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Vaccines represent the discovery of utmost importance for global health, due to both 
prophylactic action to prevent infections and therapeutic intervention in neoplastic 
diseases. Despite this, current vaccination strategies need to be refined to successfully 
generate robust protective antigen-specific memory immune responses. To address 
this issue, one possibility is to exploit the high efficiency of dendritic cells (DCs) as 
antigen-presenting cells for T cell priming. DCs functional plasticity allows shaping the 
outcome of immune responses to achieve the required type of immunity. Therefore, the 
choice of adjuvants to guide and sustain DCs maturation, the design of multifaceted 
vehicles, and the choice of surface molecules to specifically target DCs represent the 
key issues currently explored in both preclinical and clinical settings. Here, we review 
advances in DCs-based vaccination approaches, which exploit direct in vivo DCs tar-
geting and activation options. We also discuss the recent findings for efficient antitumor 
DCs-based vaccinations and combination strategies to reduce the immune tolerance 
promoted by the tumor microenvironment.
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iNTRODUCTiON

Vaccines represent one of the most effective Copernican revolutions for humankind and world 
health. This innovative discovery by Edward Jenner in the late years of the XVIII century allowed 
for control or complete eradication of infectious diseases as smallpox (1979) and rinderpest 
virus (2011) (1). This immunization strategy posed the bases for current remarkable therapeutic 
approaches against not only infections but also cancer. In evolutionary terms, pathogens have 
acquired the capability to circumvent the immune system with several evasion mechanisms, 
revised elsewhere (2), that prevent pathogen clearance and the establishment of immune memory. 
Vaccines represent the unique tool we have to impede pathogen spread; therefore, the urgent need 
for efficient vaccines is as relevant as before. Mycobacterium tuberculosis, which causes tuberculo-
sis, is currently one of the most feared infectious agent due to its capability to evade the immune 
system, leading to death of more than one million of people per year. Unbelievably, the only 
licensed vaccine against Mycobacterium tuberculosis is bacillus Calmette-Guérin (BCG) conceived 
about 100 years ago. Nonetheless, BCG has displayed some degree of inefficacy in humans, thus 
raising the need for new tailored vaccination strategies that are currently under investigation 
(3). Moreover, every year, new cases of human immunodeficiency virus (HIV) infections lead 
to the necessity of a vaccine to control and prevent the spread of the virus. Up to now, vaccines 
against HIV have not passed phase II clinical trials due to poor protection conferred, requiring 
revision of delivered antigens (ags) and strategy to improve T cell response (4). Moreover, the 
recent outbreaks of Ebola virus and Zika virus infections clearly demonstrate that still nowadays 
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FiGURe 1 | Dendritic cells (DCs) readapted taxonomy. Newly identified populations of blood human DCs are shown. DC1 subset is clearly distinct by the expression 
of CLEC9A, and it is specialized in cross-presentation of ags. DC2 and DC3 constitute the conventional DCs pool, even though they appear to be phenotypically 
slightly different and, upon stimulation with TLR ligands, their diversity emerges. DC4 is a population characterized by an upregulated Type I Interferon pathway for 
antiviral responses. DC5 has emerged as a new population whose specific functions are still unexplored. DC6 corresponds to the classic plasmacytoid DCs. These 
advances in the fine characterization of DCs in humans may shed light on the best subset to be targeted to incentivize the desired immune response.
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more than few infectious diseases need to be overwhelmed, as 
reported by the World Health Organization. On the other hand, 
vaccines represent also a therapeutic tool against cancer. One 
of the hallmarks of cancer is the capability of tumor cells to 
evade immune-mediated destruction (5) by promoting a toler-
ant milieu. Therefore, the immune system has to be pushed to 
respond specifically and robustly against tumors cells.

To address this purpose, it is becoming more and more evi-
dent that dendritic cells (DCs) stand out as a potent tool in our 
hands, being the mediators of cellular and humoral responses (6). 
DCs have been discovered in 1973 by R. Steinman and Z. Cohn 
that divided phagocytic cells (discovered by E. Metchnikoff in 
1887) in macrophages and DCs on the basis of different effector 
functions: microbial scavenging activities for macrophages and 
antigen-presenting function for DCs (7, 8). Since then, DCs have 
emerged as the most potent antigen-presenting cells capable of 
shaping adaptive responses both during infections and cancer. 
Moreover, the broad spectrum of DCs activation makes them 
suitable for fine shifting of the type of response the context needs. 
Taking advantage of new adjuvants, innovative ags-delivery car-
riers and targeting strategies, it is now feasible to optimize the 
activation and ag presentation processes by the specific DCs 
subset that is the most effective in the initiation of the adaptive 
response needed in a given context. Here, we discuss the diverse 
phenotypical and functional properties of DCs subtypes that are 
exploited by recently developed vaccine approaches, dealing with 
advances in the use of ags, adjuvants, carriers and DCs-expressed 
molecules, object of targeting.

