
June 2018 | Volume 9 | Article 13471

Review
published: 18 June 2018

doi: 10.3389/fimmu.2018.01347

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Fathia Mami-Chouaib,  

Institut National de la Santé et de la 
Recherche Médicale (INSERM), 

France

Reviewed by: 
Craig Michael Walsh,  

University of California, Irvine,  
United States  

Laura K. Mackay,  
University of Melbourne, Australia

*Correspondence:
Thomas S. Kupper  

tkupper@bwh.harvard.edu

Specialty section: 
This article was submitted to 

Immunological Memory,  
a section of the journal  

Frontiers in Immunology

Received: 03 April 2018
Accepted: 31 May 2018

Published: 18 June 2018

Citation: 
Pan Y and Kupper TS (2018) 

Metabolic Reprogramming  
and Longevity of Tissue-Resident 

Memory T Cells.  
Front. Immunol. 9:1347.  

doi: 10.3389/fimmu.2018.01347

Metabolic Reprogramming and 
Longevity of Tissue-Resident 
Memory T Cells
Youdong Pan and Thomas S. Kupper*

Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States

Tissue-resident memory T  cells (TRM) persist in peripheral tissues for long periods of 
time in the absence of antigenic stimulation. Upon re-encounter with cognate antigen, 
TRM trigger an immediate immune response at the local tissue microenvironment and 
provide the first line of host defense. TRM have been reported to play significant roles 
in host antimicrobial infection, cancer immunotherapy, and pathogenesis of a number 
of human autoimmune diseases, such as psoriasis, vitiligo, and atopic dermatitis. TRM 
display a distinct gene transcriptome with unique gene expression profiles related to 
cellular metabolism that is different from naive T cells (TN), central memory T cells (TCM), 
and effector memory T cells (TEM). Skin CD8+ TRM upregulate expression of genes asso-
ciated with lipid uptake and metabolism and utilize mitochondria fatty acid β-oxidation to 
support their long-term survival (longevity) and function. In this review, we will summarize 
the recent progresses in the metabolic programming of TRM and will also discuss the 
potential to target the unique metabolic pathways of TRM to treat TRM-mediated diseases.
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Memory T cells mediate immunosurveillance and protect the host through rapid recall responses 
upon re-exposure to previously encountered pathogens (1). In addition to the two previously 
identified circulating memory T cells, central memory T cells (TCM), and effector memory T cells 
(TEM), a new subtype of memory T cells—tissue-resident memory T cells (TRM)—has been identi-
fied and characterized (2–4). Unlike TCM and TEM that circulate within blood, TRM reside and 
remain within epithelial barrier tissues for long periods of time without trafficking back into 
lymph or blood (5). Upon antigen re-exposure, TRM trigger an immediate immune response and 
provide the first line of protection against the antigen/pathogen they are specific for (4, 6–11). 
In addition, TRM create a general antiviral microenvironment at the local tissue site and provide 
cross-protection against antigenically unrelated pathogens (7, 9). Activation of TRM alters tissue-
wide gene expression profiles, induces B cell and circulating memory T cell recruitment through 
IFN-γ-dependent vascular cell adhesion molecule 1 upregulation, and leads to maturation of 
local dendritic cells and activation of natural killer cells. These activities support the idea that 
TRM function as a bridge between the adaptive and innate immune system (7, 9). As many viruses 
show tissue tropism, TRM also provide protective immune responses for the tissue through which 
it was previously encountered. TRM specific for HSV are in skin (12–14), TRM specific for rotavirus 
are in gut (6, 15), and TRM specific for influenza are in lung (16–18). Collectively, we propose that 
sensitization of relatively small numbers of TRM may lead to an amplified signal to more abundant 
elements of the innate immune system and trigger an organ-wide antiviral state. The placing of 
adaptive immune memory cells at the body’s interfaces with the environment, and moreover 
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those specific for a given pathogen, speaks to the elegance of 
adaptive immune memory.

