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With more than 71 million people chronically infected, hepatitis C virus (HCV) is one of 
the leading causes of liver disease and hepatocellular carcinoma. While efficient antiviral 
therapies have entered clinical standard of care, the development of a protective vaccine 
is still elusive. Recent studies have shown that the HCV life cycle is closely linked to 
lipid metabolism. HCV virions associate with hepatocyte-derived lipoproteins to form 
infectious hybrid particles that have been termed lipo-viro-particles. The close associ-
ation with lipoproteins is not only critical for virus entry and assembly but also plays an 
important role during viral pathogenesis and for viral evasion from neutralizing antibodies. 
In this review, we summarize recent findings on the functional role of apolipoproteins for 
HCV entry and assembly. Furthermore, we highlight the impact of HCV–apolipoprotein 
interactions for evasion from neutralizing antibodies and discuss the consequences 
for antiviral therapy and vaccine design. Understanding these interactions offers novel 
strategies for the development of an urgently needed protective vaccine.
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iNTRODUCTiON

With more than 71 million people chronically infected (1, 2), hepatitis C virus (HCV) is one of 
the leading causes of liver disease and hepatocellular carcinoma (3). The recent development of 
direct acting antivirals with sustained virological response rates of over 90% has revolutionized  
HCV therapy. However, several limitations remain: high treatment costs, emergence of resistant 
variants, difficult-to-treat patients with significantly decreased sustained virological response rates, 
and the possibility of reinfection highlight the urgent need for a protective HCV vaccine (4).

Despite the combined efforts of the HCV research community, HCV vaccine design has been 
hampered by the ability of HCV to rapidly mutate and escape from protective immune responses (5). 
This is partly due to the intimate relationship of HCV with the host lipid metabolism. All steps of the 
HCV life cycle are dependent on the interaction with lipoproteins and apolipoproteins. Moreover, 
the interaction of HCV with lipoproteins leads to the formation of lipo-viro-particles (LVPs), which 
is critical for HCV infectivity and evasion from neutralizing antibodies. Thus, understanding the  
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FigURe 1 | Model of the hepatitis C virus (HCV) lipo-viro-particle (LVP). The HCV particle consists of an icosahedral capsid, formed by the viral core protein, 
containing the positive-stranded viral RNA. The nucleocapsid is surrounded by an endoplasmic reticulum-derived envelop in which E1 and E2 glycoproteins are 
embedded. The highly infectious HCV particle corresponds to a hybrid particle composed of very-low-density lipoprotein (VLDL) components and viral components 
named LVP. The different apolipoproteins classically associated with VLDL and LVP are illustrated on this picture (ApoB-100 and the exchangeable apolipoproteins 
ApoE and ApoCs).
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role of these interactions is crucial for future vaccine research. 
Here, we review recent findings on HCV–apolipoprotein inter-
actions, highlight their role for viral escape, and discuss their 
implications for HCV antiviral therapies and vaccine design.

THe FUNCTiONAL ROLe OF 
APOLiPOPROTeiNS iN THe HCv  
LiFe CYCLe

Structure of the LvP, the infectious  
HCv Particle
Hepatitis C virus is an enveloped positive-stranded RNA virus 
belonging to the Flaviviridae family. The viral particle consists of 
a nucleocapsid containing the viral RNA surrounded by an endo-
plasmic reticulum (ER)-derived envelope in which viral E1 and 
E2 glycoproteins are embedded as heterodimers (6) (Figure 1). 
Over the past years, several studies strongly demonstrated the 
tight link between HCV and lipid metabolism (7, 8). A hallmark 
of the virus is its association with host lipoproteins. Indeed, highly 
infectious HCV particles circulate in patient serum in associa-
tion with very-low-density lipoproteins (VLDL) or low-density 
lipoproteins (LDL), to form LVPs (9–11). Consequently, LVPs 
share several biophysical properties with the VLDL. Infectious 
LVPs have a low density (between 1.03 and 1.10 g/ml), are rich in 
cholesterol and triglycerides, and contain apolipoproteins (Apo) 
such as ApoB, ApoA-I, ApoE, and ApoCs (12–15) (Figure  1). 
Characterization of HCV particles produced in cell culture 
(HCVcc) has confirmed these properties (16–18). Interactions of 
HCV particles with lipoprotein components play a critical role in 
the viral life cycle and contribute to viral persistence and develop-
ment of chronic liver diseases (19).

