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B cell clones expand and contract during adaptive immune responses and can persist 
or grow uncontrollably in lymphoproliferative disorders. One way to monitor and track 
B  cell clones is to perform large-scale sampling of bulk cell populations, amplifying, 
and sequencing antibody gene rearrangements by next-generation sequencing (NGS). 
Here, we describe a series of computational approaches for estimating B cell clone size 
in NGS immune repertoire profiling data of antibody heavy chain gene rearrangements. 
We define three different measures of B cell clone size—copy numbers, instances, and 
unique sequences—and show how these measures can be used to rank clones, analyze 
their diversity, and study their distribution within and between individuals. We provide a 
detailed, step-by-step procedure for performing these analyses using two different data 
sets of spleen samples from human organ donors. In the first data set, 19 independently 
generated biological replicates from a single individual are analyzed for B cell clone size, 
diversity and sampling sufficiency for clonal overlap analysis. In the second data set, 
B cell clones are compared in eight different organ donors. We comment upon frequently 
encountered pitfalls and offer practical advice with alternative approaches. Overall, we 
provide a series of pragmatic analytical approaches and show how different clone size 
measures can be used to study the clonal landscape in bulk B cell immune repertoire 
profiling data.
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INtroDUctIoN

The accurate measurement of clone size is fundamental to many immunological studies. B cells 
that are clonally related derive from a common progenitor cell. B  cell clones can be viewed as 
the unit of selection in an immune response (1); the successful recruitment of clones results in 
diversification and expansion of cells with the appropriate antigen specificity and effector function 
(2, 3). Longitudinal studies of B cell responses, such as those tracking influenza-binding B cell 
clones (4, 5) require methods for measuring clone sizes and comparing them at different time 
points. Tracking B  cell clones over time is also important for the diagnosis and monitoring of 
lymphoproliferative disorders such as chronic lymphocytic leukemia (6). Determining if a clone is 
likely to be present or absent in a population, as is the case for minimal residual disease testing (7), 
requires knowing or defining the analysis on the expected size of the clone and powering the analysis 
to detect clones of that size in the population (8, 9). Further complicating the analysis, the human 
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B-cell repertoire contains a diverse collection of B  cell clones 
of different sizes (9). Hence, clone tracking methods need to 
take several factors into account, including the level of sampling 
(the number of B cells being studied), the depth of sequencing 
(including the number of independently generated sequencing 
libraries per sample), and the distribution of clone sizes in the 
population being studied.

Here, we describe a series of computational procedures for 
estimating B-cell clone sizes in bulk populations using next-
generation sequencing (NGS) data on antibody heavy chain 
gene rearrangements in genomic DNA (gDNA). The analysis of 
gDNA is the most parsimonious means of studying clone sizes 
on a large scale as each cell has only one template and many 
cells can be efficiently queried. Clonal overlap analysis and clone 
tracking typically require extensive sampling (10). Genomic 
DNA also provides information on non-productive gene rear-
rangements, providing a potential second target to identify a 
clone in B  cells with two heavy chain gene rearrangements. 
Furthermore, DNA is less likely to be degraded than RNA, 
making it more versatile for suboptimal samples, such as those 
having low viability or those being derived from fixed tissues or 
cells. The analysis of the antibody heavy chain is most informa-
tive for clone identification and tracking because it has the most 
diverse CDR3 sequence (by virtue of the D gene segment, two 
rearrangement junctions and higher levels of non-templated 
additions and deletions at the junctions). IgH rearrangements 
amplified from gDNA are also the most often used sample type 
in the clinical setting, where parsimonious and robust assays 
are required.

With respect to the data generation, there are already several 
excellent protocols for immune repertoire profiling by NGS 
from DNA, RNA, and single cells (11–18). These different 
methods can be compared against one another on the same 
sample, along with procedures such as digital droplet PCR to 
perform experimental estimates on clone size (8). Single cell 
PCR methods, performed in emulsions or on beads provide a 
quantitative means of counting individual cells. These methods 
rely upon cDNA synthesis, either with reconstruction from 
RNAseq libraries or target capture-based approaches [reviewed 
in Ref (19)]. In addition to more straightforward quantitation 
(counting individual cells), single cell approaches can provide 
paired heavy and light chain IgH/IgL data from the same cell, 
providing additional fidelity for clonal assignment. One poten-
tial drawback of the single cell approach is that the efficiency 
of IgH/IgL amplification differs in different B cell subsets due 
to differences in RNA template abundance. The subset can be 
controlled by sorting or it may be possible to correct for these 
differences by measuring the recovery of IgH/IgL pairs from 
different subsets that are identified using other information 
about the cells (such as RNA transcript profiling within the same 
experiment). Of note, there have been recent advances in the 
generation of algorithms that deduce IgH/IgL rearrangements 
from single cell RNAseq data (20).

With bulk cell samples, one approach to measuring clone 
size experimentally is to use molecular calibrators (16, 21). With 
molecular calibrators, one or preferably several cloned standards 
are spiked into the reaction at known concentrations. For better 

quantification, multiple dilutions of standards are used, yielding 
a standard curve against which values of unknown rearrange-
ments can be compared. In the log-linear range of the curve, 
quantification is most accurate. Standards can correct for dif-
ferences in amplification efficiency of different VH or Vβ genes 
(21). One challenging aspect of molecular calibrators is that 
antibody genes can undergo somatic hypermutation (SHM). 
In fact, clones of interest often harbor somatic mutations when 
one is studying an immune response or certain forms of B cell 
neoplasia (such as follicular lymphoma or multiple myeloma) 
(22, 23). If mutations occur in the region of primer binding, the 
use of germline gene standards may not accurately model the 
PCR efficiency. For RNA-based libraries, a series of RNA spike-
in standards has been developed that includes different murine 
and human VH genes, different lengths, different concentrations, 
and different levels of SHM (16, 24). The use of these standards 
following a protocol termed molecular amplification fingerprint-
ing, allows for correction in PCR amplification efficiency and 
bias (16). While quite useful for understanding the nature of 
bias and error in the PCR amplification and sequencing steps 
(24), such calibrators have not yet been validated for broad use, 
particularly with pauci-cellular or suboptimal samples such as 
formalin-fixed paraffin-embedded specimens, where the calibra-
tors may out-compete the lower quality sample templates.

Another method for evaluating clone size in bulk popula-
tions is limiting dilution analysis. In this method, one prepares 
serial dilutions of the sample and assays the rearrangements  
(or antibodies) of multiple replicates at different sample inputs 
(25, 26). The key to doing this well is to sequence several rep-
licate libraries at each dilution factor. At limiting dilution, the 
event of interest is counted as present or absent and its frequency 
in the sample can be modeled using the Poisson distribution  
(27). As with single cell sequencing, this approach is expensive 
and requires extensive sampling and sequencing.

In our view, it is quite difficult to establish a “gold standard” 
for clone size estimation in bulk cell samples. Samples that 
contain mixed populations of cells with varying levels of SHM 
present a complex mixture of different templates for amplifi-
cation. There can be PCR jackpot events, which can result in 
spurious clonal expansions. While many applications of clone 
tracking focus on large differences in clone size, with smaller 
clones or more subtle shifts in clone size, other factors come 
into play such as differences in sampling or library quality and 
sequencing depth. The advent of high-throughput sequencing 
has radically increased the number of cells we study when we 
analyze immune repertoires. Nonetheless, we still must assume 
in nearly all cases that our experiments are under-sampling the 
full diversity of the repertoires we are studying. To address this 
issue and ask questions about diversity and sampling of immune 
repertoires, we and others have turned to ecology for tools and 
methods (28–40).

