treg function related genes that are 
differentially expressed (log2 FC > 1, log2 cpm > 2) in CXCR3+ versus naïve Treg cells. (e,F) “Barcode” plots of changes in expression (CXCR3+ versus naïve Treg 
cells) in the context of T cell exhaustion (e) and cytotoxicity (F) pathways. Genes are ordered by Z-score (using p-values from the edgeR differential expression 
analysis, signed by the direction of change) and the genes within the pathway are shown with vertical black bars. The top line shows the relative enrichment of the 
vertical bars.
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To determine whether expression of these proteins was specific 
for Th1 settings or also observed in other immune environments, 
we compared Treg dynamics during Th1-dominated infections 
with those of oral Candida albicans infection, which elicits a 
polarized Th17 response (Figure S1B in Supplementary Material). 
Expression of CD85k and Lag-3 as well as Granzyme B was indeed 
restricted to Th1-dominated immune responses and could not be 

observed in the Th17-dominated setting of C. albicans infection. 
In contrast, a slight induction of Tim-3 could also be observed 
upon C. albicans infection, indicating that Tim-3 expression is 
not specific for Treg cells arising in Th1 settings (Figures 4A,B).

We next looked at the dynamics of expression of these 
molecules on Treg cells during the different Th1 responses 
(Figures  4C,D). Lag-3 and Granzyme B were already induced 
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FigUre 3 | CXCR3+ Treg cells express a specific set of co-inhibitory receptors and cytotoxic molecules. Differential expression of a selection of genes coding for 
co-inhibitory receptors and granzymes was determined in pooled spleens and LNs from naïve or day 14 LCMV-infected mice. (a,c) Transcriptional expression levels 
were quantified by qPCR in sorted CXCR3+, CXCR3−, naïve Treg cells, and CD4+Foxp3-GFP− effector T cells and (B,D) protein levels in CXCR3+ and CXCR3− Treg 
cells were determined by flow cytometry (n.d., not detected).
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very early in the immune response and their expression was 
very transient. In contrast, CD85k peaked at later time points 
and was more sustained. Interestingly, while expression kinetics 
of CXCR3 differed depending on the infection, peak expression 
of Lag-3 and CD85k occurred at similar time points in all three 
infections. Expression kinetics of Tim-3 again followed the 
same kinetics as CXCR3, suggesting that Tim-3 might represent 
a general activation marker for Tregs. We have thus identified 
induction of the co-inhibitory receptors CD85k and Lag-3 as well 
as Granzyme B as a general feature of Treg specialization in Th1 
responses across different classes of pathogens while Tim-3 is 
more broadly expressed in different immune environments. The 
different expression kinetics of the Th1-specific markers suggest 
that these molecules might have more dominant functional roles 
at different time points in the immune response.

Th1-specific co-inhibitory receptor 
expression correlates With enhanced 
suppression of Th1 cells
Th1-dominated immune responses uniformly induced differ-
entiation of Treg cells to express CXCR3 and T-bet (Figure 1).  
CXCR3 has been suggested to enhance the ability of Treg cells 
to suppress Th1 responses by allowing CXCR3+ Treg cells to 
co-localize with CXCR3+ Th1 effector cells (16). To determine 
whether in addition to this spatial aspect CXCR3+ Treg cells 
might represent a Treg subset with superior suppressive function 
toward Th1 effector cells, we compared the ability of CXCR3+ 
and CXCR3− Treg cells to suppress CD4+CD62L+ naïve or 