Apolipoproteins represent the protein moiety of the lipo-
proteins. Physiologically, they have three major functions in 
the lipoprotein metabolism: (i) they stabilize the lipoprotein 
structure and solubilize the lipid fraction, (ii) they interact with 
lipoprotein receptors and participate in lipoprotein clearance, 

and (iii) they act as cofactors for specific enzymes involved in 
lipoprotein metabolism (20, 21) (Table 1). In many aspects, HCV 
takes advantage of host apolipoproteins for efficient propagation 
in hepatocytes (22). The role of apolipoproteins in the HCV life 
cycle is highlighted in Table 1 and Figures 2 and 3.

Role of Apolipoproteins in HCv entry
The initiation of HCV entry is triggered by LVP binding to cell 
surface heparan sulfate proteoglycans (HSPGs). Interestingly, 
it was demonstrated that ApoE plays a role in this process by 
interacting with syndecan 1 and syndecan 4 HSPGs (23–27). 
Other groups have highlighted the key role of ApoE in HCV 
entry. Indeed, HCV infectivity can be efficiently blocked by anti-
ApoE antibodies or human synthetic peptides derived from the 
ApoE receptor-binding domain (18, 25, 28, 29). Moreover, Owen 
and collaborators observed that ApoE facilitates HCV entry by 
interacting with the LDL receptor (30). The scavenger receptor 
class B type I (SR-BI) is another lipoprotein receptor identified 
as a HCV receptor involved in different steps of HCV entry  
(31, 32). During the early steps, LVP attachment to SR-BI is 
mediated by ApoB-100 and ApoE (33, 34). This interaction is 
thought to induce lipoprotein–HCV dissociation and to expose 
the viral glycoprotein E2 for direct interaction with SR-BI and the 
tetraspanin CD81 (32). Of note, it was reported that high-density 
lipoprotein (HDL)-associated ApoC-I, a natural ligand of SR-BI, 
improves this step by increasing the fusion rates between viral and 
target membranes through direct interaction with the LVP (35).

Lipo-viro-particle entry into hepatocytes is also influenced 
by changes in lipoprotein composition. One of the best examples 
is the action of the lipoprotein lipase (LPL) on lipoprotein- 
associated triglycerides. By hydrolyzing triglycerides, LPL 
decreases the size of the particles and induces a loss of LVP-
associated ApoE. The loss of ApoE results in a strong decrease 
in LVP infectivity (36, 37). Consistent with this finding, it was 
demonstrated that ApoC-II, the natural activator of the LPL, is an 
anti-HCV factor, whereas ApoC-III, an LPL inhibitor, facilitates 
chronic HCV infection (38, 39) (Figure 2).
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TAbLe 1 | Role of the major apolipoproteins in the HCV life cycle.

Name Physiological role Role in HCv life cycle Reference

ApoA-I 
(exchangeable 
apolipoprotein)

Structural role: major component of HDL Structural role: component of the LVP (12, 15, 19, 
49, 50)HDL metabolism: involved in HDL maturation by  

activating LCAT
HCV morphogenesis: redundantly participate  
in the production of infectious HCV particles

Reverse cholesterol transport: from peripheral tissues to 
liver through interaction with SR-BI and ABCA1 (cholesterol 
efflux)

ApoB-100 (non 
exchangeable 
apolipoprotein)

Structural role: major component of VLDL and LDL Structural role: major component of the LVP (12, 15, 19, 33, 
34, 41, 42, 49)Triglyceride transport: involved in VLDL synthesis  

and clearance through interaction with LDLR
HCV entry: mediates LVP binding through interaction  
with SR-BI

Cholesterol transport: transfer of LDL-cholesterol  
in cells through LDLR

HCV morphogenesis: LVP synthesis and secretion

ApoC-I 
(exchangeable 
apolipoprotein)

Structural role: component of VLDL and HDL Structural role: component of the LVP (12, 15, 19, 35)
HDL metabolism: LCAT activator HCV entry: enhance HCV infectivity through complex  

interaction with SR-BI

ApoC-II 
(exchangeable 
apolipoprotein)

Structural role: component of VLDL and HDL Structural role: component of the LVP (12, 15, 19, 37)
Triglyceride metabolism: LPL activator HCV entry: physiological HCV entry inhibitor by  

activating LPL
HCV morphogenesis: redundantly participate in the  
production of infectious HCV particles

