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Human herpesvirus (HHV) 6 is thought to remain clinically latent in most individuals after 
primary infection and to reactivate to cause disease in persons with severe immuno-
suppression. In allogeneic hematopoietic stem cell transplant recipients, reactivation of 
HHV-6 species B is a considerable cause of morbidity and mortality. HHV-6B reacti-
vation is the most frequent cause of infectious meningoencephalitis in this setting and 
has been associated with a variety of other complications such as graft rejection and 
acute graft versus host disease. This has inspired efforts to develop HHV-6-targeted 
immunotherapies. Basic knowledge of HHV-6-specific adaptive immunity is crucial for 
these endeavors, but remains incomplete. Many studies have focused on specific HHV-6 
antigens extrapolated from research on human cytomegalovirus, a genetically related 
betaherpesvirus. Challenges to the study of HHV-6-specific T-cell immunity include the 
very low frequency of HHV-6-specific memory T cells in chronically infected humans, the 
large genome size of HHV-6, and the lack of an animal model. This review will focus on 
emerging techniques and methodological improvements that are beginning to overcome 
these barriers. Population-prevalent antigens are now becoming clear for the CD4+ 
T-cell response, while definition and ranking of CD8+ T-cell antigens and epitopes is 
at an earlier stage. This review will discuss current knowledge of the T-cell response to 
HHV-6, new research approaches, and translation to clinical practice.
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inTRODUCTiOn

Human herpesvirus 6 was discovered in 1986 and later found to exist as two closely related species, 
HHV-6A and HHV-6B, in the Betaherpesvirinae subfamily and Roseolovirus genus (1). Hereafter, 
“HHV-6” refers to both species unless specific data are available to differentiate between species. 
The two species have genomes roughly 162 kb long with 88–90% sequence identity, but have distinct 
tropisms and epidemiology (1). The other betaherpesviruses known to infect humans are HHV-7 and 
human cytomegalovirus (HCMV). About 1% of humans have inherited chromosomally integrated 
HHV-6 (ici-HHV-6) (2). Interestingly, immune tolerance has not been demonstrated and persons 
with ici-HHV-6 appear to maintain anti-HHV-6 cell-mediated immunity (CMI) (3). Primary infec-
tion with HHV-6B usually occurs once maternal antibodies have waned in early life (4, 5). The 
clinical syndrome roseola consists of fever and rash, although seizures can occur. The epidemiology 
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of HHV-6A is less well understood, related to difficulties with 
species-specific serodiagnosis. Like other herpesviruses, HHV-6 
establishes lifelong latent infection, usually asymptomatic. 
Transmission is probably via saliva, as HHV-6 DNA is frequently 
detectable in oral specimens.

Human herpesvirus-6 reactivation events are thought to occur 
periodically in healthy carriers and to be subclinical due to intact 
immune surveillance. Natural killer cells appear to have anti-
HHV-6 function (6), as implied by their activity in the acute febrile 
phase of primary infection (7, 8) and cytotoxicity against HHV-
6-infected cells (9) in an interleukin-15-dependent manner (10). 
There is little evidence that antibody deficiency disorders increase 
risk of complications from infection by these viruses (11), and 
B cell deficiency does not increase lethality of murine roseolovirus 
(MRV), a betaherpesvirus related to HHV-6, in neonatal mice (12).

Compared to other herpesviruses, HHV-6-specific cell-
mediated response is delayed in primary infection (8). This 
correlates with, and could be mechanistically related to, HHV-6 
lymphotropism (13–15), since activated HHV-6-responsive 
T cells may be differentially susceptible to destructive viral infec-
tion. HHV-6 also has immunosuppressive mechanisms targeting 
T cell function (16–20). The T-cell response is considered critical 
for control of HHV-6B infection since reactivation commonly 
occurs in cases of T-cell lymphopenia, e.g., in AIDS patients (21) 
or after bone marrow transplantation (22–28). Moreover, greater 
overall survival in these posttransplant patients is associated with 
at least 200 CD3+ T  cells/μL in blood at the time of HHV-6B 
reactivation (29).