CD4+CD44+ Th1 effector cells. When comparing the ability to 
suppress naïve CD4+CD62L+ effector cells there was no differ-
ence between CXCR3+ Treg cells isolated at the peak of LCMV 
infection (days 10–14) and Treg cells isolated from naïve mice 
(Figure 5A). However, CXCR3− Treg cells from LCMV-infected 
mice displayed inferior suppression. We then tested whether 
CXCR3+ Treg cells might be specifically equipped to suppress 
Th1 responses and show superior suppressive capacity against 
Th1 effector cells. When compared to their CXCR3− counterparts 
or Treg cells derived from naïve animals, CXCR3+ Treg cells 
indeed showed superior suppression of CD4+CD44+ Th1 effector 
cells derived from LCMV-infected mice in  vitro (Figure  5B). 
Proliferation as well as IFN-γ secretion by Th1 effector T  cells 
was more potently suppressed by CXCR3+ Treg cells (Figure 5B; 
Figure S3A in Supplementary Material). In addition to their abil-
ity to co-localize with CXCR3+ Th1 effector cells, CXCR3+ Treg 
cells thus also show enhanced suppressive function specifically 
toward Th1 effector cells.

We found co-inhibitory receptors to be highly induced in 
CXCR3+ Treg cells (Figures 2 and 3). As many co-inhibitory recep-
tors have been shown to functionally contribute to suppression  
by regulatory T cells (31, 32, 38), we next set out to determine 
whether the identified Th1-specific co-inhibitory receptors could 
serve as predictors of functionality for Treg-mediated suppres-
sion of Th1 effector cells. We sorted co-inhibitory receptor posi-
tive or negative Treg cells within the CXCR3+ and CXCR3− Treg  
populations and compared their suppressive function against CD4+  
Th1 effector cells derived from LCMV-infected mice. Indeed, the 
Th1-specific co-inhibitory receptors CD85k and Lag-3 both serve 

https://www.frontiersin.org/Immunology/
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as markers of Th1-suppressive Treg subsets as CD85k+CXCR3−  
and Lag-3+CXCR3− Treg cells showed a higher suppressive 
capacity toward Th1 effector cells than CD85k−CXCR3− or Lag-
3−CXCR3− Treg cells, respectively (Figures 5C,D). This superior 

suppression not only affected proliferation but also extended to 
increased suppression of IFN-γ secretion, although for Lag-3 
this did not reach significance. In contrast, no enhancement of 
suppression was observed for CD85k or Lag-3 expressing Treg 

FigUre 4 | Continued
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FigUre 4 | Expression of co-inhibitory receptors and granzymes is a mutual feature of Th1-driven Treg specialization. C57BL/6 mice were acutely infected with 
LCMV WE (blue), Legionella pneumophila (Lpn, red), Vaccinia Virus (VV, black), C. albicans (yellow), or left naïve and expression of the co-inhibitory receptors Tim-3, 
CD85k, Lag-3, and TIGIT (a,c), or granzyme B (B,D) among live CD4+Foxp3+ Treg cells was determined by flow cytometry. (a,B) Peak expression levels of (a) 
TIGIT, CD85k, Lag-3, Tim-3, and (B) granzyme B among splenic CD4+Foxp3+ Treg cells (Lpn: day 5–7; VV: day 7–10; LCMV: day 10–14) or among CD4+Foxp3+ 
Treg cells isolated from cervical LNs (C. albicans, day 7). (c,D) Frequencies of CD4+Foxp3+ Treg cells expressing the indicated markers over time or in naïve controls 
are depicted. Summary data (mean ± SD; biological replicates; LCMV, VV and Lpn n = 5; C.a n = 6; naïve spleen n = 10, naïve LN n = 3) and representative plots 
of >3 (LCMV, VV) or two (Lpn, C. albicans) independent experiments are shown (*p < 0.05, **p < 0.01, ***p < 0.001) (Mann–Whitney test).
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cells within the CXCR3+ Treg population. This is likely due to 
high expression of other co-inhibitory molecules that can serve 
as predictors of Th1 suppression as these are, not completely, 
but to a large degree co-expressed in CXCR3+ Treg cells 
(Figures  5C,D, right panels; Figures S3B,C in Supplementary 
Material). Given that we observed increased suppression of Th1 
proliferation as well as cytokine secretion by CD85k+CXCR3− 
Treg cells, we next tested whether this effect was specific for the 
suppression on Th1 cells. Indeed, suppression of Th17 cells was 
comparable between CD85k+ and CD85k− Treg cells (Figure S3D 
in Supplementary Material). CD85k expression in Tregs thus 
correlates with the suppressive capacity specifically toward Th1 
effector responses.