ApoC-III 
(exchangeable 
polipoprotein)

Structural role: component of VLDL and HDL Structural role: component of the LVP (12, 15, 19, 38)
Triglyceride metabolism: LPL inhibitor HCV entry: enhance HCV entry by inhibiting LPL

HCV morphogenesis: redundantly participate in the  
production of infectious HCV particles

ApoE 
(exchangeable 
apolipoprotein)

Structural role: major component of VLDL and HDL Structural role: major component of the LVP (12, 15, 19, 
23–34, 43–61)Triglyceride transport: involved in VLDL synthesis  

and clearance trough interaction with HSPG, LRP1,  
and LDLR

HCV entry: mediates LVP binding through interaction  
with HSPG, LDLR, and SR-BI. Involved in cell-to- 
cell transmission

HDL metabolism: involved in reverse cholesterol transport HCV morphogenesis: crucial role in HCV assembly by interaction with 
NS5A, E1, and E2, necessary for the production and maturation of 
infectious HCV particles

ABCA1, ATP-binding cassette A1; Apo, apolipoprotein; HDL, high-density lipoprotein; HSPG, heparan sulfate proteoglycan; LCAT, lecithin cholesterol acyltransferase; LDL, low-
density lipoprotein; LDLR, low-density lipoprotein receptor; LPL, lipoprotein lipase; LRP1, LDLR-related protein 1; LVP, lipo-viro-particle; SR-BI, scavenger receptor class B type I; 
VLDL, very-low-density lipoprotein; HCV, hepatitis C virus.

FigURe 2 | Role of apolipoproteins during early steps of hepatitis C virus (HCV) entry. The first step of HCV entry consists of the interaction between lipo-viro-
particle (LVP)-associated ApoE, the heparan sulfate proteoglycans (HSPGs), and the low-density lipoprotein receptor (LDLR). Subsequently, the LVP interacts with 
the scavenger receptor class B type I (SR-BI) through ApoE and ApoB (not illustrated). The cholesterol transfer activity of SR-BI allows E2 exposure and binding of 
E2 to SR-BI and the tetraspanin CD81. Binding on CD81 activates the epithelial growth factor receptor (EGFR) signaling pathway and interaction between CD81 
and claudin 1 (CLDN1) that triggers HCV entry.
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FigURe 3 | Role of apolipoproteins in hepatitis C virus (HCV) morphogenesis. 
HCV assembly takes place at the surface of endoplasmic reticulum 
(ER)-derived membranes in close proximity to lipid droplets (LD). Core protein 
associates with viral RNA to form the nucleocapsid. The nucleocapsid buds  
at the ER membrane where E1 and E2 glycoproteins are anchored and 
afterward associate with nascent LD to acquire ApoE and ApoC. This step is 
facilitated by the interaction between ApoE and the non-structural (NS) viral 
protein NS5A as well as by the interaction between ApoE and the 
glycoproteins E1 and E2. In parallel, ApoB is lipidated by the microsomal 
triglyceride transfer protein (MTP) to generate very-low density lipoprotein 
(VLDL) precursors. The nascent HCV particle associates with these precursors 
by an unknown mechanism to generate mature lipo-viro-particles (LVPs).
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to produce infectious HCV particles in human non-liver cells  
(46, 47). Recently, two studies demonstrated that ApoE but not 
ApoB is required for HCV cell-to-cell transmission (47, 48). Finally, 
by using Huh7 cells knockout for either or both APOB and APOE, 
the Matsuura group revealed that ApoB and ApoE redundantly 
participate in the formation of infectious HCV particles (49). Of 
note, not only the expression of ApoE but also of other exchangeable 
apolipoproteins belonging to the ApoA and ApoC family rescued 
the production of infectious virions, indicating that exchange-
able apolipoproteins possess redundant roles in HCV assembly  
(49, 50). ApoA, ApoC, and ApoE are exchangeable apolipoproteins 
that are able to dissociate from one lipoprotein and reassociate 
with another due their high content in α-helical structures (20). 
Accordingly, two research groups highlighted the role of α-helical 
structures in HCV morphogenesis. The authors demonstrated that 
expression of short sequences containing amphipathic α-helices 
derived from apolipoproteins but also of other proteins such as the 
human cathelicidin antimicrobial peptide is sufficient to rescue the 
production of infectious HCV particles in apolipoprotein knock-
out cells (49–51). Of note, a recently published paper showed that 
α-helices found in host-derived apolipoproteins and in NS1 of 
other Flaviviridae may have overlapping roles in the formation of 
infectious flaviviral particles (52).