The relative importance of different T-cell subsets in HHV-6B 
immunity is still not well established. In pediatric hematopoietic 
cell transplant (HCT) patients, increased proportions of perforin-
expressing CD8+ T cells have been temporally associated with 
HHV-6 clearance (30). HHV-6-specific CD8+ T cells with pro-
liferative capacity were more readily detectable in patients after 
viral reactivation but not in those without (31). Moreover, MRV 
is lethal to CD8 knockout mice but not to wild-type mice (12). 
Nevertheless, like other herpesviruses (32–38), HHV-6 can evade 
CD8+ T  cells by downregulating class I MHC molecules (39), 
which may account for challenges in detecting HHV-6B-specific 
CD8+ T cells (40, 41).

CD4+ T  cells are now considered to exert their own direct 
antiviral effector functions and to be crucial in controlling 
herpesvirus infections (42–47), although less is known about 
their importance for HHV-6B control. Some observers consider 
it plausible that HHV-6B-induced de novo surface expression of 
class II MHC molecules (48)—similar to HCMV (49, 50)—could 
promote recognition of infected cells by CD4+ T lymphocytes. 
Moreover, HHV-6A-specific CD4+ T-cell lines can produce 
IFNγ and degranulate (measured by surface CD107a/b) when 
presented with whole virus or peptide antigen, suggesting HHV-
6A-specific cytotoxicity (51). These in  vitro studies suggest the 
importance of Th1 cytotoxic CD4+ T cells in immunity to HHV-6.  
However, lack of an animal model, the multifaceted nature of 
human immunodeficiency states such as transplantation and 
HIV infection, and a paucity of data from direct ex vivo methods 
to measure expression of cytotoxic machinery in HHV-6-specific 
CD4+ T cells precludes strong conclusions at present.

MeDiCAL iMPORTAnCe OF HHv-6

The strongest evidence supporting clinically significant conse-
quences of HHV-6 infection is in immunocompromised patients, 
particularly recipients of allogeneic HCT and solid organ trans-
plants (SOT). Detection of HHV-6B DNA in blood occurs in 
40–50% of HCT recipients at a median of approximately 3 weeks 
after transplant, corresponding with the time period of lowest 
lymphocyte and neutrophil counts (25–28, 52, 53). HHV-6B 
accounts for ≥98% of HHV-6 detection after allogeneic HCT. 
Given pre-existing seropositivity, most viral detection is likely 
due to viral reactivation. The factors most prominently associ-
ated with HHV-6B reactivation include the use of umbilical cord 
blood stem cells as the donor source, an HLA mismatched or 
unrelated donor, receipt of depleting anti-T-cell antibodies, devel-
opment of acute graft-versus-host disease, and treatment with  
glucocorticoids (26, 28, 54–59).

Human herpesvirus-6B is the most frequent infectious 
cause of encephalitis after allogeneic HCT, and this occurs in 
approximately 1% of all HCT recipients (26, 27, 60–62). HHV-6B 
encephalitis results in significant morbidity and mortality despite 
antiviral treatment (26, 61, 63, 64). HHV-6B reactivation has been 
detected in many other conditions in allogeneic HCT and SOT 
recipients, although its causal role is less clearly defined. These 
include myelosuppression, development of acute GVHD (26, 28, 
65, 66), increased risk for cytomegalovirus reactivation and dis-
ease (28, 67–71), and solid organ allograft dysfunction (72–74).

Several available antiviral agents demonstrate activity against 
HHV-6A and HHV-6B, including foscarnet, ganciclovir, and 
cidofovir (25, 75–78), but clinical use has been limited by the tox-
icities of available antiviral agents and lack of proven efficacy in 
preventing end-organ disease (79–81). New small molecules with 
activity against HHV-6 species are in development (77, 82, 83). 
Given these shortcomings, adoptive immunotherapy using virus-
specific T cells (VSTs) is an exciting new therapeutic approach 
that appears to be safe and to reduce HHV-6 DNA levels, as well 
as end-organ disease symptoms, in small, uncontrolled studies 
(84–87). More research is needed to identify HHV-6 epitopes 
that can be used to generate high affinity T-cell lines to advance 
adoptive immunotherapeutic strategies.