Upon cognate recognition of antigen via T-cell receptor, naive 
T cells (TN) undergo extensive clonal expansion and differentiate 
into several T  cell subtypes, including effector T  cells (Teff) for 
immediate pathogen elimination and memory T cells for long-
term protection (19). Recent studies showed that T cell activa-
tion and differentiation are accompanied with and regulated 
tightly by metabolic reprogramming, presumably to provide the 
divergent energetic and functional needs for their development, 
maintenance, and function (20–23). TN primarily depend on 
glucose catabolism and oxidative phosphorylation (OXPHOS) 
to derive energy to support the maintenance of their relatively 
quiescent state. Teff reprogram their metabolic state to anabolism 
to enable rapid cell division and cytokine production (24). Teff 
increase glucose acquisition from blood through upregulating 
gene expression of glucose transporter-1 (Glut 1) and conduct 
glycolysis (converting glucose into pyruvate with the production 
of two molecules of ATP) to meet their energy demand (25). 
Although glycolysis is less efficient in generating ATP compared 
to OXPHOS, it is faster and thus rapidly accommodates the 
increased demand for the energy and biomass formation of Teff. 
Unlike TN and Teff, TCM utilize endogenously synthesized fatty acids 
and OXPHOS to support their long-time survival (longevity) and 
function (26–28). TCM maintain substantial mitochondrial spare 
respiratory capacity and display increased mitochondrial mass, 
thus providing metabolic advantage and equipping them for both 
longevity and the ability of rapid recall upon antigen re-challenge 
(26). O’Sullivan et al. showed that rather than importing extra-
cellular fatty acids, TCM utilize endogenous fatty acid synthesis 
and subsequently conduct mitochondrial fatty acid oxidation 
(FAO) and OXPHOS for their differentiation and maintenance 
(27). TCM take up extracellular glucose from blood to synthesize 
fatty acids in the endoplasmic reticulum, a process dependent on 
lysosomal acid lipase, which is critical in hydrolyzing cholesteryl 
esters and triglycerides within LDL particles into free cholesterol 
and free fatty acids (FFAs) (29, 30). Cui et al. additionally showed 
that interleukin-7, a cytokine critical for TCM differentiation and 
survival, induced glycerol transport and triacylglycerol synthesis 
via enhanced gene expression of glycerol channel aquaporin 9, 
thus providing substrates for mitochondria FAO (28). However, 
compared to the well-defined metabolic reprogramming of cir-
culating memory T cells, the metabolic programs utilized by TRM 
to dictate their fate differentiation and sustain their longevity and 
function, are only beginning to be understood.

TRM MeTABOLiSM iN SKiN

Skin, as the primary interface between the body and outer 
environment, provides a first line of defense against microbial 
pathogens, physical damage, and chemical insults. In addition 
to the role of barrier maintenance and sensing, skin functions 
as a hotbed of immunological activity (31). It has been shown 
that healthy skin of an adult human being contains about 
twice T cells as many as are present in the entire blood volume 
(1 × 106 T cells/cm2 and an estimated 2 × 1010 T cells in the entire 
skin surface) (32, 33). T  cells contained in human skin are all 