Despite the redundant role of exchangeable apolipoproteins in 
HCV morphogenesis, ApoE remains critical for HCV assembly 
and infectivity. The role of ApoE was reinforced by a study show-
ing that all the main HCV genotypes (from genotypes 1 to 7) are 
strictly ApoE dependent, regardless of ApoE isoforms. Indeed, 
the three main ApoE isoforms, ApoE3, ApoE2, and ApoE4, dif-
fering at only two amino acid positions (residues 112 and/or 158) 
seem to complement HCV production to a comparable degree.

The molecular mechanism by which ApoE associates with 
HCV particles was recently highlighted. Indeed, ApoE was found 
to interact with the viral protein NS5A through its C-terminal 
α-helix domain (53, 54). Furthermore, two other studies evi-
denced the interaction between ApoE and the HCV glycoproteins 
E1 and E2 in the ER but also at the LVP surface. Association of 
ApoE with the viral proteins NS5A, E1 and E2 would trigger LVP 
morphogenesis (55, 56). Finally, it was shown that extracellular 
ApoE play a role in LVP maturation. Mature LVP are highly 
enriched in ApoE compared with normal VLDL (18, 57). Recent 
studies related that ApoE exchange occurs between LVP and 
circulating lipoproteins. This process is important to maintain a 
high ApoE level on the LVP surface that is required for an efficient 
infectivity and facilitates escape host immunity (57–59). Indeed, 
a study performed in our lab demonstrated that association of 
ApoE with E2 helps the virus to escape from patient neutralizing 
antibodies (60). These observations are of utmost importance for 
vaccine development: design of immunogens mimicking the E2/
ApoE interface might help to achieve an efficient neutralizing 
humoral immune response against HCV (60).

APOLiPOPROTeiNS AND viRAL 
PATHOgeNeSiS

Clinical evidence indicates that chronic HCV infection is 
associated with dysregulated circulating lipoproteins and 

Role of Apolipoproteins in HCv 
Morphogenesis and Maturation
Following HCV entry and viral RNA replication, virions are 
assembled in a coordinated and complex process (39) (Figure 3). 
As mentioned above, LVP share numerous properties with VLDL 
suggesting that HCV coopts the VLDL machinery for its own 
morphogenesis. In hepatocytes, the VLDL production is divided 
in two steps. First, ApoB-100 is lipidated by the microsomal 
triglyceride transfer protein (MTP) to form a VLDL precursor. 
Second, the precursor is enriched in lipids and acquires ApoE 
and ApoCs in the ER by a mechanism not fully understood (40). 
Interestingly, it was shown that the impairment of VLDL synthesis, 
through MTP inhibitors or siRNA-mediated knockdown of ApoB 
expression, leads to a decrease in HCV production (12, 41, 42). 
However, the functional importance of ApoB in HCV assembly 
remains controversial. Other studies revealed that HCV assembly 
is independent on ApoB expression but is rather highly depend-
ent on ApoE (43, 44). The different observations could be due 
to the use of different models and to a defect of Huh7 cells in 
producing authentic VLDL (45). The hypothesis is supported by 
studies showing that there is no correlation between the ability to 
generate VLDL and the production of infectious viral particles. 
Indeed, the ectopic expression of ApoE but not ApoB is necessary 
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apolipoproteins within the HCV-infected hepatocytes. HCV 
infection induces the accumulation of lipoproteins and apoli-
poproteins by upregulation of genes involved in lipid synthesis  
(61, 62). Disturbed lipoprotein and Apo homeostasis may not 
only contribute to clinical progression of HCV-induced liver dis-
eases but also represent important risk factors for cardiovascular 
disease (63).

Hepatitis C virus infection appears to disturb serum apolipo-
protein levels depending on the genotype of the virus. Seki et al. 
reported that infection with genotype 1b was associated with 
elevated serum levels of ApoA-II and ApoE and reduced levels 
of ApoC-II and ApoC-III. By contrast, genotype 2 infection only 
reduced ApoC-II and ApoC-III serum levels. In infected patients, a 
reduction in ApoC-II and ApoC-III serum levels may enhance HCV 
infection. In particular, low ApoC-II serum levels were found to be 
associated with advanced liver fibrosis, which indicate an important 
role in liver pathogenesis (64). A similar effect has been observed 
for the HCV core protein induced upregulation of ApoC-IV that 
has been also reported to induce hepatic steatosis (65).