CHALLenGeS AnD OPPORTUniTieS FOR 
T-CeLL ePiTOPe DiSCOveRY in HHv-6

Several technical challenges confront investigators seeking to 
identify T-cell epitopes in HHV-6 and study the roles of T cells 
in pathogenesis and immunity. First, non-infected humans to 
serve as negative controls are rare. Second, an affordable small 
animal model for HHV-6 infection is not available for in  vivo 
studies. Pig tailed macaques (88), marmosets (89), cynomolgus 
macaques, and African green monkeys (90) are susceptible to 
human roseolovirus strains and have been used as models in a few 
studies (91, 92). Endogenous roseoloviruses have recently been 
described in chimpanzees (93) and rhesus macaques (94). Once 
we understand more about the natural history of these infections 
in their natural hosts and how well they mimic HHV-6 in humans, 
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TABLe 1 | Advantages and disadvantages of approaches to HHV-6 epitope discovery.

Approach Advantages Disadvantages

Selected proteins based on human 
cytomegalovirus homology

Enables scanning for epitopes in reasonable blood  
volumes from persons with diverse HLA types

Leaves most HHV-6 proteins unexplored for epitopes

Epitope prediction based  
on selected HLA restrictions

Provides an efficient method to scan entire viral  
proteome space for epitopes

HLA-binding affinity alone is an inconsistent predictor of  
actual immunogenicity

Leaves unexplored epitopes recognized by other HLA alleles

Ex vivo T cell responders High precision: relative abundances and phenotype  
closely approximate in vivo biology

Low sensitivity: HHV-6-specific T cells are rare and frequently  
below the lower limit of detection

In vitro expanded T cell responders High sensitivity: can detect infrequent T-cell specificities  
and define a detailed hierarchy of population prevalence

Low precision: expansion process could skew proportions of  
T-cell clonotypes and/or change their gene expression profiles
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it may become rational to use them as informative model systems. 
Recently, the genomic sequence of a mouse herpesvirus, MRV, 
was revealed and appears phylogenetically closer to HHV-6 than 
to murine cytomegalovirus. It is considered a homolog of HHV-6 
and HHV-7 with some potential as an in vivo model (95).

T-cell antigen identification and ranking in animals using 
animal homologs of HHV-6 may not translate to the HHV-6 
infection setting in humans; the optimal human specimens for 
understanding the in vivo reality have not been defined. Samples 
from immunocompetent humans with primary or reactivated 
HHV-6 infection (ideally taken at the peak of virus-specific 
T cell expansion) might have a high enough frequency of HHV-6-
specific T cells to allow direct ex vivo analysis of antigen specific-
ity. This could provide the most true-to-life ranking of HHV-6 
antigens with regard to population prevalence and within-patient 
immunodominance. Samples from such patients have been used 
in studies of HHV-6 viral loads and clinical associations (96–99), 
but we are not aware of their use for T cell antigen discovery so 
far. In addition, study designs in which serial blood samples are 
obtained from patients with primary or reactivated HHV-6B 
who spontaneously control infection may help to understand 
the effective versus bystander T-cell responses. Identification of 
HHV-6B antigens that activate T  cells in this setting may give 
clues as to the nature of an effective T cell response.