In this Protocol, we focus on sample-based computational 
procedures for evaluating clone sizes in bulk B  cell antibody 
sequencing libraries. We describe and illustrate the use of metrics 
that rely on the analysis of individual sequencing libraries and 
repeating the analysis with multiple libraries per sample. We 
define three different metrics of B-cell clone size based upon 
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FIgUrE 1 | Schematic of experiments. In experiment 1, genomic DNA is extracted from spleen tissue of an organ donor. Immunoglobulin heavy chain gene 
rearrangements were amplified and sequenced from genomic DNA in 19 biological replicates. In experiment 2, splenocytes from eight different organ donors  
were cryopreserved at the time of organ recovery. All samples were thawed on the same day and analyzed for the B cell fraction by flow cytometry. Genomic  
DNA (normalized for the B cell fraction) was separately amplified and sequenced (two biological replicates per subject).
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sequence copies, instances, and unique sequences. To illustrate 
these procedures, we use two data sets from human spleen. We 
chose the spleen because it contains a complex mixture of B cell 
clones ranging in size (9). The spleen also contains abundant 
populations of memory B cells, providing a diverse mixture of 
B-cell clonal types, over a range of different SHM levels (41, 42). 
The spleen is also large, providing an ample supply of diverse 
clones for demonstrating clone size metrics that require different 
degrees of sampling. We describe our procedures using a large 
number of independently amplified sequencing libraries from 
the spleen of one organ donor and in a newly generated data set 
of spleen samples from eight different organ donors (Figure 1). 
Using these deep and survey-level sequencing data sets, we illus-
trate measures of within- and between-individual clonal size and 
diversity analysis. We propose a step-by-step approach that we 
hope will be useful for investigators who study clones in a variety 
of settings ranging from immune responses to malignancy.

MAtErIAls AND EQUIPMENt

Donors
Human tissues used in this research were obtained from deceased 
organ donors through an approved research protocol and mate-
rial transfer agreement with LiveOnNY, the organ procurement 
organization for the New York metropolitan area, as described 
previously (43). This type of research has been determined by 
IRBs of both the University of Pennsylvania and Columbia 
University to be non-human subjects research and, hence, ethics 
approval was not required, per institutional and national guide-
lines. A summary of donor information is provided in Table 1.

sample Processing
Spleen samples were maintained in cold saline and brought 
to the laboratory at the University of Columbia within 4  h of 
organ procurement. Samples from D207 were processed as 
described [Experiment 1 in Figure 1 (9)] All other donor sam-
ples were rapidly processed to obtain lymphocyte populations, 
as described in detail (43, 44) and cryopreserved. Frozen cells 
were shipped on dry ice to the University of Pennsylvania. On 
the day of experiment 2 (see Figure 1), all of the cryopreserved 
samples were thawed and processed. Each sample was split into 
two aliquots. Genomic DNA was extracted from the first aliquot 
using a Qiagen Gentra Puregene cell kit following the manufac-
turer’s directions (Qiagen, Valencia, CA, USA, Cat. No. 158388). 
Flow cytometry was performed on the second cell aliquot to 
obtain the B-cell fraction. The following antibody-fluorophore 
combinations were used: FITC anti-CD19 (HIB19), PE anti-
CD20 (2H7), APC anti-CD3 (HIT3a). Data were acquired on 
an LSRII flow cytometer (BD Biosciences, San Jose, CA, USA) 
and analyzed using FlowJo version 7.6.5 software (Treestar Inc., 
Ashland, OR, USA). The B cell fraction (CD19+CD20+CD3− 
divided by the total cells) for each donor spleen sample (except 
D207) is shown in Table 2.

Antibody Heavy chain gene 
rearrangement Amplification
The D207 sequencing libraries were generated as described 
previously (only the FR1 + JH amplified samples are included in 
this analysis) (9). For all samples from donors other than D207, 
sequencing libraries were amplified using a cocktail of VH1, VH2, 
VH3, VH4, VH5, and VH6 family specific primers in FR1 and 
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tABlE 2 | B cell percentages in spleen cell samples.

Donor B cell (% total) B cell (% ly gate)

267 8.48 33.76
275 12.2 18.27
279 25.4 39.76
287 37 43.65
301 6.32 13.67
302 15.6 28.12
305 35.6 54.17
309 7.11 28.6

The B-cell (CD19+CD20+CD3− lymphocyte) percentage is calculated either out 
of the total mononuclear cells processed by Ficoll density gradient (total) or from 
the lymphocyte gate (ly gate). The % total was used to normalize the B-cell content 
between donors.

tABlE 1 | Demographic characteristics of the organ donors.

Donor Age sex race cause  
of death

WBc 
final

HcV cMV EBV

267 70 F Black CVA 11.3 0 1 1
275 31 M White Anoxia 17.8 0 0 1
279 73 F White CVA 25.4 0 0 1
287 34 M White Head trauma 5.6 0 1 1
301 33 F Hispanic Anoxia 29.8 0 1 1
302 56 M Hispanic Anoxia 16.1 0 1 1
305 28 F White Anoxia 9.0 0 0 0
309 45 F Black CVA 27.2 0 1 1
207 23 M Hispanic Head trauma 15.7 0 1 1

Donor numbers are assigned by the Farber Lab. Age is in years. Cause of death is 
classified as cerebrovascular accident (CVA), head trauma, or anoxia. WBC, white 
blood cell count in thousands per microliter. Serologic status (IgG) for hepatitis C 
virus (HCV), cytomegalovirus (CMV), and Epstein–Barr Virus (EBV). 1 = positive; 
0 = negative.

tABlE 3 | PCR primers with Illumina adapters for human IgH rearrangement 
sequencing.

NexteraR2-Hu-VH1-FW1 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA 
GGGCCTCAGTGAAGGTCTCCTGCAAG-3′

NexteraR2-Hu-VH2-FW1 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGAC
AGGTCTGGTCCTACGCTGGTGAAACCC-3′

NexteraR2-Hu-VH3-FW1 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGAC 
AGCTGGGGGGTCCCTGAGACTCTCCTG-3′

NexteraR2-Hu-VH4-FW1 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGAC 
AGCTTCGGAGACCCTGTCCCTCACCTG-3′

NexteraR2-Hu-VH5-FW1 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGA 
CAGCGGGGAGTCTCTGAAGATCTCCTGT-3′

NexteraR2-Hu-VH6-FW1 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGAC 
AGTCGCAGACCCTCTCACTCACCTGTG-3′

NexteraR1-Hu-JHmix1 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 
TACGTNCTTACCTGAGGAGACGGTGACC-3′

NexteraR1-Hu-JHmix2 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGC 
TGCNCTTACCTGAGGAGACGGTGACC-3′

NexteraR1-Hu-JHmix3 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG 
AGNCTTACCTGAGGAGACGGTGACC-3′

While there is only one consensus JH primer, three primers with different spacers are 
used to generate sequencing diversity during sequencing from the JH end.
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one consensus JH region primer, adapted from the BIOMED2 
primer series (45). Primers were synthesized by Integrated 
DNA Technologies (Coralville, IA, USA) and their sequences 

are provided in Table  3. The input DNA for amplification was 
normalized to the B cell fraction in the sample. For example, for 
D305, the B cell fraction (out of total cells) was 35%. To amplify 
50  ng-equivalents of B  cell gDNA from D305 spleen, we used 
142.8 ng of input DNA (50 ng/0.35 = 142.8 ng). For each 25 µL 
amplification, primers were used at a concentration of 0.6 µM, 
gDNA normalized to represent 50 ng equivalents of B cell DNA, 
0.2 mM dNTPs, and 1× PCR buffer with 1.5 mM MgCl2 using 
the Qiagen Multiplex PCR kit (Qiagen, Valencia, CA, USA; Cat. 
No. 206143) in molecular biology grade water (Millipore Sigma,  
St. Louis, MO, USA; Cat. No. W4502-1L). Amplification condi-
tions for the PCR were primary denaturation at 95°C for 7 min, 
followed by cycling at 95°C 45  s, 60°C for 45  s, extension at 
72°C for 90 s for 35 cycles, and a final extension step at 72°C for 
10 min, using a Veriti 96-well thermal cycler (Life Technologies 
Corporation, Carlsbad, CA, USA) in 96-well plates (Denville, 
Holliston, MD, USA; Cat. No. C18080-10) sealed with Microseal 
B adhesive seal (BioRad, Cat. No. MSB1901). Amplicons were 
visualized on 1.5% agarose gels (Invitrogen/ThermoFisher, 
Waltham, MA, USA; Cat. No. 16500500) in TAE buffer, prepared 
fresh from 50× stock solution (Quality Biological, Gaithersburg, 
MD, USA; Cat. No. 351-008-491).

