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The single-cell revolution is paving the way towards the molecular characterisation 
of every cell type in the human body, revealing relationships between cell types and 
states at high resolution. Changes in cellular phenotypes are particularly prevalent in the 
immune system and can be observed in its continuous remodelling up to adulthood, 
response to disease and development of immunological memory. In this review, we delve 
into the world of cellular dynamics of the immune system. We discuss current single-cell 
experimental and computational approaches in this area, giving insights into plasticity 
and commitment of cell fates. Finally, we provide an outlook on upcoming technological 
developments and predict how these will improve our understanding of the immune 
system.

Keywords: single-cell, scRnA-seq, FACS, trajectory inference, lineage reconstruction, cell differentiation, cell 
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1. inTRODUCTiOn

The immune system is under constant pressure to defend the body against environmental and  
internal threats. To respond appropriately to these assaults, immune cells possess incredible diversity 
and versatility. They undergo many dynamic changes, from their genesis in bone marrow to matura-
tion in secondary lymphoid organs, effector differentiation in peripheral tissue and their development 
into long-lived memory cells. Understanding these cellular transition dynamics, or “trajectories”, and 
how they can be modified to improve human health, has been a central objective of immunology.

Changes in cellular maturation or effector states follow differentiation programmes that are usu-
ally initiated by extracellular signals. These changes can be interrogated at various levels, from the 
epigenetic modifications that regulate cell state changes, to the resulting messenger RNAs (mRNAs) 
and proteins driving cellular function. Given the extensive functional heterogeneity of otherwise 
similar immune cells and the fact that immunological processes occur in an unsynchronized and 
transient manner, bulk-level assays, which measure the average response of a cell population, are 
not sufficient to follow these trajectories. The advent of single-cell assays, whereby measurements 
are made on the level of individual cells, has allowed us to unravel developmental trajectories during 
immune responses.

Here, we review single-cell experimental and computational methods for revealing cellular 
dynamics in the context of immunology. We highlight the key technologies—both historically and 
contemporarily—and how they have improved our understanding of immune cell development and 
response to disease. We anticipate that the immunological field will see a continued increase in  
multi-omics analysis techniques—methods that acquire multiple layers of information—thereby 
improving experimental and biological resolution.
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2. FLOw CYTOMeTRY UnRAveLS 
iMMUne POPULATiOnS

The history of studying cellular trajectories has deep roots in the 
field of immunology. This is largely due to the ease with which 
freely mobile immune cells can be analysed by Fluorescence-
Activated Cell Sorting (FACS). Invented in the late 1960s, 
FACS uses fluorochrome-labelled antibodies against surface or 
intracellular molecules, as well as other fluorescent proteins and 
dyes, to assess cellular phenotypes (1). This method has been 
widely used to study activation of immune cells to stimulus (2, 3), 
describing different cell subsets (4–8), and in resolving transition 
routes and plasticity between them (9, 10). In particular, FACS 
was instrumental in unravelling the relationship between cell 
division and differentiation (11).

Recent FACS instruments theoretically allow for simultaneous 
assessment of 50 parameters. However, this is usually limited in 
practice to below 30 due to spectral overlap of used fluorophores 
(12, 13). This leads to an underappreciation of heterogeneity within 
cell populations (14). In 2009, CyTOF (Cytometry by Time Of Flight) 
was introduced. In this method, the fluorophore-conjugated anti-
bodies used in FACS are substituted with heavy metal-conjugated 
antibodies that can be detected by atomic mass spectrometry (15). 
Therefore, the number of assessable cell characteristics is limited 
only by the number of heavy metals (approximately 100). Bendall 
et al. performed a detailed screen on B cell development using a 
44 parameter CyTOF panel for phenotypic proteins, including 
transcription factors, regulatory enzymes, cell state indicators, 
and activated regulatory signalling molecules (16). However, 
CyTOF has a lower throughput than FACS and does not allow 
sorting of cells for further analysis (17).