CD45RO+ memory T  cells, co-express skin-homing addressin 
cutaneous lymphocyte-associated antigen and the chemokine 
receptor CCR4, and more than half of human skin T  cells are 
resident under resting conditions and do not re-circulate (TRM) 
(34). A recent study revealed that pathogenic T cell clones persist 
in “healed” psoriatic lesions as TRM after complete remission using 
TNFα blocker (35). Studies on vitiligo showed that vitiligo perile-
sional skin is enriched with a population of CD8+ TRM expressing 
both CD69 and CD103, in both stable and active disease stages 
(36, 37). Residing in a nutrient-restricted (particularly glucose) 
but lipid-rich environments (38, 39), the mechanisms by which 
skin TRM sustain their longevity and function remained elusive. 
Using a well-established model of generating CD8+ TRM in skin 
after cutaneous immunization with Vaccinia virus, we showed 
that skin CD8+ TRM adapt to utilize lipid metabolism of exogenous 
FFAs internalized from the surrounding microenvironment to 
support both their longevity and protective function (Figure 1) 
(40). CD8+ TRM develop a transcriptional program that features 
marked overexpression of molecules facilitating exogenous FFAs 
acquisition and metabolism. Specifically, fatty acid binding pro-
teins 4 and 5 (Fabp4/5), CD36, and lipoprotein lipase (lpl) were in 
the top 35 most highly overexpressed genes in TRM, as compared 
to TN, TCM, and TEM. Fabp’s are conventionally thought to func-
tion as intracellular chaperones for FFAs, shuttling FFAs from 
cytoplasm to mitochondria for β-oxidation (41). CD36 is a lipid 
scavenger receptor that binds to and internalizes FFAs and other 
lipids (42), and lpl is a lipoprotein lipase that cleaves triglycerides 
to yield a FFA and diacylglycerol (43). This collection of overex-
pressed genes involved in lipid uptake and metabolism suggested 
a special relationship between TRM and lipid metabolism. Further 
study showed that skin CD8+ TRM upregulated the gene expres-
sion of Fabp4/5 in a peroxisome proliferator-activated receptor 
gamma (PPAR-γ)-dependent manner. When incubated under 
the presence of exogenous fluorescently conjugated FFAs, skin 
CD8+ TRM internalized extracellular FFAs much more efficiently 
compared to other counterparts. Addition of exogenous FFAs 
induced a significantly higher basal and FCCP-stimulated maxi-
mal oxygen-consumption rate in skin CD8+ TRM, which could be 
blocked by pretreatment with etomoxir, an irreversible inhibitor 
of mitochondrial carnitine palmitoyltransferase 1, an enzyme that 
is the rate limiting step for mitochondrial fatty acid β-oxidation 
and ATP generation (44). Skin CD8+ TRM rendered unable to 
metabolize exogenous FFAs through mitochondrial β-oxidation, 
whether through deficiency of Fabp4/5 or pretreatment with 
etomoxir, cannot persist in skin. By contrast, TCM generated from 
Fabp4−/−Fabp5−/− mice in parallel have no survival disadvantage. 
Referring to functionality, skin CD8+ TRM deficient in Fabp4/5 
were inferior in clearing viral infection and insufficient to protect 
host against lethal viral re-challenge. Consistent with data from 
mice, CD8+ TRM from human skin tissue display higher level of 
Fabp4/5 expression and internalize more exogenous FFAs com-
pared to other human counterparts, indicating that acquisition 
of exogenous FFAs for metabolism might represent a conserved 
feature of TRM across species. Given the dependence of skin CD8+ 
TRM on lipid metabolism and the increasingly uncovered roles of 
TRM in skin autoimmune diseases such as psoriasis and vitiligo, it 
is tempting to speculate a novel and promising treatment strategy 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