library Preparation and sequencing
Amplicons were purified using the Agencourt AMPure XP beads 
system (Beckman Coulter, Inc., Indianapolis, IN, USA; Cat. No. 
A63882) in a 1:1 ratio of beads to sample and eluted in 40 µL of 
TE (0.1 mM EDTA) buffer. 96-well plates with purified samples 
were sealed with adhesive aluminum sealing foil (RPI, Mount 
Prospect, IL, USA; Cat. No. 202502) and saved at −20°C if the 
second-round PCRs were not performed immediately following 
purification. Second-round PCRs (to generate the sequencing 
libraries with individual sample barcodes) were carried out 
using 4 µL of the first-round PCR product and 2.5 µL each of 
NexteraXT Index Primers S5XX and N7XX, using the Qiagen 
Multiplex PCR kit in a reaction volume of 25 µL. Amplification 
conditions for the library PCR were primary denaturation at 95°C 
for 10 min, followed by cycling at 95°C 30 s, 60°C 30 s, extension 
at 72°C 45 s for eight cycles, and a final extension step at 72°C 
for 10 min. Library amplicons were pooled and then subjected to 
two rounds of purification using the AMPure XP beads system. 
In both rounds of purification a 1:1 ratio of beads to sample was 
used, as before. After the first round of purification, the beads 
were eluted in TE buffer (1× Solution pH 8.0 with low EDTA, 
Affymetrix, Santa Clara, CA, USA; Cat. No. J75793-AP). Then, 
an equal volume of beads and TE eluate were mixed together and 
repurified. DNA concentrations of purified library preparations 
were measured using the Qubit 3.0 instrument (Invitrogen/
ThermoFisher) with the Qubit dsDNA HS Assay Kit following 
the manufacturer’s instructions (Invitrogen, Cat. No. Q32851). 
Pooled libraries with a final concentration of 15 pM and PhiX 
control (titrated to be 10% of the concentration of the sequenc-
ing libraries; PhiX V3 Kit, Illumina Cat. No. FC-110-3001) 
were loaded onto an Illumina MiSeq instrument in the Human 
Immunology Core Facility at the University of Pennsylvania. 
2 × 300 bp paired end kits were used (MiSeq Reagent Kit v3-600 
cycle, Illumina, San Diego, CA, USA; Cat. No. 102-3003).
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sequencing run Qc
Once the sequencing data are available, it is important to evalu-
ate the quality of the sequencing run (46). We use the following 
metrics and cut-offs for run quality: (1) the percentage of clusters 
passing the Illumina sequencer instrument filter (%PF) is 90% 
or greater and (2) the percentage of sequences above the Phred 
quality score of Q30 (which is equivalent to the probability of an 
incorrect base call of 1 in 1,000) is 70% or greater.1 The use of 
paired sequences yields more information over a longer stretch 
of the V region than a single unpaired read. Paired reads also 
provide a consensus sequence at the termini of the reads, where 
the sequence quality tends to decline.

sequence Data Quality Filtering
Prior to using the ImmuneDB pipeline (31), pRESTO [described 
in Ref. (28)] was used for quality filtering of raw Illumina MiSeq 
sequences. First, each sequence was analyzed with a sliding win-
dow of 10 base pairs. If at any point, the average quality score 
within the window fell below 20, the sequence was trimmed 
from its beginning to the end of the window. To correct for 
single bases with low-quality, any base that had a quality score 
less than 20 was replaced with an “N,” indicating the uncertainty 
of the base call. Any sequence with more than 10 such N’s or a 
total length of less than 100 bases was discarded from the analy-
sis. Code  1 shows the script used to run pRESTO with these  
parameters.

code 1 | Sequencing data quality control: The bash script used to run pRESTO.

FilterSeq.py trimqual -s *.fastq
PairSeq.py \

--coord illumina \
-1 *R1*trimqual-pass.fastq \
-2 *R2*trimqual-pass.fastq

AssemblePairs.py align \
--rc tail --coord illumina \
-1 *R1*pair-pass.fastq \
-2 *R2*pair-pass.fastq

FilterSeq.py length -n 100 -s *assemble-pass.fastq
FilterSeq.py maskqual -s *length-pass.fastq
FilterSeq.py missing -s *maskqual-pass.fastq

Alignment and generation of Unique 
sequences
After the QC steps described in Section “Sequence Data Quality 
Filtering,” each sequencing library has a set of high-quality 
sequences based upon the Phred quality scores. The next step 
was to use ImmuneDB (version 0.23.0) to determine the closest 
corresponding germline V- and J-gene for each sequence using 
an anchoring method (47). Once these V- and J-gene assign-
ments were known, any sequence with less than 60% V-gene 
germline identity was discarded. Further, sequences were trim-
med to IMGT position 150 to avoid primer biasing mutational 
analysis, and any sequence beginning after position 150 was  
removed.

1 https://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf 
(Accessed: November, 2017).

ImmuneDB allows for multiple V- or J-genes to be assigned 
each sequence. This assignment can occur in two ways. First, if 
two germline gene sequences are equally and maximally similar 
to the input sequence, both will be assigned. Alternatively, if the 
maximally similar gene(s) is statistically indistinguishable from 
other genes, given the average mutation and length of sequences 
in the sample, all such genes will be assigned to the sequence. 
If any sequence has multiple V-gene annotations that are not 
from the same family, the sequence is discarded, as this likely 
indicates the sequence contains errors such as a hybrid PCR 
product. Sequences with cross-family J-gene annotations are 
not discarded; however, because many of these genes, especially 
human IGH J1, J4, and J5, are very similar to each other (47). 
At this stage of the process, the number of total reads and the 
fraction of valid reads are computed for each sequencing library 
(replicate). If the total number of valid reads (those containing 
identified V and J genes and passing quality, length, and primer 
trimming) from one replicate is very different (five or more 
times lower) than the other replicate, the sample in question is 
subjected to re-amplification and re-sequencing. The fraction 
of valid antibody heavy chain gene rearrangement sequences 
depends upon the stringency of filtering, but with the above-
described parameters is typically 75–90%.

Once sequences are assigned V- and J-genes, the unique 
sequences are collapsed across the entire subject. Two sequen-
ces are considered the same if they differ only in positions 
where either sequence contains an N. This results in a set of 
sequences, which are unique within the subject, and have a 
corresponding copy number. The next step is to group sets of 
unique sequences, which likely share a common progenitor 
cell into clones. To prevent spurious clones from being con-
structed, sequences with a copy number <2 across the subject, 
those containing a stop codon in the CDR3, or those having 
any window of 30 nucleotides falling below 60% germline 
identity (indicating a potential uncorrected insertion/dele-
tion) are excluded from clonal assignment. For the remaining 
sequences to be included in a common clone, they must share 
the same V-gene, J-gene, and CDR3 nucleotide length. Further, 
each pair of sequences within the clone must share at least 85% 
CDR3 amino-acid similarity by Hamming distance. The script 
to run the ImmuneDB pipeline with these parameters is shown 
in Code 2.

code 2 | ImmuneDB pipeline: The script used to run ImmuneDB. The germline files 
are included as supplemental files.

immunedb_admin create frontiers ~/configs
immunedb_identify ~/configs/frontiers.json imgt_human_v.fasta \

imgt_human_j.fasta --trim-to 150 --max-padding 150
immunedb_collapse ~/configs/frontiers.json
immunedb_clones ~/configs/frontiers.json similarity
immunedb_clone_stats ~/configs/frontiers.json
immunedb_sample_stats ~/configs/frontiers.json

tools for Immune repertoire Visualization
The code for D20, cosine similarity, Hill number diversity plots, 
sample-based rarefaction curves, and clone metrics can be 
found at https://github.com/DrexelSystemsImmunologyLab/

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://www.illumina.com/documents/products/technotes/technote_Q-Scores.pdf
https://github.com/DrexelSystemsImmunologyLab/frontiers-clone-size-scripts


FIgUrE 2 | Clone size measure definitions. The first three vertical panels 
represent the three measures of clone size in this paper: copies, instances, 
and unique sequences. Each circle represents a B cell. Sequence variants 
within clone 1 (orange) and clone 2 (blue) are represented by different 
patterns in the circles. The right panel contains the clones (large ovals). 
Squares represent within the left two panels represent individual sequencing 
libraries whereas the entire collection of replicates from a single sample is 
shown in the right panels. Summed values (for both clones) for each metric 
are given above. Values for each individual clone are given below.
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frontiers-clone-size-scripts. Resampling plots were created based 
on the method in Ref. (48) as implemented in https://github.
com/bochaozhang/sampleRarefaction, which directly query 
ImmuneDB. For the clonal overlap analysis string plot, clones 
were exported from ImmuneDB using the immunedb_export 
command. Using this, clone tracking plots were generated using 
VDJtools requiring the CDR3 amino acids and V gene assignment 
to match. The command line for clone tracking in VDJtools is:

$VDJTOOLS TrackClonotypes --i aaV \
[ . .sample1 txt sample2 txtt sample3 txt  output prefix. … ] _

Data were converted to Boolean values that, in turn, were used 
to generate string plots in CIMminer.2 For D20 and individual-
based rarefaction analysis, VDJtools was used both to pool 
individual libraries (replicates were exported from ImmuneDB) 
and to generate the associated plots.