DCs iDeNTiTY: A MULTiFACeTeD 
FUNCTiONAL FAMiLY

Dendritic cells are the primary professional antigen-presenting 
cells (APCs) that reside in both lymphoid and non-lymphoid 
organs (9–11). DCs encompass several heterogeneous sub-
sets whose subdivision relies on ontogeny, expression of 

surface-receptors, and transcription factors (12–14). Much 
effort has been done in the identification and characterization 
of tissue-specific DC subsets to unravel the correlation between 
phenotype, localization, and functional properties, both in 
health and disease. Initially, DCs have been classified into con-
ventional DCs (cDCs) and plasmacytoid DCs (pDCs). Briefly, 
cDCs prime naïve T cells and orchestrate ag-specific adaptive 
responses, while pDCs intervene during viral infections pro-
ducing type I interferons (IFNs). Advanced approaches have 
extremely pushed our understanding of DC biology, resulting 
in a recent readapted taxonomy (12, 15, 16). Indeed, Villani 
and colleagues identify six subsets of DCs and monocytes 
in human (Figure  1): DC1 (CLEC9A+CD141+ DCs), DC2 
and DC3 (CD1c+ DCs), DC4 (FCGR3A/CD16+ DCs), DC5 
(AXL+SIGLEC6+ DCs) and DC6 (pDCs). DC1 represent the 
cross-presenting CD141+/BDCA3+ DCs while D2 and D3 
correspond to cDCs displaying antigen uptake and processing 
capabilities. DC4 seem to be more prone to respond to viruses 
and are phenotypically close to monocytes. DC5 represent a 
newly defined subset that share features with both pDCs and 
cDCs, even though they appear to be functionally different 
from pDCs and more similar to cDCs. Indeed, DC5 localize in 
T cell zone of tonsils, probably promoting fast adaptive immu-
nity. Due to this fine clustering, DC6 correspond to a more 
pure pDCs population (12). This precise classification opens 
the way for a more accurate view of DCs role in pathologies and 
provides cues for more specific targeting in immunotherapies. 
Indeed, it is reasonable to assume that this extreme pheno-
typical diversity correlates with different intrinsic functional 
properties of DCs, as emerged in Villani’s work (12, 17, 18).  
In addition, environmental cues dictate DC activation and drive 
specific T cell responses (19, 20). Indeed, DCs display a plethora 
of pattern recognition receptors (PRR) that are specifically 
bound by microbe- or damage-associated molecular pattern 
(PAMP and DAMP, respectively) (21). Upon receptors engage-
ment in peripheral tissues, the transduction signals lead to DC 
maturation with the upregulation of co-stimulatory molecules 
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(referred to as “signal 2”) and the pivotal chemokine receptor 
CCR7 that allows DCs migration through afferent lymphatic 
vessels to the draining lymph node (LN) (22–24). In parallel, 
DCs mediate ag proteolysis to present intracellular peptides on 
major histocompatibility complex (MHC) class I to CD8+ T cells 
and exogenous peptides on MHC II to CD4+ T cells (referred 
as “signal 1”). DCs can present exogenous ags on MHC class 
I through the so-called cross-presentation, allowing them to 
induce CD8+ cytotoxic T lymphocytes (CTLs) against viruses 
and tumor cells. Indeed, once in the LN, mature DCs encoun-
ter cognate naïve T cells and initiate adaptive responses (25).  
In the absence of maturation, as in steady-state conditions, 
the ag presentation and consequent migration to LN promote 
peripheral tolerance via T cell anergy or regulatory T cell forma-
tion (26–28). Depending on the receptors engaged, DCs display 
different maturation states and produce different inflammatory 
mediators (often referred to as “signal 3”) that impact on the 
following cellular and humoral responses. The three signals 
released by DCs drive T helper (Th) cell differentiation. Briefly, 
DCs educate CD4+ T  cells against intracellular bacteria by 
promoting their polarization into IFN-γ-producing Th type 1 
(Th1) cells. Upon infection by multicellular parasites, DCs, with 
the help of basophils, polarize CD4+ T cells into Th type 2 (Th2) 
cells that produce mainly IL-4. For specialized mucosal and 
skin immunity, DCs drive the activation of Th type 17 (Th17) 
(29). Thus, polarization of T cells is a crucial event that provides 
mechanisms specifically orchestrated to restore physiological 
homeostasis. DCs undergo apoptosis once they have fulfilled 
their functions. The rapid DC turnover after activation is  
necessary to avoid excessive T cell activation (30) and to main-
tain self-tolerance (31, 32). T lymphocyte activation culminates 
with the establishment of the immunological memory, provid-
ing the host with T cells more prone and efficient in responding 
to a reinfection by the same pathogen or upon tumor relapses 
(33). Besides, DCs are key players in humoral responses too. 
Indeed, they directly interact with B cells and indirectly support 
them by activating CD4+ T cells, leading to humoral memory. 
All these notions strengthen the idea that DCs represent an 
optimal target for immunotherapies and vaccines, acting at the 
interface of innate and adaptive immunity.