3. MiCROSCOPY eXPAnDS KnOwLeDGe 
On CeLLULAR COnTeXT

Time-lapse microscopy allows for the continual visualisation of 
cells in real time. Thus, unlike other techniques, it can be used 
as direct evidence of transitioning cells and provide temporal 
information about these changes. In a seminal study by Timm 
Schröder’s team, time-lapse microscopy of mouse cells was 
used to show independent regulation of GATA1 and PU.1 in 
coordinating the differentiation of granulocytic–monocytes or 
megakaryocytic–erythrocytes. This disputed the previously held 
theory that the balance of these transcription factors determined 
the differentiation direction of these cells (18). Time-lapse 
microscopy excels at analysis of a few cells in  vitro, but is not 
suited for following immune processes that take several days to 
occur, involve cells that are highly mobile, or are heavily influ-
enced by environmental cues.

Intravital two-photon microscopy overcomes some of the 
limitations of standard microscopy by facilitating the imaging of 
cells in  situ. This technique was pioneered for following T  cell 
motility and interactions in secondary lymphoid tissues (19, 20), 
but has since been successfully implemented to show their asso-
ciation with other cells in response to immune challenge. In two 
independent studies, the direct interaction of CD4 T and CD8 

T cells with dendritic cells was followed in the paracortex of mice 
after immunisation (21, 22). While CD8 T  cell activation was 
initiated after brief exposure to antigen, CD4 T cell activation and 
full effector function only proceeded after multiple and extended 
encounters with dendritic cells. This illustrates how time lapse 
microscopy can resolve temporal and spatial behaviours of immune 
cells at unprecedented resolution. However, it is low-throughput, 
technically challenging and limited to the simultaneous analysis 
of only a few markers.

As with flow cytometric methods, a significant disadvan-
tage of microscopy is the need to design antibody panels or 
parameters for analysis a priori. This restricts the analysis to a 
predetermined cell population and eliminates the possibility 
of discovering novel cell subsets/intermediate states and new 
markers (23). Furthermore, while these technologies have been 
used to extensively describe the key mediators of adaptive immu-
nology, there is a plethora of cells that are less well studied. For 
instance, natural killer (NK) cells were first described in 1975 
(24, 25) and were quickly linked with the removal of infected 
or aberrant cells (26). Despite this, the clinical value of NK cells 
remains unrealised, in part due to an absence of known markers 
to properly characterise their subsets, development, and response 
(27). Other rare and difficult to identify immune cells such as 
invariant NK T cells (28) and innate lymphoid cells (29) will also 
benefit from unbiased analysis techniques to further delineate 
their contributions to the immune system.

4. SinGLe-CeLL TRAnSCRiPTOMiCS 
PROviDeS COMPReHenSive PROFiLinG 
OF iMMUne CeLLS

In 2009, the first single-cell whole-transcriptome sequencing 
data were published (30). mRNA transcripts from a single mouse 
blastomere were sequenced to a depth far exceeding previous 
bulk-level microarray analyses, allowing for new and unbiased 
appreciation of the complexity of the transcriptome. The through-
put of single-cell RNA sequencing (scRNA-seq) technology has 
since expanded exponentially—from hundreds of cells using 
plate-based technologies (e.g. STRT-seq (31), Smart-seq (32), and 
Smart-seq2 (33)) to tens of thousands of cells using droplet-based 
and micro-well technologies (e.g. Drop-seq (34), InDrop (35), 
10× Chromium Genomics (36), and Seq-well (37)) (38). These 
technologies have been extensively reviewed elsewhere, so their 
technical details will not be covered here (39–41).

A significant strength of scRNA-seq is that it provides an unbi-
ased and comprehensive measurement of cellular parameters. 
Dimensionality reduction of the data (e.g. PCA, hierarchical 
clustering, KNN) can be used to cluster the cells according to 
similarities in their gene expression profiles. This clustering can 
highlight intermediate states or alternative end points for immune 
cell trajectories as recently demonstrated in the identification of 
novel plasmacytoid dendritic cell subtypes and progenitors (42).

Dimensionality reduction can also be used to estimate 
“pseudotime”, by extracting a linear ordering of cells, or even 
constructing a complex branching tree of cells differentiating 
into multiple subtypes. More than 50 pseudotime computational 
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TABLe 1 | Overview of different trajectory inference algorithms.