Data and Method sharing
Raw data and accompanying sample data are available on SRA 
under BioProject number PRJNA476510. In compliance with 
the Adaptive Immune Receptor Repertoire (AIRR) stand-
ard (49), steps for processing the raw data with pRESTO and 
ImmuneDB are available on Zenodo.3 Sequences annotated with 
ImmuneDB (those with VH gene and JH gene calls) are avail-
able via associated GenBank entries. All code to generate the 
database is provided in Code 2. Post-pipeline analysis scripts to 
generate data for plotting are avai lable at (see https://github.com/
DrexelSystemsImmunologyLab/frontiers-clone-size-scripts). 
Scripts used to generate plots are available upon request.

stEPWIsE ProcEDUrEs

Two data sets were generated for this analysis (see overview in 
Figure 1). In experiment 1, 19 independently amplified antibody 
heavy chain gene rearrangement libraries were generated from 
the spleen of D207. These libraries are part of a much larger data 
set on human organ donor tissues that was described previously. 
In experiment 2, survey-level sequencing of antibody heavy chain 
gene rearrangements was performed in eight additional organ 
donors in a newly created data set specifically for this study. In 
experiment 2, spleen samples from each donor were subjected 
to flow cytometry to determine the B cell fraction and antibody 
gene rearrangements were separately amplified in duplicate 
from the same number of input B cells in all eight donors. After 
generation of survey-level and deep antibody heavy chain gene 
rearrangement sequencing data and initial quality filtering, gene 
alignment and grouping of related sequences into clonal lineages 
(see “Materials and Methods”), we are ready to evaluate the clonal 
landscape, which is the focus of this Protocol.

Different Metrics of clone size
The clonal landscape of a B  cell population can be viewed as 
a continuum of information content, ranging from maximal 

2 https://discover.nci.nih.gov/cimminer/oneMatrix.do (Accessed: November, 2017).
3 DOI: 10.5281/zenodo.1292010.2017.

information with individual sequence copies to minimal infor-
mation wherein each clone is only counted once. Borrowing 
terms from ecology, one can view each sequence copy as an indi-
vidual and each clone as a species. The unique sequence variants 
within the clones generated by SHM are akin to quasi-species. 
We consider three different metrics of clone size in bulk popu-
lation data: copies, instances, and unique sequences. Figure  2 
illustrates these metrics for two hypothetical B cell clones in two 
separate sequencing libraries (replicates). The copies are like the 
individual B cells (although some B cells may have more than 
one sequence copy and some may have none, depending upon 
the depth of sequencing and on the level of sampling). Also, as 
discussed in the Section “Introduction,” it should be emphasized 
that extrapolating from copies to cells is challenging with bulk 
sequencing methods because there can be primer amplification 
bias. The next level down in information content is to ignore 
the copies and only count the number of times each unique 
sequence variant appears in each of the sequencing libraries. 
We call this measure instances. If the same sequence appears in 
both replicates, it is counted twice. If it appears in only one of 
the two libraries, it is only counted once. This measure is less 
sensitive to PCR amplification bias because the same bias has 
to occur with the same clone in independent replicates. But this 
measure is also affected by the depth of sequencing and the level 
of sequencing error, which can introduce spurious mutations 
that may be counted as unique sequence variants, depending 
upon how the data are filtered. The next level down is unique 
sequences. With unique sequences, all of the identical sequences 
from a single subject are grouped together and each unique 
sequence is only counted once. Here again, the measure can be 
influenced by sequencing depth and sequencing error. Finally, 
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tABlE 4 | Sequencing data summary.

subject libraries copies Instances Uniques clones

D207 19 5,526,691 1,921,080 1,895,669 136,876
D267 2 632,949 508,219 507,559 21,717
D275 2 446,178 340,315 339,787 15,161
D279 2 467,435 353,311 351,088 12,405
D287 2 537,427 360,998 360,967 9,111
D301 2 388,677 261,876 259,982 8,861
D302 2 504,337 380,141 379,360 14,333
D305 2 477,282 371,135 371,071 20,225
D309 2 412,672 361,225 360,807 17,186

Each library was generated from separately amplified aliquots of DNA. Copies, 
instances, unique sequences, and clone numbers (see text) were compiled for all VDJ 
rearrangements (productive and non-productive) across all of the libraries from each 
donor using ImmuneDB. No copy number cut-off was used when computing the 
numbers of unique sequences or clones. The data from D207 have been published 
previously (9), but, here, we are only showing the data from that donor that were 
generated with the FR1 + JH primers, so only some of the libraries that were generated 
for the previous publication are shown here.

FIgUrE 3 | Fraction of total copies vs. clone copy number cut-off. (A) D207 
(19 replicates); (B) all other subjects (survey-level sequencing).
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the most minimalist measure is to simply count the number of 
different clones, counting each clone only once, analogous to 
species richness. Richness does not capture information about 
clone size, only clone number.

It is important to emphasize that we are focusing here on 
measures of clonal size in bulk sequencing data. There are other 
metrics that could be used to estimate clone size, but they tend 
to be impractical in bulk libraries. For example, one could count 
instances of clones (rather than instances of unique sequences). 
Counting clone instances is a Boolean metric (presence or 
absence) wherein each clone is counted only once per sequenc-
ing library, if it is present. Thus, if there were two sequencing 
libraries, Boolean instances for all of the sampled clones would 
be either 1 or 2. A Boolean instances measure requires a very 
large number of sequencing libraries to be sensitive to differ-
ences in clone size (9). Such a metric is especially useful if single 
cell or digital droplet PCR is being used to measure clone size 
because, in those cases, hundreds or thousands of “libraries” can 
be queried.

Initial rearrangement Metadata 
Assessment
As an initial check of the sequencing data, we evaluate the 
numbers of copies, instances, unique sequences, and the number 
of clones (clones that are found in more than one sequencing 
library are only counted once). In Table 4, we present these data 
[obtained through the ImmuneDB pipeline (31)] in aggregate 
form for all eight donors at two libraries per donor and for one 
donor (D207) at 19 libraries.

We begin by comparing the estimated number of B cells to 
the number of unique sequences. Under conditions of maximal 
diversity [with each B cell in the population under study har-
boring at least one different heavy chain rearrangement, and 
assuming 100% yield and 1.4 VDJ rearrangements per cell on 
average because some cells will harbor more than one rear-
rangement (50)], we use the following formula to approximate 

the maximal number of B  cell rearrangements per ng of  
input DNA:

 

max number of rearrangements
ng 1000 pg ng 1 4 rearrangemen

=
× / × . tts cell

pg cell
/

. /6 7  
(1)

From a pure (flow cytometrically sorted) B-cell population, 
another useful estimator of the maximum number of cells 
(assuming 1.4 rearrangements/cell) is:

 1 ng B cell DNA 150 cells∼  (2)

In experiment 2, we accomplished normalization of the sample 
size by measuring the B-cell fraction using flow cytometry (Table 2) 
and then used the B-cell fraction to create the same number of 
B cell equivalents for each amplification. We used 50 ng of B-cell 
equivalent DNA in each replicate. Using the equations above, the 
maximum number of rearrangements that should be found in 
any one sample is 50 ng × 2 replicates × 1,000 pg/ng × 1.4 rearr/ 
(6.7 pg/cell) = 20,895 unique rearrangements. All donors exceed 
this predicted maximum number of unique rearrangements. 
20–40% of all of the sequences are present in one copy (Figure 3). 
Many of these sequences represent sequencing errors, whereas 
others represent infrequent clones. Because sequence copies are 
computed across all of the replicates, D207, with 19 replicates, has 
the lowest fraction of single copy sequences. In contrast to the 
excess of unique sequences, the number of clones is much closer 
to the theoretical maximum number of rearrangements.

reducing sequencing Errors
To reduce the contribution of sequencing errors to clone size 
measures, one can employ several different strategies, often in 
combination (19, 46). The first is to use more stringent quality 
thresholds to filter the data. We can use quality scores of 30 or 
higher for bulk sequencing runs in which SHM is being analyzed. 

https://www.frontiersin.org/Immunology/
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https://www.frontiersin.org/Immunology/archive


tABlE 5 | Clone numbers with different instance cut-offs.