Although Tim-3 expression is not Th1-specific and induction 
of TIGIT was limited to LCMV infection, we also tested whether 
expression of Tim-3 or TIGIT correlates with suppressive func tion 
toward Th1 effector cells. We observed augmented suppression 
by Tim-3 or TIGIT expressing Treg cells (Figures 5E,F; Figure 
S3B in Supplementary Material), which is in line with previous 
reports showing enhanced suppression by Tim-3+ and by TIGIT+ 
Treg subsets in different settings (35, 38). In conclusion, among 
the identified Th1-specific co-inhibitory receptors, CD85k serves 
as a predictor of enhanced and selective in vitro suppression of 
Th1 effector cells, while Tim-3 and TIGIT expression in Treg cells 
correlates with a generally enhanced suppressive function.

Given that the function of CD85k has thus far not been 
explored in Treg cells, we next tested the suppressive capacity 
of CD85k+ Treg cells in Th1 responses in vivo. CD4+ and CD8+ 
effector T cells and either CD85k+ or CD85k−CXCR3− Treg cells 
(LCMV, days 12–14) or naïve Treg cells were co-transferred into 
Rag1-deficient mice and the suppression of effector cell expan-
sion and activation in the lymphopenic host was analyzed 10 days 
later (Figure S4 in Supplementary Material). Unlike what was 
observed in vitro, the suppression by the different Treg subsets 
was comparable in this setting, as effector cell expansion and their 
secretion of IFN-γ was inhibited to a similar degree by all three 
Treg populations (Figure 6A). However, analysis of the recovered 

Treg cells revealed that expression of CD85k as well as the co-
inhibitory receptors Lag-3 and Tim-3 is highly dynamic in vivo. 
In mice that had received CD85k+ Treg cells, the frequency of 
co-inhibitory receptor positive Treg cells quickly dropped to 
the frequencies observed at the peak of a Th1 response, while 
CD85k−CXCR3− and naïve Treg cells rapidly upregulated these 
receptors (Figures 6B,C). CD85k+ Treg cells thus do not represent 
a terminally differentiated population but remain highly plastic 
and can rapidly downregulate CD85k expression. Expression of 
the identified set of Th1-specific co-inhibitory receptors is thus 
highly dynamic in  vivo and expression levels rapidly change 
under inflammatory conditions.