Method Description Software

Monocle 2 (45) Multiple branching, optional number  
of end states

Monocle [R]

Diffusion 
Pseudotime (46)

Single branching event (Destiny),  
multiple branching (Scanpy)

Destiny (47) [R], 
Scanpy (48) 
[Python]

Slingshot (49) Multiple branching, optional start  
and end clusters

Slingshot [R]

GPfates (50) Multiple branching, optional time course 
as pseudotime prior, computationally 
demanding (use for <1,000 cells only)

GPfates [Python]

TSCAN (51) Multiple branching TSCAN [R]

AGA (52) Graph Scanpy (48) 
[Python]

Wishbone (53) Single branching event Wishbone [Python]

A comprehensive list of trajectory inference methods can be found in Table 1 of 
Saelens et al. (43).
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algorithms have been developed for use with scRNA-seq data 
(43). An overview of some of these algorithms and their key 
features is presented in Table  1, and a more detailed review 
provided by Cannoodt et  al. (44). It is important to note that 
both clustering and pseudotime analyses can be done with other 
molecular datasets including CyTOF (16), but they are more 
relevant when used with RNA-seq due to its more comprehensive 
profiling.

Figures 1A,B visualise the results of two trajectory inference 
methods—Monocle 2 (45) and approximate graph abstraction 
(AGA) (52)—applied to a human hematopoiesis dataset (54). Both 
methods successfully identify early HSCs (CD38−CD45RA−) as 
the origin of the trajectory and branches towards more commit-
ted megakaryocytic-erythroid progenitors (CD38+CD10−CD4
5RA−CD135−) and common myeloid progenitors (CD38+CD
10−CD45RA−CD135+). A recent scRNA-seq study of mouse T 
regulatory cells employed computational modelling to success-
fully characterise the adaptation of these cells from lymph nodes 
to peripheral tissue and their shared transcriptional programmes 
in skin and colon (55).

Importantly, trajectories inferred from scRNA-seq data 
only represent the most likely ordering of cells based on their 
transcriptome. For example, a trajectory inference of cells with 
a switch like differentiation behaviour will most likely fail 
to capture the actual biological process. In practice, the user 
always has to evaluate the trajectories for their biological plau-
sibility, and results often need to be validated with additional 
experiments.

Mapping cells onto a pseudotime trajectory can inform on the 
dependency between cell populations. This knowledge can then 
be complemented by examination of gene expression profiles 
and inference of gene regulatory networks (57–59). This class of 
methodologies has been used to postulate and validate regulatory 
cascades in megakaryocyte-erythroid progenitor cells (60).

Lastly, computational performance should be taken into 
account when applying these methods, since not all of them 

scale up efficiently to large datasets (see Figure 1D for a runtime 
comparison of different algorithms). Recently, there have been 
efforts to universally quantify the stability and accuracy of these 
algorithms using both simulated and real data sets (43).

5. TRACinG LineAGe THROUGH 
CLOnALiTY

Lineage reconstruction with sequencing data has its origins in the 
area of population genetics and cancer research, where bulk DNA 
sequencing has been used to infer lineage relationships between 
species or different parts of a tumour based on shared mutations. 
In humans, a cell acquires a few non-deleterious mutations per 
cell division, making mutation-based lineage reconstruction 
at the single-cell level possible (61). G&T-seq can measure the 
genome and transcriptome of single cells at the same time, but 
currently has a genomic coverage of less than 70%, making it very 
difficult to capture rare acquired mutations needed for clonal 
inference (62). Long-term, the resolution of G&T-seq is likely to 
improve, allowing the concurrent inference of cell type/state and 
clonal tree within the cell population.

Cell lineages can also be inferred experimentally by creating 
cell-to-cell genomic variability, using a set of recently developed 
methods better know as genetic scarring. These methods insert 
mutations in a defined sequence to create a synthetic barcode 
(63) or transgene (64). Most approaches use CRISPR/Cas9 
to introduce the mutation in  vitro. An alternate method uses 
Cre–loxP recombination with an artificial DNA recombination 
locus (termed Polylox) to enable genetic barcoding (65). A 
significant advantage of Polylox recombination is that it can be 
paired with tamoxifen-inducible Cre to enable in vivo barcod-
ing. The barcode sequence from CRISPR/Cas9 or Polylox can 
be recovered by scRNA-seq and used for a hierarchical recon-
struction based on the successive mutational patterns detected. 
We envisage these methods will be used to map immune cell 
migration trajectories together with their cell identity, or reveal 
the fate of cells that respond to an infection and memory cell 
formation.