subject c1 c2 c3 c4 c5 c10

D207 136876 34441 12419 6,170 3,598 891
D267 21717 9,174 2,770 944 373 30
D275 15161 6,794 2,316 942 436 65
D279 12405 5,706 2,010 804 378 34
D287 9,111 5,910 3,669 2,047 1,195 98
D301 8,861 5,310 1,969 849 434 90
D302 14333 7,378 2,882 1,190 590 81
D305 20225 7,823 2,505 754 260 7
D309 17186 3,467 721 248 100 10

The numbers of clones that were amplified with FR1 + JH primers are shown for 
different clone size cut-offs in each of the donors. The clone size cut-offs are given in 
instances (the minimum number of replicates that contain at least one sequence from 
the clone). C1 (at least one instance) is equivalent to no cut-off and contains all clones 
irrespective of size. C2 is two or more instances, C3 is three or more instances, and 
so on.
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In addition, filtering of primer sequences, length trimming, 
and treatment of in/dels are important. The second approach 
to minimize sequencing error is to use a copy number filter.  
We typically use a minimum copy number of 2, which eliminates 
a lot of low copy sequences that are generated through sequenc-
ing error, but also eliminates valid low-copy sequences. One can 
rescue some of these valid low-copy sequences by computing 
clonal lineages across different replicates, which ImmuneDB can 
do (31). Thus, even if a sequence has a copy number of 1 in one 
library, if that same sequence is found in another library, it now 
has a copy number of at least 2 and can pass the filter. A third 
approach is to filter the data based upon instances or the number 
of times that the same unique sequence is found in different 
replicates. A fourth approach is to employ molecular barcod-
ing (51). Molecular barcoding is typically performed on RNA 
samples and introduced via primers with variable sequence tags 
(“barcodes”) at the cDNA synthesis step [for a detailed method 
that can be applied to bulk populations, see Ref. (11)]. At suf-
ficient sequencing depth, alignment of sequences with the same 
barcode is performed and used to generate a consensus sequence 
that is virtually free of sequencing errors. RNA-based assays tend 
to be lower throughput and require far more sequencing, increas-
ing cost. Another approach to minimizing sequencing errors is to 
perform rolling circle amplification (52).

A final consideration involves processing of the sequencing 
data, which may affect how somatic mutations are identified and 
counted. For example, if the subject has one or more novel V 
gene alleles, rearrangements with these V genes may be scored 
as being mutated rather than matching the novel germline 
sequence. Software tools have been developed to search for novel 
alleles within individual samples, providing an individual refer-
ence database of germline and putative germline alleles against 
which sequences from the same individual are compared for 
mutation [see arXiv:1711.05843 (q-bio.PE), https://github.com/
psathyrella/partis, and (53, 54)]. Filtering of low copy number 
sequence variants can eliminate valid sequences. To recover 
some of these sequences, one can construct algorithms that 
identify sequence variants that are shared (even among single 
copy sequences) in separate replicates from the same individual. 
ImmuneDB can do this handily because it takes all of the 
sequences from an individual into account when in constructs 
clonal lineages.

copy Number cut-offs and clone 
Numbers
Table  5 shows the numbers of clones at different clone size 
thresholds (i.e., the clone size cut-off used in this illustration is 
instances) in each donor. As one would expect, the number of 
clones decreases as the threshold increases. One could envision 
setting the copy number threshold to be near a number that cor-
responds to the maximum number of unique rearrangements. 
An alternative approach is to discard clones at some fractional 
cut-off. For example, one could discard clones having sequences 
that fall below 50% of the mean copy number frequency of the 
sample. Either approach results in biases in the data. In the case of 
an absolute copy number cut-off, one runs the risk of discarding 
infrequent clones and the stringency of this cut-off will vary based 

upon the depth of sequencing: samples that are not as deeply 
sequenced (and have lower average copy numbers per template 
molecule) will lose more data than samples that are deeply 
sequenced. On the other hand, a relative copy number cut-off 
can be influenced by the copy number distribution of the sample. 
If a sample has very large clones in it, these large clones can skew 
the average copy number value and lead to excessively stringent 
filtering. Despite the fact that this experiment was controlled for 
differences in the B cell fraction, different numbers of clones were 
observed in different donors. Some of these differences appear 
to be due to intrinsic biological differences between subjects in 
their clonal landscape. Consistent with this idea, Table  5 also 
shows that the distribution of clones at different size cut-offs is 
not uniform across the different donors.

Visualization of large clones
A quick way of drilling down on the largest clones in a sample is 
to determine the fraction of the total copies that is comprised of 
the 20 highest copy number clones, also known as D20, which is 
defined in Eq. 3 where ci is the copy count of clone i, and T is the 
total clone copy count.

 
D20

1

=
=

c
T

i

i

20

∑
 

(3)

The D20 percentage can be over 90% in a patient with B-cell 
malignancy. Conversely, a blood sample from a healthy adult 
will tend to have many smaller clones and a corresponding 
D20 value of 1–2% or less. Figure 4A shows the D20 fraction 
and Figure 4B shows the copy number fraction of the 20 top 
copy rearrangements in survey-level sequencing from each of 
the nine organ donors. D279 and D301 have D20 values that 
exceed 18% of total copies. In the case of D279, a single rear-
rangement comprises over 15% of total copies. Furthermore, 
both of these donors have a rearrangement that is at least three 
times more frequent than the next most frequent rearrange-
ment. In addition, two other donors, D207 and D287, each have 
top copy rearrangements that exceed the next most frequent 
rearrangement by more than threefold, but neither of these 
rearrangements exceeds 5% of total copies. The combined use of 
a frequency cut-off (such as 5%) and fold-change cut-off relative 

https://www.frontiersin.org/Immunology/
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FIgUrE 4 | Analysis of 20 top-copy clones in different donors. (A) The 20 clones with the most copies in each subject are presented as a proportion of total  
copies in a given sample; the percentage is shown above the pie chart. The total number of clones per sample is in the body of the pie. (B) Histogram plots  
of the top 20 copy number rearrangements. The fraction of total copies for each rearrangement is plotted vs. the clone rank.
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to the polyclonal background (such as threefold) provides 
greater confidence in declaring a true clonal expansion from 
oligoclonality. Furthermore, in both D279 and D301, there 
are several thousand B-cell clones, favoring clonal expansion 
over oligoclonality. At low B-cell numbers, PCR can be less 
efficient and jackpots (the disproportionate amplification of one 
dominant sequence) are more likely to occur (55). To further 
evaluate if these are bonafide clonal expansions, we measured 
the fractions of total copies in each individual replicate. In 
both cases, the fraction of total copies for each of the top two 
rearrangements was similar between the two replicates (the 
top copy rearrangement in D279 was 16% of total copies for 
replicate 1 and 17% for replicate 2; the top copy rearrangement 
in D301 was 5% in replicate 1 and 4% in replicate 2). The repro-
ducibility of these values suggests that these rearrangements are 
present in one or two large expanded clones. If this analysis 
were being performed on peripheral blood samples, finding 
rearrangements of this size would be considered worrisome for 
pathologic clonal expansion, but we do not yet know the normal 
“reference range” of clone sizes in human tissues.

Figure 5 shows how different size measures compare for the 
top 20 ranked clones in D207. While many of the clones in the 
top 20 are found in all three ranking systems, their position in 
the ranking can shift and some clones are only found in a single 
rank. For example, clone #180721 (ranked eleventh by unique 

sequences) is not found in the top 20 clones ranked by instances 
or ranked by copies. One contributing factor to the difference 
in ranking is that instance and unique sequence-based measures 
have a much smaller dynamic range than copy number measures. 
A clone may have 10 times as many copy numbers but the same 
number of instances. There are far more “ties” in the instance-
based measure. Biological differences may influence the rankings. 
For example, if there is a very large clone with minimal SHM, it 
may rank higher in a copy number-based rank than in a unique 
sequence-based rank.

Diversity of clones
In order to visualize the clonal landscape at different clone size 
ranges, one can plot the diversity of clones and give different 
weights to clones that are smaller or larger in size, as described in 
Ref. (39, 48). Here, the true diversity is given by:
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The equation for, qD, true diversity at order (Hill number) 
q. R is richness, in this case the total number of clones, and pi 
is the proportional abundance of clone i. The abundance can 
be the proportional number of copies, unique sequences, or 
instances. In this equation, diversity is a unitless number that 
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FIgUrE 5 | Analysis of top 20 clones by different clone size measures in D207. The top 20 clones are ordered in the three columns by total copies, instances, and 
unique sequences using the 19-library data set on D207. The x-axis shows the Clone ID (in ImmuneDB) followed by the rank. The clone size measures are given in 
fractions. The percentage within each chart legend indicates the sum of the top 20 ranked clones in the chart for each measure (please refer to the text for clone 
size definitions).
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refers to the “effective” number of different clones in the popula-
tion [see discussion in Ref. (39)]. Diversity is weighted by the 
parameter q. When q is 0, D is the number of different clones 
in the population. When q approaches 1, the diversity of each 
clone is proportional to its abundance (i.e., it is the weighted 
geometric mean). When q is greater than 1, larger clones are 
given more weight.