Finally, it has been observed that single-nucleotide poly-
morphisms (SNPs) in apolipoproteins are associated with HCV 
infection and alteration of lipid metabolism. Two studies reported 
that SNP rs12979860 near the IL28B gene, which encodes for 
interferon-λ-3, is associated with the response to IFN treatment 
(66, 67). A follow-up study reported that the rs12979860 CC 
responder genotype was associated with higher serum levels of 
ApoB, suggesting that alteration of ApoB levels are part of the 
IFN response (68). Moreover, a recent study showed that the 
ApoB polymorphism rs1042034 is significantly associated with 
the HCV infection status (69). The AA allele, which was charac-
terized by significantly lower serum levels of LDL-cholesterol, 
might contribute to facilitating serum LDL uptake into human 
hepatocytes. Consequently, individuals carrying the polymor-
phism might be more susceptible to HCV infection, indicating 
a direct influence of the polymorphism on the low-density 
lipoprotein receptor-mediated host cell entry of HCV.

MeCHANiSMS OF NeUTRALiZiNg 
ANTibODieS TARgeTiNg HCv iNFeCTiON

Neutralizing antibodies to HCV are mainly directed at the E2 
glycoprotein with a wide range of specificity and degree of conser-
vation. The majority of broadly neutralizing antibodies mediate 
neutralization by blocking virus binding to CD81, a tetraspanin 
HCV co-receptor (70). Fine epitope mapping shows that these 
antibodies are directed at clusters of overlapping epitopes that 
include key residues that also participate in virus interaction with 
CD81 (71, 72). Thus, the binding of these antibodies to the viral 
surface prevents virus interaction to this required co-receptor 
during viral entry. These antibody clusters are designated as 
antigenic domains B, D, and E or antigenic region 3 (AR3) (see 
Keck et al. in this issue). Note that domains B, D, and AR3 are 
clusters of overlapping conformational epitopes, while domain 
E has mainly overlapping linear epitopes. Two other clusters of 
broadly neutralizing antibodies are directed at conformational 
epitopes formed by key residues on both E1 and E2 glycoproteins, 

designated as AR4 and AR5. These antibodies do not block virus 
binding to CD81 and are thought to mediate neutralization by 
inhibiting E1E2 heterodimer conformational change during the 
entry process (73).

The N-terminal region of E2 (amino acid 384–410) is hyper-
variable and some antibodies to this region, designated as HVR1, 
do mediate virus neutralization. These antibodies are directed at 
epitopes located at the C-terminal portion of HVR1 that includes 
key residues that are also found to be involved in the initial attach-
ment step of virus entry to heparan sulfate and subsequent interac-
tion with SR-BI (74–76). While the majority of antibodies to HVR1 
are isolate specific, several described antibodies exhibit broad virus 
neutralization and block virus binding to SR-BI (77, 78).

APOLiPOPROTeiNS AND viRAL evASiON 
DURiNg viRUS NeUTRALiZATiON

With about 75–80% of all HCV infections progressing to chronic 
disease, it is clear that evasion from the neutralizing antibody 
response is a key feature of HCV: although patients during the 
chronic phase often have high levels of serum neutralizing anti-
bodies, in most cases, the immune system is not able to control 
the infection. A potential determinant for viral escape is the close 
association of HCV with lipid metabolism (79).

Early indications that HCV-lipoprotein interactions are 
involved in viral escape from the neutralizing antibody response 
stem from reinfection experiments in chimpanzees, where 
infection could only be transmitted by low-density fractions of 
serum-derived HCV (80).

A very similar effect was observed in virus derived from 
humanized mice: those particles displayed lower density and 
higher infectivity than cell culture-derived viruses. However, this 
effect was lost after a single passage in cell culture, indicating the 
responsibility of host-derived factors (17). Indeed, highly infec-
tious particles were associated with ApoB and E, forming LVPs 
with a buoyant density of 1.06  mg/ml while poorly infectious 
LVPs of buoyant densities around 1.25  mg/ml were linked to 
immunoglobulins (81). Furthermore, Thomssen et  al. reported 
that virus-bound ApoB-100 excluded binding of neutralizing 
antibodies (82), indicating a negative correlation of apolipopro-
tein content and binding of neutralizing antibodies.