Th1-specific co-inhibitory receptors and 
cytotoxic Molecules are induced During 
Th1 responses in humans
Having identified predictors of Th1 suppression in mouse Treg 
cells, we next investigated whether these molecules would also 
be induced in human Treg cells upon Th1 immune responses. In 
order to be able to compare expression before and at the peak of 
an ongoing Th1 response, we analyzed changes induced by influ-
enza vaccination, which induces a Th1 response (41). In contrast 
to Treg cells from naïve SPF mice, human CD4+CD127lowCD25+ 
Treg cells in peripheral blood already express a substantial 
amount of CXCR3 at steady state and influenza vaccination did 
not induce significant changes in their frequency (Figure  7A; 
Figure S5 in Supplementary Material). In contrast, we detected 
a small but significant increase in the fraction of Treg cells 
expressing CD85k and TIGIT (Figure 7B). In line with previous 
reports (35, 42), expression levels for Tim-3 and LAG-3 in the 
blood were very low and we could not observe an induction after 
influenza vaccination. In contrast, expression of Granzyme K was 
significantly increased upon influenza vaccination (Figure 7C). 
Human and mouse Treg cells thus undergo similar changes 
during Th1 responses and are marked by increased expression of 
the Th1-specific co-inhibitory receptor CD85k and Granzyme K, 
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FigUre 5 | CXCR3+ Treg cells are superior suppressors of Th1 responses. Foxp3-GFP reporter mice were infected with LCMV (days 10–14) or left naïve and 
CD4+Foxp3+ Treg cells expressing the indicated markers were sorted from pooled spleen and LNs. (a,B) CD4+Foxp3+CXCR3+ (solid line) or CD4+Foxp3+CXCR3− 
(gray line) Treg cells from LCMV-infected mice or CD4+Foxp3+ (dotted line) Treg cells from naïve mice were titrated onto (a) CD4+Foxp3−CD62Lhigh or (B) 
CD4+Foxp3−CD44high effector T cells (Teff) from LCMV-infected mice (days 10–14) stimulated with anti-CD3 in the presence of irradiated antigen presenting cells for 
72 h. 3H-thymidine was added for the last 18–22 h to measure proliferation (left) (mean ± SD, technical replicates, n = 3, representative experiment of >4 
independent experiments). Cytokine levels in the supernatants were measured by cytometric bead array (right) (mean ± SD, technical replicates, n = 4, summary 
data from two independent experiments). (c–F) Suppression assays were performed as in (a,B) using total CD4+Foxp3-GFP− effector T cells isolated from 
LCMV-infected mice in the presence of the indicated Treg subset (I–IV or naïve) at a 1:8 (D–F) or 1:4 (c) ratio. [(c–F), left] Suppression of proliferation (mean ± SD, 
technical replicates, CD85k and Lag-3 n = 3; Tim-3 and TIGIT n = 6, representative experiment of ≥3 independent experiments, one-way ANOVA with Tukey’s 
multiple comparison posttest) and cytokine secretion as assessed in supernatants (mean ± SD, technical replicates, CD85k and Lag-3 n = 3, Tim-3 and TIGIT 
n = 5–6, naïve (c,D) n = 3 (e) n = 4, (F) n = 7, representative experiment of ≥2 independent experiments, one-way ANOVA with Tukey’s multiple comparison post 
test) is shown (n.a., not applicable). [(c–F), right] Representative FACS Plots of indicated Treg subsets co-expressing multiple co-inhibitory receptors.
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suggesting that they might also serve as functional predictors  
for suppression of Th1 responses in human Treg cells.

DiscUssiOn

In this study, we analyzed the phenotypic and functional charac-
teristics of T-bet+CXCR3+ Treg cells arising during Th1 immune 
responses. We have identified a set of co-inhibitory receptors 
that is specifically expressed in Th1 but not Th17 responses and 
includes Lag-3 and the novel co-inhibitory receptor CD85k, 
which is also induced on human Treg cells during a polarized 
Th1 immune response. Furthermore, Treg cells specializing dur-
ing Th1 responses also show enhanced expression of mediators 
of cytotoxicity such as Granzyme B and K, both in mice and 
humans. We could further demonstrate that the Th1-specific 
co-inhibitory receptor CD85k serves as a functional predictor of 
specific suppression of Th1 responses.

Upon Th1-dominated infectious challenge with different 
classes of pathogens, which included viral infections with high 
and low type I IFN responses and a bacterial pathogen, Treg cells 
become highly activated and we could observe an induction of 
a multitude of classical suppressive mediators expressed in Treg 
cells such as CTLA-4 and CD39/CD73. Interestingly, this induc-
tion was observed in CXCR3+ and CXCR3− Treg cells. However, 
the Treg function associated genes that were specifically induced 
in CXCR3+ Treg cells were to a large proportion composed of co-
inhibitory and co-stimulatory receptors as well as mediators of 
cytotoxicity. Co-inhibitory receptors, most prominently CTLA-4 
(32), have been shown to play an important role in mediating 
immune suppression by Treg cells and indeed Tim-3, Lag-3, 
and TIGIT, which we observed to be induced in CXCR3+ Treg 