In Figure  6A, diversity is calculated for all clones (clones 
with 1 or more instances, marked C1) in all of the donors except 
207. As the order increases, the diversity diminishes because 
there are far fewer large clones than there are small clones. 
Unlike the copy number cut-off plots, the diversity plots provide 
greater resolution of the representation of large clones in the 
population. At higher orders, D287 has a longer tail of medium 
to large-sized clones than the other donors. But among clones 

with at least five instances (C5 clones), D279 has the greatest 
diversity at higher orders.

In Figure 6B, diversity is calculated for clones of different 
size cut-offs in D207 (C1–C5 and C10 instances). Although 
we are using instances to filter the clones being considered, 
we then re-analyze the clone sizes of all of the clones meet-
ing the instance cut-off using the three different size metrics: 
unique sequences, instances, and copies. Our test of sampling 
sufficiency is based on resampling and thus considers clone 
sizes in unique instances. However, at the clone size, we deem 
relevant when analyzing clonal diversity or overlap, there is still 
added information in considering different aspects of clone size.  
As stated above, both copy number and unique sequence number 
(and thus also instances) can be affected by PCR and sequenc-
ing artifacts. However, both also represent different indications 

https://www.frontiersin.org/Immunology/
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FIgUrE 6 | Diversity at different orders. (A) Diversity of C1 clones (all clones) calculated for all donors at survey level by instances, copies, and unique sequences; 
(B) Diversity of C1, C2, C3, C4, and C5 clones in D207. True diversity is calculated using copies, instances, and unique sequences (see text). Calculations are 
performed at different orders (Hill numbers). Higher orders give more weight to larger clones.
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of expansion—diversification by mutation for unique numbers 
and proliferation of specific types for copy numbers and 
instances. Thus, while they may not be totally faithful only to 
these dynamics, we do count and compare them, along with 
simply tracking the level of presence of clones in different 
samples.

Descriptive Measures of clonal Diversity 
and Evenness
Beyond the analysis of very large clones, one can study the 
distribution of clones within a sample using various descriptive 
measures of diversity or evenness or both (56). It is important 
to consider a sample may not be a single replicate, but multiple 
replicates from a common source. Shown in Figure 7 are analy-
ses using 19 independent spleen replicates, which were analyzed 

from one subject (D207) and stratified by different clone size 
cut-offs based upon instances. The simplest metric is to count the 
number of species (a.k.a., richness, R) at each clone size cut-off 
using different clone metrics. Richness, which is equivalent to 
diversity of order 0, specifies the total number of species in a 
sample. As expected, richness decreases with increasing clone 
size cut-offs and decreases more rapidly for unique sequences 
and clones than for instances and total copies. Note that richness 
alone does not account for clone size; two samples with the same 
number of clones but drastically different clone sizes will still 
have the same richness. Therefore, it is useful to examine other 
metrics, which measure clonal size distribution in addition to 
species diversity. The Shannon entropy [H (57)] takes the num-
ber of individuals of each species (i), the proportion of sequences 
in a given clone over all of the different clones being measured 
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FIgUrE 7 | Various metrics of diversity and evenness. Count: the total number of clones and the number of instances, unique sequences, and copies that comprise 
them. Shannon Diversity: the Shannon diversity of clones when their size is defined as instances, unique sequences, and copies. Pielou’s Evenness: measures how 
evenly distributed clone sizes are. A value of 1 indicates all clones are of the same size, and a value of 0 indicates maximal diversity in size. It is defined as the 
Shannon Diversity divided by the maximal diversity [equal to ln(S)] where S is the number of clones. Simpson index: diversity at Hill order 2. This can be interpreted 
as the probability of randomly drawing two copies/instances/unique sequences that belong to the same clone.
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(p), and the number of different clones (R) into account, as 
shown in Eq. 5:

 
H p p

i

R

i i= −
=1

ln∑
 

(5)

The Shannon entropy can be computed using copies, instances, 
or unique sequences as metrics for the numbers of individuals 
in each species (clone). For a given threshold (instance cut-off), 
all clones failing to meet the cut-off are filtered out and all of 
the remaining clones are used to compute pi. If nearly all of 
the sequences in a sample are found in one clone, the Shannon 
entropy approaches 0. Conversely, if all of the clones are equally 
abundant, the Shannon entropy approaches the natural logarithm 
of R. The Shannon entropy can also be computed with different 
logarithm bases.

Simpson’s index measures the true diversity (Eq.  4) at Hill 
order of 2. Simpson’s index measures the likelihood of encounter-
ing two sequences derived from the same clone when sequences 
are drawn at random from a given sequencing library or, in this 
case, a collection of 19 sequencing libraries from D207. It is 
defined by Eq. 6, where, as before, R is the richness and pi is the 
proportional abundance of each clone.
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Counts, the Shannon entropy, and Simpson’s index are all 
influenced by sampling and by the depth of sequencing (which 
can cause spurious concentrations of sequences within indi-
vidual clones in over-sequenced samples). Another frequently 
used metric, Clonality, takes on normalized diversity values 
ranging from 0 (maximally diverse) to 1 (monoclonal). Unlike 
entropy, clonality, C, measures the loss of diversity and can be 

represented as the inverse of entropy (H). One can also quantify 
how uniform clone sizes are using a measure of “evenness.” (58) 
Pielou’s Evenness is defined by Eq. 7:
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Samples where most clones are of similar size will have an 
evenness measure closer to one whereas samples with predomi-
nant rearrangements will have a lower value. In D207, there are 
a few large clones, but the majority of clones are small, hence the 
overall evenness is very high. As smaller clones are excluded, the 
evenness decreases. When R is not known or if the clone size 
copy number cut-off is uncertain (resulting in variable inclusion/
exclusion of low copy number clones across different sample 
types), this ratio can fluctuate and other ratio-based measures 
of evenness such as those described by Peet (59), may perform 
better (60).

Figure 7 shows that different metrics of richness and evenness 
(or hybrid measures of both) yield different results at different 
clone size cut-offs. Furthermore, when comparing results on 
different populations, the results from one measure do not 
necessarily translate intuitively to the results of another measure 
because the size distributions of clones in the different samples 
vary. For example, Figure 4 shows that D309 has a steep copy 
number cut-off curve at low copy number counts with a high 
proportion of low copy number clones, but also a shorter tail 
of higher copy number cut-off clones compared to most of the 
other donors. Conversely, D287 has fewer low copy clones, fewer 
intermediate size clones, but a longer tail of larger clones. For 
these reasons, we and others recommend analyzing the clonal 
landscape with several different metrics as well as plotting 
clonal diversity at different Hill numbers to visualize the clonal 
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FIgUrE 8 | Rarefaction analysis. (A) Individual-based rarefaction with 
different sample sizes. Individual-based rarefaction plots were computed with 
VDJtools using unique sequences (no copy number cut-off) and subsampling 
to impute expected clone numbers. (B) Rarefaction analysis at different clone 
size cut-offs in D207. The expected number of clones in the population is 
given on the y-axis and the number of samples (replicates) is shown on the 
x-axis. Each line depicts rarefaction curves for clones with a given size 
cut-off. Clone size C is measured in instances (see text).
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landscape in different clone size ranges (46). Some have also 
advocated using a collection of scalable and normalized diversity 
metrics to study immune repertoires (61).

rarefaction Analysis to Power clone size 
for clone tracking
Tracking clones through different samples requires powering 
the analysis to detect clones of a given size. If one does not 
do this, then, the lack of clonal overlap between two samples 
could be due to insufficient sampling. The increment in finding 
new clones with additional sampling can be evaluated using 
rarefaction analysis (39, 40). Stratifying clones by size, one can 
generate rarefaction-based estimates of sampling adequacy, as 
illustrated in Figure 8. When there are only modest amounts 
of sequencing data (as we have here with only two replicates 
per donor), one typically relies on individual-based rather 
than sample-based rarefication analysis (Figure  8A). In this 
analysis, the diversity is the richness (number of different 
clones, analogous to the number of different species) and the 
sample size is the number of sequence copies (analogous to the 
number of sampled individuals). Different donors have differ-
ent levels of diversity, despite the fact that we controlled for the 
B cell content. In all donors, the diversity is substantially lower 
than the number of sequences because several of the same or 
highly similar sequences comprise each clone. In some donors, 
such as D287, there many more sequences per clone than other 

donors (such as D267). One caveat to this analysis is that using 
individual-based rarefication can be unreliable when we count 
clone size by copy number: copy numbers may be inaccurate 
if sequencing depth and PCR amplification efficiency are not 
properly controlled.