FiguRe 1 | Metabolic reprogramming of skin CD8+ tissue-resident memory T cells (TRM). Skin CD8+ TRM depend on increased uptake of exogenous fatty acid and 
mitochondrial β-oxidation for their long-term survival (longevity) and function. Skin CD8+ TRM upregulate gene expression of transcription factor peroxisome 
proliferator-activated receptor gamma (PPAR-γ) and its downstream molecules fatty acid binding proteins 4 and 5 (Fabp4/5), which accounts for the increased 
uptake of free fatty acids (FFAs) from surrounding tissue environment. Subsequently, Skin CD8+ TRM utilize mitochondrial fatty acid β-oxidation to generate ATP to 
support their survival and function. Skin CD8+ TRM loss of Fabp4/5 is more prone to cell apoptosis, deficient in long-term survival, and could not protect host 
efficiently upon viral re-challenge. Treatment with either PPAR-γ inhibitor (GW9662) or with fatty acid mitochondrial β-oxidation inhibitor (etomoxir), results in impaired 
long-term maintenance of CD8+ TRM in skin. In addition, the roles of CD36 and lipoprotein lipase (lpl), both of which are also upregulated in skin CD8+ TRM and are 
involved in lipid metabolism, remain unknown and await to be elucidated by future studies.
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for skin immune disorders by blocking critical lipid metabolic 
pathways in TRM. Still, much remains to be elucidated further 
for the mechanism of TRM metabolic maintenance and survival. 
The precise roles of gene upregulation of PPAR-γ in skin CD8+ 
TRM and the contribution of other lipid metabolism-related genes 
to the survival and function of skin CD8+ TRM, such as CD36 
and lpl, both of which were also upregulated as part of the TRM 
transcriptional program, remain to be investigated. Overall, 
a detailed signaling pathway of TRM metabolism, as well as the 
cross talk among skin tissue microenvironment, TRM metabolism 
and effector function, will be of great interest and may facilitate 
the development of efficient treatment strategy for TRM-mediated 
skin diseases.

TRM MeTABOLiSM iN TuMOR 
MiCROeNviRONMeNT (TMe)

Solid tumors are infiltrated by heterogeneous immune cell types 
that work in a coordinated fashion to effect antitumor immunity 
(45). The presence and abundance of tumor-infiltrating lympho-
cytes (TILs) in tumors is associated with better clinical outcomes 
after tumor immunotherapy (46–49). TILs differ from their blood 

counterparts both in terms of upregulated gene expression of 
immune checkpoint molecules (PD-1, LAG3, TIGIT, and CTLA-4)  
and reduced effector functions (tumor immunosuppression) 
(50). Phenotypic analysis of TILs from melanoma revealed 
that nearly 60% of CD8+ T  cells and 50% of CD4+ T  cells are 
CD45RO+CD69+CCR7–, characteristic of a TRM phenotype (51). 
Melanoma antigen-specific TRM cells resided predominantly in 
melanocyte-depleted hair follicles and mediate durable immunity 
to melanoma (36). Other studies showed that the number of TRM 
within tumors associates with cytotoxic T  cell responses and 
correlates with a better overall survival in lung cancer, head and 
neck cancer, and breast cancer (52–54). Local TRM induced via 
immunization through mucosal vaccine inhibited tumor growth  
(52, 55). Thus, a TIL TRM phenotype is considered as a new sur-
rogate biomarker for the efficacy of cancer vaccines, and devel-
opment of vaccine strategies designed to generate TRM against 
tumor cells has attracted great interest as a potentially significant 
therapeutic application.

Inside tumors, both tumor cells and TILs compete for the 
oxygen and nutrients supplied via infiltrating blood vessels. 
Rapidly growing tumor cells utilize more glucose and glutamine 
to conduct glycolysis, resulting in a TME of hypoxia and glucose 
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deprivation for TILs (56, 57). This leads to enhanced expression 
of immune checkpoint molecules and loss of effector functions 
in TILs, a process that results in T cell exhaustion (51). On the 
other hand, TILs conduct metabolic reprogramming to adapt 
to the metabolic constrains within the TME and sustain their 
maintenance and antitumor function. Using mouse melanoma 
models, Ying et al. reported that under short-term hypoxia and 
hypoglycemia, CD8+ T  cells decreased transcripts for genes 
important in glycolysis while increasing transcripts of PPAR-α  
and downstream molecules involved in FA uptake and mitochon-
drial FA catabolism (58). Enhanced FA uptake and increased 
expression of Cpt1a were observed in vaccine-induced CD8+ 
TILs from late-stage tumors, implying the increasing depend-
ence of TILs on fatty acid metabolism for energy maintenance. 
Promoting fatty acid catabolism with fenofibrate, a PPAR-α 
agonist, markedly improves the capacity of CD8+ TILs to delay 
tumor growth. This enhancement synergizes with PD-1 blockade 
to efficiently enhance the efficacy of melanoma immunotherapy. 
With regard to human tumor biology, the same study reported that 
TILs isolated from human melanoma metastases show evidence 
of enhanced FA catabolism, which could be fueled by increased 
level of FAs within tumor intestinal fluid (58). Collectively, 
these data suggest that TILs in the TME engage in metabolic 
reprogramming to utilize FAO for their survival and function. 
The mechanism by which the TME influences TILs metabolic 
reprogramming, as well as the nutrient source of FAs for fatty 
acid catabolism, remains to be further investigated. Also, further 
studies are required to elucidate the mechanisms by which TILs 
reprogram their metabolism to cope with the TME and how this 
metabolic switch affect their survival and antitumor function. 
Since a growing body of studies support the idea that enhanc-
ing already present immune responses against tumors leads to 
considerably long-lasting tumor remissions and delayed tumor 
metastasis, a better understanding of TIL TRM’s metabolic switch 
and how to manipulate this process to increase their maintenance 
and antitumor effector function, may increase the efficacy and 
improve the outcome of tumor immunotherapy.