ADJUvANTS SHAPiNG DC FUNCTiONS

To harness robust responses through DC-targeting vaccinations, 
DC maturation is essential. Adjuvants become compulsory com-
plement of inactivated or subunit vaccines that may promote 
suboptimal responses. Furthermore, they improve DC migra-
tion, ag availability, and specific targeting. Although it seems 
clear that immunization could benefit from adjuvant uses, the 
solely adjuvant licensed in clinics, until recently, was alum (34). 
Despite alum has been used in vaccination practice since the 
beginning of the last century, the mechanism through which 
it activates innate immunity for the subsequent activation of 
adaptive immune responses remains elusive. The adjuvant 
properties of alum were initially attributed to the activation of 
NLRP3 inflammasome (35, 36); nevertheless, further studies 
have clearly shown the dispensability of NLRP3 and caspase-1 

for the generation of responses in the presence of this adjuvant 
(37, 38). TLR signaling is also dispensable for alum adjuvantic-
ity (39) as well as mast cells, eosinophils, or macrophages (40). 
Recently, it has been proposed that upon contact with alum, DCs 
produce IL-2 through the activation of src and Syk kinases, Ca2+ 
mobilization, and NFAT nuclear translocation. IL-2, in turn, is 
required for optimal T  cell priming, activation, and antibody 
production (41). In addition to alum, other chemical adjuvants 
have been tested in preclinical models, showing a clear hetero-
geneity in the responses driven by different adjuvants, indepen-
dently of the ag (42). This underlies the need of deepening our 
knowledge on these powerful tools to drive immune responses. 
Indeed, MF59, an oil-in-water emulsion adjuvant, that allows 
long-lasting ag retention in draining LN and enhanced ag 
uptake by LN-resident DCs, promotes robust humoral responses 
via follicular DC activation (43) and CD4+ T  cell immunity 
induction (44). Conversely, IC31 adjuvant, which consists of 
an antibacterial peptide and a synthetic oligodeoxynucleotide 
(ODN), elicits IFN-β release by human DCs via engagement 
of endosomal TLRs supporting immunity against intracellular 
pathogens and cancer (45).

In the last decades, attention has been focused on TLR ligands 
as adjuvants. Currently, several compounds are under investiga-
tion: Pam2CSK4, Pam3CSK4, or analogs as TLR2/6 or TLR2/1 
ligands (46, 47), Poly(I:C) and similar compounds acting on TLR3  
(48, 49), TLR4 agonists (50), Flagellin acting on TLR5 (51), 
Imiquimod and other TLR7 ligands (52, 53), TLR8 agonists 
(54), CpG ODN binding TLR9 (55, 56). Due to the possible 
reactogenicity that may be induced by administering TLR 
agonists, some compounds are chemically modified to reduce 
toxicity or are delivered specifically to the DC subsets of interest, 
avoiding TLR ligand dissemination. Monophosphoryl lipid A, 
a low-toxicity molecule derived from lipopolysaccharide (LPS), 
displays promising effects for vaccine design (57) even though 
it promotes terminal differentiation of CD8+ cells, leading to 
reduced memory protection (58). Another LPS-analog is 7-acyl 
lipid A that has emerged as potent inducer of IFN-γ-mediated 
ag-specific responses when co-delivered with poorly immuno-
genic tumor ags (59).