Our most accurate indication of clone size and sequence 
abundance is the number of times we observe things in 
independently generated sequencing replicates. Beyond its 
ability to correct for sample-specific copy number inaccura-
cies, counting instances has the added advantage of being less 
influenced by samples that derive from a non-homogenous 
population (9). With more extensive sampling, we can perform 
sampling-based rarefaction analysis, as illustrated for D207 in 
Figure  8B. In this analysis, with larger clones (correspond-
ing to size cut-offs of 6–10 instances), the curves level off. 
Rarefaction analysis, coupled with clone size, can be used for 
power detection of clonal overlap or clone tracking between 
samples. In this example, clones with an instance cut-off of 
6 (C6, red curve) are the optimal size for overlap analysis in 
this data set: they are the smallest size clone with a rarefaction 
curve that levels off. As one would expect, there is a trade-off 
between the amount of sampling required and the likelihood 
of capturing a clone. However, when two populations have 
very large numbers of overlapping clones or very large clones,  
a lower capture threshold may be sufficient to adequately 
sample clones of interest.

clonal overlap Analysis
To determine if two samples contain overlapping clones, the 
most straightforward thing to do is to count the number of clones 
that overlap and compare that number to the total number of 
clones in each of the samples. This type of counting is the basis 
for generating a Venn diagram. However, such Venn diagrams 
are hard to compare quantitatively as they do not take different 
sizes of clones into account and they become visually cumber-
some when more than two samples are being compared. In lieu 
of this approach, several metrics have been developed to quantify 
overlap, giving weight to clone sizes in the samples, including the 
relative overlap diversity, the geometric mean of relative overlap 
frequencies, and the clonotype-wise sum of the geometric mean 
frequencies. This metric is easy to calculate and is not overly 
influenced by the relative sizes of clones and, as it ranges from 0 
to 1, it is easy to compare across experiments. Here, we illustrate 
the use of the cosine similarity metric for quantifying overlap 
between two-sample pairs. The equation for the cosine similarity 
metric is:
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The cosine similarity is computed for two samples A and B, 
for example, replicate 1 from D207 and replicate 2 from D207. 
Both A and B are vectors of length R, where R is the number of 
unique clones across the two samples. The value of Ai or Bi is the 
abundance of clone i in sample A or B. The abundance can be any 
of the measures of clone size such as copies, unique sequences, 
or instances.
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FIgUrE 9 | Tracking of shared clones across replicates in D207. All clones 
that were found in two or more replicates are shown. Each column is a 
replicate. Each horizontal line is a clone. The numbers of shared clones  
are given on the scale to the right.
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The cosine metric is useful for evaluation of clonal overlap 
between two samples, but does not provide a means of comparing 
overlap of clones that span multiple samples.

To visualize clones found in three or more samples, we use 
string plots. String plots based on Boolean values (presence 
or absence of a clone in a replicate), are shown in Figure 9 for 
all clones (n = 14,543) that overlap in at least two replicates in 
D207. In these plots, the strings (horizontal lines) represent the 
individual overlapping clones. The overlapping clones comprise 
11% of all C1 clones in the 19 libraries of D207 (overlapping 
clones have been removed from this total C1 clone number). 
Note that over 90% of these overlapping clones in the entire 
data set have already been discovered in the first 10 sampled 
replicates. In these plots, the strings can also be colored based 
upon a metric of clone size such as percentage of copies within 
a sequencing library (34).

One can add other dimensions to string plots, as we did with 
“line circle plots” in our analysis of clonal representation in 
different tissues (9). In line circle plots, each line represented 
a clone, circles indicated membership of that clone in a tissue, 
the size of the circle indicated the number of copies of the clone 
in the tissue samples, and colored wedges in the circle indicated 
what fraction of sequencing libraries from that tissue contained 
members of the clone. Thus, in line circle plots, one can display 
three different features of a clone—its tissue membership, its 
copy number in the different tissues, and its instance number— 
within replicate libraries from each tissue. The plots can of 
course be modified to display different parameters, depend-
ing upon the comparisons of interest. String plots provide a 
means of visualizing overlapping clones, but it is important to 
remember that they focus exclusively on the overlapping clones. 
The appearance of a string plot can be misleading if the sam-
ples that are included in the plot are of unequal size or clonal 
composition. The total number of observed clones within each 

sample being compared needs to be considered to determine if 
the numbers of overlapping clones reflect meaningful overlap or 
merely sampling differences. To visualize all of the clones in the 
samples being compared, Venn diagrams can be used.

ANtIcIPAtED rEsUlts (PItFAlls, 
ArtIFActs, AND troUBlEsHootINg)

overview of clone size Evaluation
Here, we present a series of analytical approaches to evaluate 
B-cell clone size in bulk populations. We describe three basic 
types of immune repertoire measures that are impacted by 
clone size. The first is the fraction of total copies that harbor 
the one or two-most frequent rearrangements. This fraction is 
typically higher than 0.05 for a malignant clone with a polyclonal 
background and may require an even higher cut-off with an 
oligoclonal background. We also determine the fold increase of 
the most frequent rearrangement compared to the next most 
frequent rearrangement in the sample. Ideally, this change 
should be threefold or greater. These criteria tend to be sufficient 
for relative or approximate measures of clone size. For smaller 
clones or finer resolution of clone size, calibration to an external 
standard (such as cloned rearrangements that are spiked into the 
sequencing reaction), single cell counting, or limiting dilution 
analysis may be required. We perform sequencing reactions 
in at least duplicate to rule out spurious clonal expansions due 
to oligoclonality (accompanied by poor reproducibility in the 
replicates) or PCR jackpots.

The second measure is clonal diversity, which can provide 
insights into immune competence or robustness of a targeted 
immune response, such as tumor infiltrating lymphocytes in a 
biopsy specimen. At the bulk population level, clonal diversity 
needs to be visualized at different orders (Hill numbers) to give 
weight to clones of different size in the population. If different 
samples are to be compared, it is important to normalize the 
input DNA of the sequencing library for the B cell content in 
different samples. This can be accomplished by sorting cells 
with a specific phenotype or by performing FACS analysis 
and determining the B cell fraction in the cell suspension, as 
we did here. If we had not controlled for the B  cell content, 
then differences in diversity could have reflected differences 
in sampling rather than true differences in diversity. A second 
important consideration with diversity analysis is to visualize 
the clonal landscape at different clone sizes. We describe two 
ways to accomplish this: first, plot the number of clones at dif-
ferent clone size cut-offs, and second, plot the true diversity at 
different orders, giving different weight to clones of different 
size ranges. Two individuals may have very similar small clones, 
but one person may have many intermediate-size clones while 
another may have a few really large clones. If one only visual-
ized the data with a single diversity measure, one might miss 
features of the clonal landscape that distinguish one sample 
from another.

The third measure is clone tracking, including clonal overlap 
analysis. The ability to track a clone depends upon its frequency 
in the population; thus, the respective sizes of the clone and the 
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population in which the clone resides both matter. Starting with 
sequences from bulk populations, we recommend using sample-
based rarefaction analysis to determine the clone size that can 
be detected reliably and the number of sequencing replicates 
needed to adequately sample the clone. The null hypothesis of 
this analysis is that the clone size is the same in the two popula-
tions being sampled and evaluated for clonal overlap, which often 
is not the case. We recommend tailoring the clone size metric 
to the types of clones being compared. For clones that harbor 
substantial somatic mutations, the number of unique sequence 
variants per clone may be a useful clone size metric. On the 
other hand, if samples differ in their sequencing depths, it may 
be useful to deploy an instance or even a Boolean (presence vs. 
absence) metric for clone size, although such metrics typically 
require very extensive sampling and may be impractical. Finally, 
if amplification efficiency, sequencing depth, and B cell content 
are well controlled, it may be possible to use copy number 
fractions. To visualize clonal overlap, we recommend using the 
cosine statistic for two-sample comparisons and string plots for 
three or more sample clone tracking experiments.

real-life limitations and Alternative 
Approaches
Samples may be limited in quantity or quality, or we may not 
know the B-cell content. Small and low-quality samples can be 
encountered in fixed tissue samples. Due to poor DNA quality, 
it may only be possible to generate short amplicons from such 
samples, potentially reducing the fidelity of V gene assignment 
(47). Furthermore, modest numbers and/or fractions of B cells 
in such samples can increase the likelihood of PCR jackpots and  
the accumulation of sequencing errors due to over-sequencing  
of the few templates that are present. Clone size measurements  
in such samples may not be reliable or even possible.