Third, HHV-6A and -6B are quite evasive, with mecha-
nisms including downregulation of CD3 (88), induction of 
interleukin-10-producing T-regulatory type 1 cells (18), and 
inhibition of interferon beta (19), interleukin 2 (20), interleukin 
12 (100, 101), and MHC class I (6, 39, 102, 103). Perhaps this 
is why HHV-6-specific T cells in healthy persons, as measured 
by IFNγ production, are quite rare; between 0.01 and 0.1% of 
CD4+ T cells respond to whole virus (51) while CD8+ T cells 
specific for HHV-6 peptide-loaded pentamers are often less 
than 0.01% of circulating CD8+ T  cells and sometimes below 
the limit of detection (104, 105). The overall frequency of CD8+ 
T cells specific for whole HHV-6 virus has not been established. 
By contrast, up to 20% of memory CD4 and CD8 T  cells are 
specific for HCMV in seropositive persons (106). Ex vivo test-
ing of HHV-6B CD4+ T-cell abundance in PBMC by standard 
methods, such as ELISPOT or intracellular cytokine secretion 
(ICS), is reliably quantitative if enough cells are studied, but 
not sensitive enough to meaningfully characterize fine epitope 
specificity. Researchers, therefore, use in  vitro expansion to 

enrich HHV-6-reactive T cells for detailed epitope identification 
and definition of epitope breadth and population prevalence  
(40, 41, 51, 104, 105, 107, 108). However, this process may intro-
duce changes in T-cell expression profiles, and differential prolif-
eration rates could result in skewed T-cell clonotype proportions 
in the expanded product, introducing challenges into the larger 
goals of studying the phenotype of HHV-6-specific T cells and 
measuring the immunodominance hierarchy across a spectrum 
of epitopes. Overall, in vitro expansion of VSTs offers enhanced 
sensitivity but decreased quantitative precision (Table 1).

Finally, the HHV-6B genome contains roughly 100 open 
reading frames totaling tens of thousands of potential T-cell 
epitopes—a large potential epitope space. Investigators are faced 
with either down-selecting to a limited number of open reading 
frames, or using high-throughput methods requiring consider-
able time and expense.

APPROACHeS TO T-CeLL ePiTOPe 
DiSCOveRY in HHv-6

Approaches to discovery of T-cell epitopes in HHV-6B can be 
categorized by the methods they use to address these challenges. 
One system focuses on selected HHV-6B proteins and scans 
cells from persons with a range of HLA haplotypes for induc-
tion of T-cell activation. Using the better-characterized HCMV 
as a springboard, early studies of HHV-6B focused on proteins, 
which have HCMV homologs (17, 40, 104, 105). The rationale is 
not possible cross-reactivity due to homolog sequence identity; 
for example, the identity of U54 to its HCMV homolog UL83 
(encoding pp65) is only 20% (104). Rather, it was hypothesized 
that T-cell antigenicity may be related to biological functional, 
viral mRNA and protein expression kinetics, virion abundance, 
and other factors, predisposing certain betaherpesvirus proteins 
to higher antigenicity.

A second approach is to focus on HHV-6B peptides predicted 
to bind specific HLA allelic variants of interest. Nastke et  al. 
used two predictive algorithms to assess all 42,838 possible 
HHV-6B nonamers for predicted binding affinity to DRB1*0101 
and selected 322 candidates, of which 12 were confirmed as 
CD4+ T-cell epitopes (51). More recently, Martin et  al. took a 
similar approach aimed at CD8+ T-cell epitopes restricted by 
HLA-B*0801 and confirmed 16 epitopes by cytolytic functional 
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TABLe 2 | Summary of published studies of HHV-6 T-cell antigens.

Study Approach Methods CD4 T-cell antigens 
confirmed

CD8 T-cell antigens  
confirmed

Martin et al. (104) CMV homolog selection and  
epitope prediction (HLA-A*0201)

ELISA, multimer staining,  
cytotoxicity assay

(NA) U11, U54

Nastke et al. (51) Computer-based epitope  
prediction (DRB1*0101)

Cytokine bead assay, intracellular  
cytokine secretion (ICS), ELISpot,  
HLA-peptide tetramer staining

U11, U14, U38,  
U48, U54, U47

(NA)

Gerdemann et al. (40) CMV homolog selection ELISpot, ICS, cytotoxicity assay (NA) U11, U14, U54, U71, U90

Iampietro et al. (115) CMV homolog selection ICS, ELISA, cytotoxicity assay (NA) U54