A form of natural genetic scarring exists in some lymphocytes. 
B cells and T cells express surface receptor molecules allowing 
them to specifically recognise antigens. This specificity derives 
from a process of germline DNA recombination resulting in a 
range of possible gene sequences for T cell receptors (TCR) and 
B  cell receptors (BCR; immunoglobulin). The plethora of pos-
sible receptor recombinations makes it highly unlikely that two 
independent cells express the same receptor (66), which can be 
used to establish clonal relationships between cells.

For T cells, several algorithms have been developed to infer the 
TCR sequence from scRNA-seq data, and subsequently recon-
structing a clonal network (TraCeR (67), TRAPeS (68), scTCRseq 
(69), and VDJPuzzle (70)). We used TraCeR to detect TCR chain 
expression by CD4 T cells responding to Plasmodium (50) and 
observed shared TCR sequences by T helper (Th) 1 and T fol-
licular helper (Tfh) cells, strongly suggesting that these cells arose 
from the same precursor, and that effector fate is not predefined 
in the naïve state.
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FiGURe 1 | Examples of trajectory inference methods and their performance. (A) Result of approximate graph abstraction (AGA (52)) for a human hematopoiesis 
dataset by Velten et al. (54). The colours indicate the results from indexed FACS sorting. (B) Monocle 2 DDRTree (45) trajectory branching inference for the same 
hematopoiesis dataset. (C) scRNA-seq and FACS measurements over pseudotime inferred by Monocle 2. Following the Monocle approach, the expression has 
been smoothed over pseudotime using splines. (D) Performance of selected trajectory inference methods and their dependence on cell number (left) and gene 
number (right). For benchmarking, artificial datasets based on data by Velten et al. were created using Splatter (54, 56). Points denote mean and SEM of 10 
independent runs. The missing data points result from a computational running time cut-off.
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For B cells, the processes of somatic hypermutation and isotype 
switching further complicate the reconstruction of BCR sequences, 
requiring additional computational steps. Nevertheless, algorithms 
for this have been developed and will be useful in following the 
development and response of B cells (BASIC (71), BraCeR (72), 
and VDJPuzzle (73)).

To date, single-cell sequencing of TCRs and BCRs has been 
limited to scRNA-seq data acquired with full-length transcript 
sequencing methods that cover the variable regions of the tran-
scripts such as STRT-seq or Smart-seq. These methods, however, 
have relatively low throughput. Recently, 10x Genomics released a 
method for TCR/BCR and paired full transcriptome sequencing 
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with high-cell throughput. This protocol holds great potential for 
in-depth lineage tracing of lymphocyte clones, which will be criti-
cal for understanding the etiology of lymphoid-related diseases or 
in designing treatments and vaccines eliciting T cell and antibody 
responses.

6. MULTiMODAL SinGLe-CeLL 
APPROACHeS ReSOLve THe 
ReGULATORY LAnDSCAPe  
OF iMMUne CeLLS

Many of the studies detailed in this review feature the combined 
use of several single-cell techniques. In our own study of Th1/
Tfh bifurcation, scRNA-seq and computational modelling led to 
the discovery of a role of Galectin-1 in regulating Tfh fate com-
mitment during Plasmodium infection (50). By analysing the 
behaviour of Th cells deficient in Galectin-1 with FACS, we were 
able to validate this finding at the functional level.

Advances in technology now allow the capture of multiple 
molecule types from the same cells simultaneously. Some FACS 
instruments have the capability of “index-sorting”, whereby 
information of the fluorescence level of conjugated proteins is 
retained at the time of sorting. When combined with plate-based 
scRNA-seq, this allows the integration of mRNA and protein 
expression at the single-cell level (74). The power of index sorting 
can be seen in Figures 1A–C where the intermediate stages of the 
haematopoietic tree were sorted. In Figure 1C, we visualise the 
dynamics of surface markers and their corresponding transcripts 
over the pseudotime inferred by Monocle 2. Although in this 
case the expression at the transcriptome and protein level is well 
correlated, this approach allows for the discovery of how gene 
expression regulates protein expression over a developmental 
trajectory.