cells upon LCMV infection, have been shown to contribute to 
Treg function (35, 37, 38). Analyzing expression of the induced 
co-inhibitory receptors in different Th1-dominated infectious 
settings allowed us to separate LCMV-specific induction of 
TIGIT from expression of Lag-3, Tim-3, and CD85k, which are 
universally induced during Th1 responses and mark Treg subsets 
with superior suppressive capacity toward Th1 effector cells. 
Furthermore, CD85k and Lag-3 were specifically upregulated 
in Th1 but not Th17 settings, while Tim-3 was induced in both 
settings. Previous studies have shown Tim-3 to functionally con-
tribute to Treg-mediated suppression of both Th1 and Th17 cells 
(35), which fits with the induction of Tim-3 on Treg cells we 
observed in Th1- as well as Th17-dominated immune responses.

CD85k is a novel co-inhibitory receptor that contains cyto-
plasmic ITIM motifs and has so far been reported to downregulate 
the immune response through its expression on myeloid APCs, 
NK cells, and effector T cells (43, 44). Under steady-state condi-
tions, Treg cells do not express significant levels of CD85k but 
we identified CD85k as a co-inhibitory receptor specifically 
expressed in Treg cells arising during Th1 responses in both mice 
and humans. Importantly, CD85k also marked a Treg subset with 
superior suppressive capacity toward Th1 but not Th17 effector 
cells. T-bet-dependent expression of CXCR3 is essential for 
control of Th1 responses in highly polarized Th1 settings as it 
allows Treg cells to migrate to the site of Th1 effector cells (11, 
16). However, these molecules are not mediating the Th1-specific 
suppressive function of Treg cells, as they were found to be dispen-
sable for control of the mixed Th1/Th17 immune response during 
EAE (17). Based on our data, we speculate that CD85k might  
be a Th1-specific suppressive functional mediator of Treg cells, 
which promotes suppression of Th1 but not Th17 immune 
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FigUre 6 | CD85k+ Treg cells display dynamic expression of co-inhibitory receptors in vivo. Rag1−/− mice were reconstituted i.v. with 5 × 105 CD8+ and 5 × 105 
CD4+Foxp3-GFP− effector T cells together with 105 naïve, CD85k+, or CXCR3−CD85k− Treg cells sorted from naïve or LCMV-infected (days 12–14) Foxp3-GFP 
KI reporter mice, respectively. (a) 10 days post transfer, total numbers of splenic CD4+Foxp3− effector T cells were determined and IFN-γ production upon 
restimulation with PMA/Ionomycin was measured by flow cytometry. (B,c) In the same samples as in (a), expression of co-inhibitory receptors in CD4+Foxp3+ 
Treg cells was analyzed and (c) compared to initial levels of the markers within the specific Treg subset prior to transfer. Data in summary graphs (a) are 
displayed as mean ± SD, n = 2–4 (pooled data from two independent experiments). (c) mean value of pre = 5 biological replicates and post = 4 biological 
replicates.
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res ponses. Interestingly, CD85k expression has been reported in 
Treg cells that lack the kinase CK2β (45). Cnsk2b−/− Treg cells, 
of which a sizeable proportion (~25%) expresses CD85k, are 
incapable of suppressing differentiation of Th2 cells and show 
reduced ability to control Th2 responses in vivo. These data suggest 
that Treg cells require CK2β expression to properly suppress Th2 
responses and that the CD85k+ subset induced in their absence 
is unable to control Th2 cells, further supporting the notion of 

CD85k as a specific functional predictor for suppression of Th1 
responses.