Becerra-Artiles et al. (107) Selection by antigenic gel  
fractions of HHV-6B proteins  
followed by computer-based  
epitope prediction (DRB1*0101)

ELISA, ELISpot, mass spectrometry,  
SDS-PAGE, fluorescence-polarization  
HLA peptide-binding competition assay

U11, U14, U31,  
U39, U41, U48, U54,  
U57, U90, U100

(NA)

Halawi et al. (105) CMV homolog selection ICS, ELISpot, ELISA (NA) U11, U90

Martin et al. (109) Computer-based epitope  
prediction (HLA-B*0801)

ELISA, ELISpot, cytotoxicity assay,  
HLA-peptide multimer staining

(NA) U3, U7, U26, U29, U31,  
U38, U41, U42, U53, U59,  
U64, U72, U79, U84, U86, B4
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assays (109). Another study prefaced epitope prediction with a 
preliminary assay step, by first separating HHV-6 proteins into 
molecular weight fractions from either HHV-6B virions or 
infected cell lysates, and testing these fractions for PBMC IFNγ 
responses (107). Fractions eliciting significant cytokine response 
were analyzed by mass spectrometry to identify candidate 
HHV-6B antigenic proteins. Within these, the top 463 predicted 
HLA DR1-restricted epitopes were then tested using synthetic 
peptides and 107 were confirmed as epitopes.

Martin et al. used a hybrid of the two approaches, focusing 
on predicted HLA-A*0201 epitopes within HHV-6B proteins 
U11, U54, and U90 (homologs of HCMV antigens pp150, pp65, 
and IE1, respectively) (104). To enrich virus-specific CD8+ 
T  cells, PBMCs were incubated with 12 HHV-6B peptides of 
interest for 10–14  days, and then re-stimulated with peptide-
loaded CD40-activated autologous B cells and IL-2. This study 
showed CD8+ T-cell clones restricted to three peptides derived 
from U11 or U54 could recognize HHV-6B-infected cells and 
produce IFNγ, TNFα, and granzyme B. A summary of these 
studies is in Table 2. 

A HiGH-THROUGHPUT APPROACH TO 
T-CeLL ePiTOPe DiSCOveRY in HHv-6B

The above approaches have limitations; use of selected ORFs 
leaves most HHV-6 proteins unexplored while algorithms  are 
imperfect and do not address the full range of possible HLA 
restrictions. We are thus left with an incomplete view of T-cell 
specificity for this virus, which could be improved by an approach 
covering all HHV-6 proteins and diverse HLA haplotypes. Our 
lab has developed a high throughput, HLA-agnostic method to 
characterize T-cell immunity to large-genome viruses. Donor 
PBMCs are stimulated with whole virus, and activated T cells are 
sorted by FACS and expanded in vitro to produce a polyclonal cell 
line enriched typically a hundredfold for VSTs above the starting 
PBMC. Cross-presentation by autologous dendritic cells is used 

for CD8+ T cells, while addition of UV-inactivated pathogen to 
PBMC suffices to re-stimulate memory CD4+ responses. Each 
viral ORF is cloned and expressed via in vitro transcription and 
translation for CD4+ T-cell work or prepared for transfection of 
COS-7 artificial antigen-presenting cells (APC) for CD8+ T-cell 
studies. The bulk expanded T  cells are then assayed with suit-
able APC and each individual viral protein, as documented for 
vaccinia, HSV-1, HSV-2, VZV, and Mycobacterium tuberculosis 
(110–114). This approach is now being applied in our lab to 
study CD4+ T-cell responses to HHV-6B and methods are under 
development to apply it to CD8+ T cells.