To improve the effectiveness and strength of immunity, in 
addition to the efficiency of APC, activation and ag processing 
and presentation of other aspects should be taken into account. 
The importance of DC-derived IL-2 in the activation of adap-
tive responses has been shown not only in alum-driven immune 
responses and in mouse models of infections (60, 61) but also 
in tests of human T  cell priming in the presence of activatory 
DCs. During the first few hours after interaction with T  cells, 
activatory monocyte-derived DCs (MoDCs stimulated with the 
cytokine cocktail, TNF-α, IL-6, IL-1β, and PGE2) produce IL-2 
and CD25 (62). DC-derived IL-2 is, in turn, trans-presented 
to T cells at the immunological synapse via CD25. Since naïve 
T cells start to express CD25 only many hours after ag encounter, 
the DC-mediated presentation of the IL-2/CD25 complex is 
indispensable for an efficient T  cell priming (62). It has been 
proposed that this is the reason why approved therapies based 
on the use of anti-CD25 antibodies to avoid the acute phases of 
autoimmune diseases, or acute rejection of kidney, heart, and 
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hand transplants, are so efficient in interfering with T cell prim-
ing or T cell reactivation (62). Since IL-2 is produced in NFAT-
dependent manner to improve the adjuvanticity of PRR agonists 
for vaccination purposes, the capacity of selected PRR agonists to 
induce NFAT signaling pathway activation and IL-2 production 
should be considered. Many PRR ligands have been shown to 
activate the NFAT transcription factor family members in innate 
immune cells (63). The NFAT pathway is activated in neutrophils, 
macrophages, and DCs in response to curdlan (64, 65), it is also 
activated in DCs in response to LPS (30) downstream of CD14, it 
is activated in response to mannose-capped lipoarabinomannan 
(Man-LAM), a major lipoglican of Mycobacterium tuberculosis 
(66), and downstream of TLR9 in response to β-glucan bearing 
fungi (67). The production of IL-2 by innate immune cells during 
inflammatory responses is relevant not only for an efficient T cell 
priming but also for the skewing of T cell activation toward type 
I responses. In mice, DC-derived IL-2 is one of the cytokines 
required to elicit IFN-γ production from NK cells both in LPS-
mediated inflammatory conditions and during fungal infections 
(68–70). IFN-γ potently activates macrophages and favors Th1 
commitment of CD4+ T cells. Therefore, early IFN-γ release by 
NK cells is not only crucial for controlling a variety of primary 
bacterial and fungal infections but also for the induction of type 
I immunity and memory, fundamental for the protection against 
bacterial, fungal, and viral infections and in antitumor immune 
therapies.

Another important reason for considering the capacity to 
activate the NFAT pathway in adjuvant selection tests is repre-
sented by the fact that NFATs regulate also the production of the 
prostanoid PGE2 by activated DCs (71). PGE2 promotes activated 
DC migration (72) and sustains vasodilation and local edema 
formation during the inflammatory process. This is particularly 
relevant for vaccination purposes since the increase of the inter-
stitial pressure generated by the edema forces the fluids into the 
afferent lymphatics and favors a first wave of antigen arrival to 
the draining LN (71). Intriguingly, LN drainage of proteins or 
antigens occurs very rapidly after subcutaneous, intradermal, 
and intramuscular immunization (73–75), thus permitting an 
extremely fast uptake by phagocytes strategically localized in 
close proximity to the subcapsular sinus or lymphatic sinus of 
draining LN (76–79).

Antigen-presenting cells in LN then maintain the homeosta-
sis of LN themselves and activate adaptive immune responses. 
In the last decades, the long-held paradigm of migratory DCs, 
resident in peripheral tissues as the skin, as unique APCs involved 
in T  cell immunity has dramatically changed. Indeed, CD169+ 
subcapsular sinus macrophages, medullary macrophages, and 
LN-resident DCs are LN sentinels that avoid excessive pathogen 
dissemination (80, 81) and mediators of immune responses (76).

Concerning migratory DCs and considering the skin, which 
represents the site of utmost importance for vaccination strategies 
due to the ease accessibility and the extremely high presence of 
DCs, skin-resident DCs have been subdivided into epidermal-
resident Langerhans cells (LCs), which are Langerin+ and two 
diverse subsets of dermal (d)DCs: Langerin+ CD103+ and 
Langerin− CD103− (14, 82). Upon infection, dDCs migrate to 
the LN within 10–24 h while LCs within 48–72 h, supporting 