The development of cell culture-derived HCV (HCVcc) that 
displays a similar lipid composition as native serum-derived 
HCV particles allowed for a more detailed analysis of the involved  
mechanism. Immature intracellular HCVcc that are characterized 
by a lower lipoprotein content, when compared with released 
HCVcc were more sensitive to neutralization by anti-E2 anti-
bodies and less sensitive to anti-ApoE antibodies than mature 
HCVcc (83), indicating a shielding function of the lipoproteins. 
In addition, a cell culture adaptive mutation in E2 (I414T) that 
decreased the dependency on the host factors SR-BI and CD81 
also led to reduced lipoprotein content in combination with 
increased susceptibility to neutralizing anti-E2 antibodies (83). 
A similar mechanism was observed for mutation G451R that also 
decreased the dependency of HCV on SR-B1 and CD81 and altered 
the relationship of infectivity and density with peak infectivity 
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occurring at higher density, meaning lower lipid content, than the 
wild-type virus (84). This was associated with a drastic increase 
in the sensitivity of the virus to neutralizing antibodies targeting 
E2 or soluble CD81 protein, indicating that lipoprotein content 
directly affects the binding efficiency of neutralizing antibodies 
(84). Bankwitz et al. recently confirmed that physiological levels 
of ApoE, which are much higher than those found in cell culture 
(10–60 µg/ml compared with 0.3 µg/ml) directly enhanced HCV 
particle infectivity across all genotypes (59). Furthermore, the 
overall ApoE capacity of serum-derived HCV particles was higher 
than cell culture-derived HCV, indicating that not only the higher 
concentration of the serum but also apolipoprotein incorpora-
tion during the assembly process is responsible for the elevated 
apolipoprotein levels of native HCV particles. Enhancement of 
infection was independent of HVR1 and SR-BI but was reliant 
on HSPGs. Removal of HSPGs abrogated the enhancement of 
infection by ApoE, indicating that incorporated ApoE mediated 
the binding to cell surface proteoglycans (59).

A recent publication showed that ApoE levels in HCV-
producing cells directly determined the ability of HCV to evade 
the neutralizing antibody response (60). Viruses that were 
produced in hepatoma cells expressing only low amounts of 
ApoE were more susceptible to neutralizing antibodies directed 
against the envelope proteins. Utilization of ApoE to escape from 
neutralizing antibodies was pan-genotypic; however, it was most 
exploited by variants that were characterized by most efficient 
viral escape (60). Functional studies with different monoclonal 
antibodies revealed that E2 domains B and C were exposed after 
ApoE deletion, confirming the shielding mechanism of ApoE. In 
variants that were selected post liver transplantation, a mutation 
on E2 residue 447 appeared to modify the E2–ApoE interac-
tion that altered the sensitivity to neutralization by both ApoE 
and E2-specific neutralizing antibodies, despite comparable 
incorporation of ApoE in wild-type and mutant viruses (60), 
indicating that viral evasion mediated by ApoE is determined 
both by incorporation and conformation of incorporated ApoE. 
A study by Weller et  al. demonstrated that usage of ApoE was 
strain dependent, indicating that ApoE might contribute to 
strain-dependent differences in neutralization (85). Shielding of 
antigenic sites on the envelope proteins, however, is not the only 
mechanism by which apolipoproteins contribute to viral escape.

It has been shown that lipoproteins attenuated antibody 
binding to HCVpp and HCVcc by augmenting virus entry in 
an SR-BI-dependent fashion (35). HDL activation of target cells 
accelerated virus entry by removing a 1-h lag during virus inter-
nalization. This augmentation of virus entry resulted in decreased 
binding of neutralizing antibodies to the CD81 binding site on 
E2, potentially due to limited exposure time of these epitopes. 
Antibodies targeted to E1E2 complex epitopes were not affected 
(35). This effect was mediated by the lipid transfer function of 
SR-BI, as inhibitors of SR-BI mediated lipid transfer fully restored 
the neutralizing ability of antibodies targeting the CD81 binding 
site. Part of the accelerated entry efficiency is potentially due to 
the enhancing ability of ApoC-I which has been shown to be 
affected by SR-BI mediated lipid transfer (86). Incorporation of 
ApoC-I increased the infectivity of HCV pseudoparticles after 
incubation with old world nonhuman primate or human sera. 