CITE-seq (Cellular Indexing of Transcriptomes and Epitopes 
by sequencing) (75) and REAP-seq (RNA expression and protein 
sequencing) (76) are methods for measuring mRNA and protein 
from the same cell. They use DNA barcodes conjugated to anti-
bodies that can be sequenced together with the transcriptome, 
and both are compatible with droplet-based scRNA-seq. Since 
neither technique relies on fluorescent-labelled antibodies, the 
number of proteins that can be measured is only limited by the 
availability of specific antibodies against them. CITE-seq has 
been successfully used to subcluster natural killer cells (75) and 
REAP-seq used to characterise a “myeloid-like” subpopulation 
of CD8 T  cells (76). Both technologies hold great potential 
for profiling of intermediate cell states, and revealing how the 
dynamic transcriptional changes are reflected at the protein 
level.

The next chapter of single-cell dynamics in immunology will 
see the continued development and application of single-cell 
multi-omics techniques. scM&T-seq (single-cell methylation 
and transcription sequencing), created by Angermueller et al. 
(77), combines single-cell bisulfite sequencing with scRNA-seq 
to simultaneously measure the transcriptome and methylation 
state of single cells. The same group built upon scM&T-seq with 

the addition of chromatin accessibility assessment to create 
scNMT-seq (single-cell nucleosome, methylation, and tran-
scription sequencing) (78). Neither technique has been used 
to study immune cells. An alternative method for determining 
chromatin accessibility is through ATAC-seq. This has had 
success at the single-cell level for myeloid leukemia cells using 
a microfluidic platform (79), and for mouse and human nuclei 
using a plate-based platform (80), and will likely be combined 
with scRNA-seq in the near future. Such multifaceted data 
will enable a detailed modelling of the relationship between 
epigenetic modification, accessibility and transcription within 
a comprehensive gene regulatory network. An example of how 
this could be applied to immune cell trajectories is following 
isotype switching in B cells: the RNA component can provide 
a deep profile of the gene expression and the immunoglobu-
lin sequence; open chromatin profiles can give information 
about how and when chromatin is remodelled to allow for 
immuno globulin recombination; and methylation profiles 
reveal the underlying epigenetics and gene regulation behind 
this process.

scRNA-seq-based methods have been and will continue 
to be incredibly informative for understanding molecular 
mechanisms underlying cellular responses. However, mRNA 
is only a surrogate measure for protein abundance that defines 
most of the cellular phenotype. A single-cell technique to 
measure all proteins or “the proteome” of a cell is currently 
the holy grail of high-throughput immunology. However, this 
continues to be challenging even at the bulk level. Kasuga et al. 
were able to assess several hundred different proteins in as few 
as a hundred sorted cells using a micro-proteomics workflow 
(81). Further technological developments will make it possible 
to obtain information on the past (genome mutations), present 
(transcriptome and proteome), and future (chromatin acces-
sibility) state of a cell from a single experimental snapshot. 
With this level of resolution, it will be not only be possible to 
confidently describe an immune cell trajectory in great depth 
but also determine the underlying regulatory framework  
driving it.

7. COnCLUDinG ReMARKS

Single-cell technologies for the analysis of immune cell dynam-
ics have already led to profound discoveries. Nevertheless, 
many dynamic immune processes remain poorly understood. 
As we have discussed here, current single-cell technologies 
each have benefits and drawbacks in tackling immune trajec-
tory analysis in terms of their throughput, resolution, and 
technical feasibility.

Collaborative and multidisciplinary research is aiding the 
combination of single-cell techniques. This, and further experi-
mental and computational method development to capture cell 
states at the transcriptional, regulatory, and protein level, will 
generate a more detailed understanding of immune cell trajecto-
ries and, eventually, the power to precisely manipulate immune 
cell dynamics with therapy and vaccination strategies for the 
benefit of human health.
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DATA AvAiLABiLiTY STATeMenT

The dataset analysed for this study can be found in the Gene 
Expression Omnibus database with accession number GSE75478. 
The code used to evaluate the running times of the trajectory 
inference algorithms can be found on GitHub: https://github.
com/d-j-k/trajectory-runningtimes.
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