LeADinG HHv-6 T-CeLL AnTiGenS

So far, studies in roseolovirus antigen discovery have investigated 
HHV-6B. None have explicitly addressed HHV-6A, although 
cross-reactivity has been described between the two species 
using bulk expanded cell lines (51) or T-cell clones (108). Using 
HHV-6B peptides whose HHV-6A homologs differed in one or 
more amino acid position, Nastke et  al. also found that HHV-
6A-specific T-cell lines produced IFNγ in response to individual 
HHV-6B peptides, and vice versa, confirming cross-reactivity at 
the epitope level (51). Two published studies on CD4+ T cells 
have both focused on DRB1*0101-restricted HHV-6B epitopes 
(51, 107); the ORF products identified in both of these studies are 
U11, U14, U48, U54, and U57, most of which are virion proteins. 
Becerra-Artiles et al. also correlated HLA-DRB1*0101 peptide-
binding affinity with the proportion of responding donors and 
with the magnitude of T-cell responses as measured by ELISpot 
(107). Studies on CD8+ T cells have been limited to specific ORF 
products, except for the recent HLA-B*0801-restricted genome-
wide screen performed by Martin et al. mentioned above (109). 
ORF products described by at least two studies as CD8+ T-cell 
antigens are U11, U54, and U90 (40, 105, 115). Similarly, studies 
of VSTs for HHV-6 treatment have used U11, U14, and U90 as 
antigens for creating VST cell lines (86, 87).
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Germline integration of a viral genome presents an interest-
ing question: are viral ORFs at the integration site transcribed 
and translated, and if so, are they targeted by CMI? Integrated 
HHV-6 genome sequences are divergent from non-integrated 
HHV-6 genomes but have all genes fully intact, suggesting 
replication competence (116). Indeed, PBMCs of iciHHV-6A 
donors can be induced in vitro to produce virions, which can 
then infect non-integrated HHV-6A-negative cells, so, in vivo 
antigen expression from iciHHV-6 ORFs seems plausible (117). 
Presumably, T cells educated in thymi of people with iciHHV-6 
would be tolerized to HHV-6 antigens; however, iciHHV-6 
individuals actually have high frequencies of CD8+ T  cells 
specific for products of U54 (118) and U90 (3), suggesting active 
immune surveillance. More research is needed to compare the 
T-cell response to HHV-6 in people with and without chromo-
somal integration.

FUTURe DiReCTiOnS

Research on HHV-6 T-cell epitopes to date has largely shown a 
selection bias toward viral proteins that are homologs of known 
HCMV antigenic proteins, and it is not clear where these fit into 
the overall pattern of immunodominance and population preva-
lence of T-cell epitopes for this virus. This field is entering a new 
phase of using high-throughput methods to solve this question. 
Other methods similar to the one described above would also 
be useful and informative. For example, instead of using in vitro 
expressed proteins to screen for viral antigens, one could use 
peptide mixes for each protein, as has been done for HCMV and 
HHV-8. This process could be leveraged by focusing on peptides 
predicted to bind any of a given donor’s HLA alleles; this would 
reduce cost, making it feasible to study many more donors and 

identify antigens and epitopes immunoprevalent across a wide 
range of HLA alleles.

Such approaches will provide a much fuller understanding of 
HHV-6 T-cell epitopes, which will in turn inform development 
of treatment modalities for immunocompromised patients suf-
fering from reactivation. VST immunotherapy for SCT recipients 
is a nascent field that has garnered much interest in recent years 
as a promising alternative to antiviral drugs that have associated 
toxicities or are altogether ineffective (particularly for adenovirus 
and BK virus) (3, 40, 86, 87, 119, 120). Results of early clinical 
trials are promising but still anecdotal. Deeper knowledge of 
T cell epitopes and antigens could help optimize VST products 
for broad applicability across HLA alleles. In addition, since 
HHV-6B infection has been associated with various autoimmune 
disorders (48, 89, 121) and drug reaction with eosinophilia and 
systemic symptoms (DRESS) (122–124), VSTs lacking specific-
ity for HHV-6 epitopes implicated in these disorders could be 
preferable. Finally, although a vaccine for HHV-6B is not a cur-
rent public health priority, future development may benefit from 
thorough knowledge of HHV-6B T-cell epitopes gained from 
ongoing research.
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