TRM MeTABOLiSM iN wHiTe ADiPOSe 
TiSSue (wAT)

White adipose tissue is a storage depot for fat and an endocrine 
organ that secretes adipokines to regulate whole-body energy 
homeostasis and metabolism (59). It connects body barrier sur-
faces and the internal organs, thereby forming a bridge between 
tissues that are constantly challenged with surrounding microbes 
and the inner sterile environments. WAT constitutively regulates 
glucose and lipid homeostasis by sorting and releasing FFAs via 
lipolysis for usage by other organs (60). Previous work has shed 
light on cross talks between WAT and immune system in a series 
of metabolic disorders and inflammatory diseases (61–63). WAT 
infiltrating lymphocytes are predominantly localized within 
organized structures referred to as fat-associated lymphoid clus-
ters or milky spots (in the omentum), which can rapidly expand 
in response to local inflammatory cues (64, 65). Recent studies 
by Han et al. reveal the residency and occupancy of TRM in WAT 

and their contribution to immune surveillance and long-term 
protective memory responses to infection (66). WAT functions as 
a major hub for adaptive immune memory T cells, predominantly 
TRM. These adipose TRM express a well-established TRM cell surface 
marker (CD69) and do not equilibrate between the adipose tissue 
of conjoined naïve and previously infected mice, confirming the 
residency of these cells. Transplantation of adipose tissue from 
previously infected mice was sufficient to protect uninfected mice 
from lethal pathogen challenge, whereas depletion of T cells abro-
gated this protective effect, indicating a functional protective role 
of adipose TRM in systemic pathogen challenge. Following gene 
expression analysis revealed that adipose TRM cells upregulated 
genes involved in effector functionalities and lipid metabolism. 
When incubated ex vivo with fluorescently labeled long chain  
fatty acid palmitate (Bodipy FL C16), adipose TRM cells displayed 
high rates of lipid uptake and mitochondrial respiration compared 
to their counterparts from spleen and small intestine lamina pro-
pria (siLP), while no difference could be observed in FFA uptake 
between siLP TRM and spleen TEM. These data suggest that TRM in 
WAT might also utilize fatty acid metabolism for their survival 
and function. To what extent do adipose TRM depend on fatty acid 
metabolism and the contribution of fatty acid metabolism to their 
longevity and function remain to be evaluated further. The same 
study showed that induction of WAT memory responses results 
in the remodeling of WAT physiology (66). Thus, it would be 
interesting to investigate the cross-regulation between adipocytes 
and TRM metabolism within WAT, as well as how to manipulate 
the regulation of pathways to increase host protection or treat 
individuals with obesity and metabolic disorders.