Antibodies against ApoC-I abrogated the enhancing activity of 
human serum showing that ApoC-I was indeed responsible for 
the enhancement of infectivity (87). In contrast to ApoE, the 
enhancement of infectivity by ApoC-I was dependent on HVR1 
(35, 86) and its interaction with SR-BI. It remains to be deter-
mined whether enhancement of infection and escape from the 
neutralizing antibody response are two completely independent 
mechanisms or whether faster virus entry limits the exposure 
time to neutralizing antibodies and thus mediates escape from 
the neutralizing antibody response.

In addition, apolipoproteins might not only be involved in the 
escape from adaptive immune responses. Experimental evidence 
suggests that ApoE3 also mediates escape from the innate effector 
molecule Ficolin-2 that blocks HCV entry at an early time point 
during infection (88). ApoE3 indirectly blocked the interaction 
of Ficolin-2 and E2, even when HCVcc were preincubated with 
Ficolin-2, potentially due to the higher affinity of ApoE3 for the 
viral envelope protein (88). This underlines the important func-
tion of apolipoproteins for the evasion from the host immune 
response.

Taken together, apolipoproteins contribute to viral escape by 
two different mechanisms. Association of HCV particles with 
lipid components in LVPs directly inhibits neutralization by 
anti-envelope antibodies. In addition, interaction with apolipo-
proteins enhances viral entry, which limits the exposure of the 
virus to neutralizing antibodies. Understanding the mechanisms 
by which HCV usurps apolipoproteins for viral escape might 
offer new strategies for antiviral intervention and could pave the 
way toward the development of a protective vaccine.

iMPACT FOR ANTiviRAL THeRAPieS AND 
vACCiNe DeSigN

The close association of HCV with the host lipid metabolism has 
several important implications for HCV treatment and vaccine 
design. Modulation of the apolipoprotein–HCV interaction may 
open new opportunities for antiviral therapies and vaccines: tar-
geting the interaction sites of apolipoproteins and viral envelope 
proteins could be an approach to block HCV infection and at the 
same time to restrict its capacity to evade from the neutralizing 
antibody response. In particular, viral variants isolated from 
patients undergoing liver transplantation are characterized by 
efficient viral escape (89, 90), which has been partially attributed 
to their incorporation of ApoE (60). Supporting this concept, 
Avasimibe, a clinically approved inhibitor of lipid transportation 
that leads to decreased ApoB and ApoE serum secretion showed 
broad pan-genotypic inhibition of HCV infection (91). Second, 
the interaction of apolipoproteins and HCV proteins provides an 
opportunity to identify epitopes for broadly neutralizing anti bodies. 
Antibodies that target conserved conformational structures are 
less prone to mutations. However, antibodies directed against 
host epitopes might also open the risk for autoimmune diseases, 
as it has been reported for the development of autoimmune-
antibodies directed against ApoA-I during HCV infection 
(92). This also has to be considered while choosing the correct 
system for vaccine production. While production in hepatic 
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cell lines, in particular in HepG2 cells would lead to correctly 
lipidized LVPs that might be the best option to generate a suitable 
immune response, masked epitopes or the risk for autoimmune 
diseases, as discussed earlier, might favor different production 
systems such as CHO cells or yeast, as for the hepatitis B virus 
and human papillomavirus vaccines. It remains to be determined 
which production system is suitable to generate a correct immune 
response against HCV. Studies on chronic viral infection in 
the lymphocytic choriomeningitis mouse model revealed that 
chronic infection and the associated chronic inflammation 
resulted in the formation of persistent immune complexes. The 
complexes resulted in a dampened Fc-mediated effector activity, 
potentially impacting antibody-based treatment options also for 
HCV and other chronic viral infections (93). Furthermore, HIV 
vaccine trials showed that post-translational modifications, such 
as glycosylations that greatly depend on the production system 
are of utmost importance for vaccine efficacy (94–96).

Another promising approach might be the development of 
monoclonal antibodies targeting E1 since the shielding function 
of apolipoproteins was primarily directed against epitopes located 
on the envelope protein E2. Finally, a detailed understanding of 
the HCV–lipoprotein–antibody interactions may help to design 

immunogens inducing broadly neutralizing antibodies for pro-
tection of infection and may guide the way toward the develop-
ment of a protective HCV vaccine.
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