Interestingly, the functional capacity of CXCR3− Tregs seems 
to differ, depending on their origin. CXCR3− Tregs isolated 
from animals with an ongoing immune response were markedly 
hampered in their suppressive function toward naïve effector cells 
when compared to the mostly CXCR3− naïve Tregs. This is most 
likely due to their conditioning by the inflammatory environment 
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FigUre 7 | Human Treg cells induce co-inhibitory receptors and cytotoxic molecules during a Th1 immune response. Treg cells from PBMCs of healthy donors 
were analyzed ex vivo by flow cytometry before (pre) and 7 days after (post) influenza vaccination for expression of (a) the surface receptor CXCR3, (B) the 
co-inhibitory receptors Tim-3, CD85k, Lag-3, and TIGIT as well as (c) the cytotoxic molecules granzyme B and K. Frequencies of CD4+CD127lowCD25+ Treg cells 
expressing the indicated markers are shown and pre- and post-vaccination samples from the same donor are connected by lines (n = 18). *p < 0.05, **p < 0.01 
(Wilcoxon matched pairs test, D’Agostino and Pearson omnibus normality test).
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present during the ongoing Th1 response as type I IFNs present 
during LCMV infection have been shown to hamper Treg sur-
vival and function (46, 47). In contrast to CXCR3− Tregs, the 
highly activated CXCR3+ Tregs derived from an ongoing immune 
response show enhanced expression of Treg signature molecules 
as well as Th1-sepcific suppressive mediators, which allows for 
the improved suppression of Th1 effectors we observed.

While many of the Th1-specific co-inhibitory receptors are 
co-expressed in CXCR3+ Treg cells, we observed distinct kinetics 
for the different receptors as Lag-3, e.g., is already induced early 
in the immune response, while CD85k and Tim-3 peak at later 
time points. In addition, expression of CD85k is more sustained 
while expression of Lag-3, Tim-3, and Granzyme B is very tran-
sient. As such, the fact that we could not observe an induction of 
Lag-3, Tim-3, or Granzyme B following influenza vaccination in 
human Treg cells might be a consequence of the narrow window 
of analysis.

However, the differences in kinetics could suggest that, in 
addition to their direct inhibitory function on Th1 effector cells, 
different Th1-specific co-inhibitory receptors contribute specifi-
cally to the modulation of certain stages of the immune response. 
Lag-3 is likely to play a more dominant role in dampening prim-
ing and the differentiation of Th1 effector cells, while CD85k 
might play a more important role in the resolution of the effector 
response and possibly also in promoting memory formation. 
Indeed, Lag-3 was shown to enhance the suppressive function of 
Treg cells in colitogenic responses by inhibiting early T cell activa-
tion via engagement of MHC II on DCs (48). Based on its ability 
to interact with MHC II, Lag-3 could thus function as an early 
suppressive mediator primarily affecting T  cell priming, while 

other co-inhibitory receptors, such as CD85k, could be essential 
for suppression of T cell effector function at later time points.

Therapies that globally dampen immune responses remain the 
current standard of care for autoimmune diseases, but the neces-
sary prolonged, systemic immune suppression renders patients 
susceptible to potentially life-threatening opportunistic infections 
and thus more specific treatments are desperately needed. In most 
conditions, only specific aspects of the immune response become 
excessive and act as the critical mediators of autoimmunity, e.g., 
type 1 diabetes is driven by excessive Th1 responses. Identification 
of markers for the selectivity of Treg subsets toward suppression 
of Th1 responses may allow for tailored therapeutic approaches 
that selectively affect excessive Th1 responses and thus could serve 
as a safer and more effective therapeutic option for autoimmune 
diseases. Indeed, a recent study showed that CXCR3+T-bet+ Treg 
cells are essential for control of type 1 diabetes (49). Furthermore, 
Treg subsets expressing specific functional markers, such as 
CD85k, might allow for selection and enrichment of the most 
potent Treg subsets for therapeutic interventions at different 
stages of the disease. With the identification of functional markers 
of Th1-specific Treg cells, we have taken the first step toward the 
development of selective immunosuppressive therapies.

eThics sTaTeMenT

All animal experiments were reviewed and approved by the 
cantonal veterinary office of Zurich and were performed in 
accordance with Swiss legislation. Peripheral venous blood was 
obtained from healthy volunteers in accordance with the Swiss 
laws for studies on human subjects and the study was reviewed 
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