TARgeTiNg TRM MeTABOLiC PATHwAYS 
TO TReAT ASSOCiATeD AuTOiMMuNe 
DiSeASeS

Targeted therapies are increasingly successful at inducing tempo-
rary and partial remissions in organ-specific immune mediated 
autoinflammatory diseases, but it remains nearly impossible to 
induce durable remission or cure (6). These autoimmune disorders, 
including diseases of skin (psoriasis, vitiligo, graft vs host disease), 
GI tract (Crohn’s disease, ulcerative colitis), lung (asthma), joint 
(rheumatoid arthritis, spondyloarthropathies), CNS (multiple 
sclerosis), and endocrine system (Type I diabetes), are increasing 
in incidence and prevalence. Over the past decade, a line of inves-
tigation central to the understanding of diseases pathogenesis 
leads to the discovery of TRM. Increasing evidences from various 
experimental models and clinical data support a theory that these 
autoimmune diseases are driven, at least partially, by inappropri-
ate and chronic activation of pathogenic TRM (6). This provides a 
plausible explanation for the T cell pathogenesis of these diseases 
and their organ specificity, something that prior explanations of 
pathogenesis could not adequately explain. This also provides an 
explanation for the chronicity of these diseases, as TRM are nearly 
impossible to dislodge from their tissue sites of residence once 
established. Currently, in clinic these diseases of regional immune 
hyperactivation (via TRM) are usually being treated with systemic 
immunomodulation and immunosuppression. After successful 
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therapy is withdrawn, TRM remain in situ and can become reac-
tivated by pathogenic stimuli, thus resulting in disease relapse. 
Therefore, a therapy that could not only suppress the activity of 
pathogenic TRM but also dislodge them from their tissue niches 
has the potential to induce remissions that are much longer and 
ideally indefinite. The uniqueness of TRM in their dependence on 
lipid metabolism of FFAs from the external environment makes 
it a previously unappreciated “Achilles Heel,” and one that could 
be exploited therapeutically. Indeed, administration in vivo with  
a pharmacologic mitochondrial β-oxidation, trimetazidine [blocks  
the long chain 3-ketoacyl CoA thiolase activity (67)], decreased 
the survival and maintenance of TRM in skin (40). Thus, the 
likelihood exists that pharmacologic approach targeting the lipid 
metabolic pathway in TRM could reduce, and theoretically elimi-
nate, the pathogenic TRM that are causative in autoinflammatory 
disorders of multiple tissues.

CONCLuSiON AND FuTuRe 
PeRSPeCTiveS

It has recently become clear that control of metabolism and the 
adaptive immune system are tightly linked (21, 22, 68). Nutrient 
availability and cellular metabolism closely regulate the differ-
entiation, survival, and function of immune cells (23). TRM are 
not simply memory T cells residing in an unexpected location; 
rather, they are a specific group of memory T cells with unique 
lineage (40, 69–71). As revealed from gene transcriptional 
profiling, TRM display a quite distinct transcriptome from those 

of TCM and TEM, both of which were more similar to that of TN  
(69, 70, 72). Recent findings have shed light on the role of cellular 
metabolism in regulating differentiation and memory forma-
tion of TCM (26–28). However, it remains unknown how cellular 
metabolism controls TRM fate decision. Moreover, the focus of 
previous studies on TRM metabolism is primarily on CD8+ TRM, 
and little is known about the metabolic reprogramming of CD4+ 
TRM and their roles in CD4+ TRM differentiation, survival, and func-
tion. In addition, attributed to the restricted nutrient availability at 
specialized tissue sites, more studies will be required to elucidate 
the metabolic pathways of TRM at other tissue sites such as lung, 
intestine, and brain. Finally given that generation of long-lived TRM 
are a goal of efficient vaccination, and considering the dual role of 
TRM in tumor and autoimmune tissue disorders, a more detailed 
understanding of the unique metabolic programs intrinsic to TRM, 
and how these programs might be manipulated to enhance or 
decrease TRM longevity and function, will be a subject of future 
study with high clinical relevance and therapeutic significance.
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