To judge the adequacy of the library, we use the quality met-
rics described in Sections “Sequencing Run QC” and “Sequence 
Data Quality” Filtering and look at the number of clones. If the 
sample has fewer than 50 clones and/or 1,000 valid sequences, 
it may be challenging to identify a dominant clone unless the 
sample is nearly monoclonal. Replicate amplifications from 
oligoclonal samples lacking clones will tend to reveal different 
clones in the replicate, whereas samples with clonal expansions 
will reveal consistent amplification of the same clones if they 
are large enough. Sometimes it is not possible to know the 
B-cell content in a sample. If the B-cell content is unknown, 
we calculate the copy number distribution and average copy 
number, and then use a fraction of the average copy number 
as the copy number cut-off. For example, if the average copy 
number is 100, the copy number cut-off might be as high as 10 
or 20, whereas if the average copy number is 2, there might be 
no cut-off or only sequences with a copy number of 1 may be 
eliminated.

community Efforts to Validate and 
standardize repertoire Analysis tools
All of the clonal size measurements introduced for studying 
bulk populations of B cells assume that the annotation of clones 

(and, therefore, genes) is correct. There are many tools that 
claim to achieve this, including ImmuneDB, which was used 
for this paper. However, there has been no robust method 
for determining how well the clonal associations produced 
approximate the true clonal landscape. It may be possible to 
validate tools under specific conditions when the clones are 
known a priori, but currently there is no universal standard by 
which tools can be tested.

There are at present several hurdles to creating such an 
estimate, some of which may be insurmountable. We start our 
germline association of sequences from an expanded population 
whose somatic and germline history is ill-defined. To estimate 
the accuracy of our association, we would need to know which 
germline genes, and what copy numbers are present in the sub-
ject and what kinds of selection pressures have created the gene 
segment usage in the active repertoire. This final requirement is 
quite difficult, as selection has been shown to skew repertoires 
significantly and in a very individual way (62). In addition, 
there are differences that simply cannot be detected after the 
fact, such as discrimination between germline genes that are too 
similar to tell apart (47).

There is a goal of generating such a standard within the 
AIRR Community, with active discussion in the B-T.cr forum.4 
An alternative method is to generate sequences in  silico with 
known V- and J-gene assignments (63), run a gene inference 
tool on the sequences, and see how well the results match 
the input. However, this approach assumes that we can write 
software that adequately mimics the underlying biological 
processes.

Use of Multiple tools on the same  
Data set
One approach to validation of an analysis method, when lack-
ing a “gold standard” for comparison, is to use multiple clonal 
assignment tools and compare the results. Even though the 
results will likely not be identical, at least for the large clones, 
one would expect similar clonal assignments to be produced. 
The size analyses from this paper could then be applied at the 
threshold of clone size to which the tools generally agree.

Starting with the sequencing data table, we begin with a 
back-of-the-envelope equation on the maximum predicted 
number of gene rearrangements. If the number of unique 
sequences in the sample exceeds this value, we look at other 
quality metrics to determine if there is adequate filtering of 
the data to remove sequencing errors. If the number of unique 
sequences in the sample is 10-fold or more below the maximum 
predicted number of rearrangements (Eq.  1), we review the 
experiment to determine if there is any explanation for the low 
recovery of rearrangements, such as a low-quality sample or 
perhaps an unexpectedly low B cell fraction. We also look more 
closely at the data filtering to see if we are discarding too much 
data in the filtering process.

While beyond the scope of this paper, the method for group-
ing related sequences into clonal lineages could also influence 

4 https://b-t.cr/t/how-to-decide-on-an-example-data-set-to-use-for-testing-soft-
ware/129 (Accessed: November, 2017).
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downstream measurements of clonal diversity, size, and overlap. 
Several different approaches for associating antibody sequences 
into clonal lineages exist (29, 32, 35, 38, 64). Different methods 
as well as different parameters within individual methods can 
be tested to determine if the findings are robust. These methods 
make different assumptions and can result in different stringen-
cies of clonal association under different conditions [such as 
different levels of SHM, discussed further in Ref. (9)]. We often 
try processing data with two or more different pipelines, such 
as MiXCR (34) and ImmuneDB (31). Getting similar answers 
with both pipelines encourages us that the result is more likely 
to be robust. When there are discrepancies, they can be due to 
differences in sequence quality filtering or the clonal lineage 
assignment steps. In ImmuneDB, one can compare the total 
number of sequences to the number of “identifiable” sequences, 
which are those to which a V and a J gene (or gene tie) have been 
assigned. If there is a massive loss of sequences going from total 
to valid sequences, the pipeline may be filtering out sequences 
of interest or there may be poor sequence quality. Another 
quick sanity check is to look at the fraction of sequences with 
productive rearrangements. In mature B cells, a low fraction of 
productive rearrangements (<75%) is usually an indicator of 
poor sequence quality.

For clone size analysis, if only clones with at least six instances 
(C6) are inferred similarly with multiple tools, it may be possible 
to limit the analysis to clones of size C6 and above. However, it 
may not always be desirable to focus only on a small set of large 
clones, as the discarded clones typically comprise the vast major-
ity of the sampled repertoire. Additionally, different tools make 
different basic assumptions, sometimes making comparisons 
difficult. There is also the question of how stringent one needs 
to be to declare two clonal assignments “similar.” Finally, in 
some cases, differences observed with different tools are not 
due to problems with the data or the analysis but rather are due 
to bonafide differences in what the analytical tools are actually 
measuring in the data set. For example, comparing diversity at 
different orders can result in different answers because they give 
different weights to clones of different sizes. In the end, the best 
course of action is to pick the metric that best captures the clones 
of interest in the population.

replication
As with most experiments, one of the most reliable methods for 
determining if results are valid is to replicate them by making 
additional measurements or by performing additional experi-
ments. In the data we present here, we illustrate two forms of 
replication. The first is that we perform the same bulk sequencing 
analysis on nine different organ donors. This analysis reveals 
certain features that are shared in all donors (such as the pre-
ponderance of small clones having 1–2 sequences per clone) and 
other features that vary between different donors (such as the 
proportion of very large clones, D20, or the distribution of clone 
sizes). If we had only analyzed two donors (such as D267 and 
D309), we might have concluded the different individuals have 
rather similar clone size distributions in the spleen.

Replication is also achieved by making additional measure-
ments on the same sample, as we showed here with 19 replicates 

from D207 spleen. With antibody gene rearrangement sequenc-
ing from gDNA, performing additional amplifications and 
sequencing on the same DNA aliquot is analogous to sampling 
additional cells from the same cell population since each cell only 
has one template molecule. As we show here and in Ref. (9), for 
clone tracking studies, it is important to power the analysis on 
both the clone size and the degree of sampling.

coNclUDINg rEMArKs

In this paper, we demonstrate the importance of choosing 
the appropriate combination of experimental approaches and 
analytical tools to measure B-cell clone size. One has to know 
what scale of clone sizes is of interest, which means visualizing 
the repertoire as a whole on a diversity or clone copy number 
cut-off plot. Additional considerations that guide the choice 
of clone size metric include the prevalence of SHMs, the pos-
sibility of uncontrolled differences in sequencing depth, and 
the availability of replicate libraries. For clonal overlap analysis, 
there are approaches that quantify the degree of overlap and 
others that focus on the similarity of the overlapping clones 
themselves. Finally, analysis tools and experimental approaches, 
especially in the single cell realm, are undergoing rapid evolu-
tion (19, 20). Members of the AIRR and RepSeq communities, 
including many of the research teams that have contributed 
to this special research topic in Frontiers, are contributing to 
experimental approaches, data analysis and data sharing as 
methods and providing recommendations (49, 65). We look 
forward to a future for clonal analysis that is filled with promise 
and complexity.
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