long-lasting ag-presentation. Several works reveal the intrinsic 
differences between the two subsets in inducing Th or CTL 
responses, due to the particular cross-presenting capabilities of 
CD103+ dDCs, for instance (19, 20, 83). Once in the LN, whose 
strategical architecture enhances the probability of encounter 
between migratory DCs and cognate naïve T  cell, adaptive 
immunity is initiated. Of note, LN-resident DCs are sufficient 
to promote early adaptive responses independently of migratory 
DCs when pathogens or antigens directly access the lymphatic 
conduits (76, 84, 85). In antiviral responses, CD8α+ LN-resident 
DCs play a crucial role, thanks to their intrinsic capability of 
cross-presentation to CD8+ CTL (86, 87) that may be supported 
by pDCs (88). In Herpes Simplex Virus (HSV) skin infection, 
CD8α+ LN-resident DCs uptake cargo-antigens, ferried by skin-
resident migratory DCs in order to elicit CTL (89). Indeed, LCs 
and dDCs synergize with CD8α+ LN-resident DCs, which stand 
out as the most potent CTL inducers, preferentially sustaining 
CD4+ Th responses both in influenza (90) and HSV cutaneous 
infections (91). In addition to CD8α+ LN-resident DCs, CD103+ 
dDCs display intrinsic capability of cross-presentation, as their 
human counterpart, CLEC9A+ CD141+ DCs (92–96). Besides, 
some authors demonstrated that blocking DC migration from 
the skin hinders CD4+ T cell activation in response to subcuta-
neous bacterial (97) or soluble antigen challenge (98). Ablating 
Langerin+ dDCs reduced T cell immunity strength, corroborat-
ing the notion that migratory DC complement LN-resident DC 
effects on adaptive responses (99–101). Nonetheless, the roles of 
LCs in activating T cells are still uncertain, probably due to the 
controversial functional properties of this innate subset (102–
104). Despite this, the synergic effects of LN resident and migra-
tory DCs seem to be undoubted (25, 105). Indeed, Allenspach 
and colleagues reported that ag presentation by LN-resident DCs 
few hours after the infection is required to entrap ag-specific 
T  cells in the draining LN and to favor an optimal activation 
of T cells by migratory DCs that arrive at the LN many hours  
later (106).

It emerges, therefore, that another aspect to be considered 
for the identification of efficacious adjuvants concerns the type 
of DC subset to be targeted and the consequential effects that 
adjuvants imprint on that subset. Adjuvants play a pivotal role 
in determining tissue-resident DC mobility to draining LN and 
efficiency of T cell polarization. Indeed, dDCs acquire mobility 
after subcutaneous injection of Th1-specific adjuvants as CpG 
and LPS, but not with Th2-specific ones, as papain, or follow-
ing contact sensitization with dibutyl phthalate and acetone. 
Moreover, dDCs are sufficient to promote Th1 and Th2 responses, 
while LCs are only supportive of Th1 (107). This evidence under-
score that, in addition to the polarizing capabilities of adjuvants, 
also the targeted DC subset must be considered to elicit specific 
adaptive immunity. Indeed, Antonialli and colleagues reported 
differential immune responses when CD8α+ and CD8α− DCs 
were targeted with the same ag and adjuvant, either CpG ODN 
or Flagellin (108).

In addition, to enhance the efficacy of vaccination, the coinci-
dent delivery of ag and PRR adjuvants to APCs plays a crucial role. 
Encouraging evidence highlights the importance of conjugation 
of ag with PRR adjuvants, since it improves ag uptake, humoral 
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FiGURe 2 | Strategies of dendritic cells (DCs) targeting. Diverse approaches to deliver antigens to DCs are shown. (A) Recombinant antibody or single-chain 
variable fragment (scFv) specific for DC receptors are chemically conjugated with antigen and adjuvant molecules. scFv reduced dimension confers them higher 
tissue-penetrating properties. (B) Viral vector-based vaccines or naked DNA exploit the encoding machinery of DCs to translate antigens, adjuvants but also 
co-stimulatory molecules (“signal 2”) and cytokines (“signal 3”) increasing the activatory profile of DCs. Naked DNA could be delivered conjugated to nanoparticles 
(NPs) and liposomes. (C) Polymer-based NPs display physical and chemical properties that allow encapsulation or conjugation of antigens and adjuvants as well as 
ligands for specific DC receptors. Different polymer compositions provide diverse properties and dimension, allowing easy diffusion and/or retention in lymph node. 
(D) Liposomes allow both the encapsulation and intercalation in the phospholipid bilayer of antigens and adjuvants, depending on their chemical properties, as well 
as the functionalization of the surface with ligands of DC receptors.
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and cellular responses when compared to vaccination with ag co-
delivered with free TLR ligands (109). These findings strengthen 
the notion that adjuvants are formidable chiefs in shaping 
immune responses and must be selected for the outcomes they 
promote, in chemical association to the ag of interest.

NOveL STRATeGieS OF vACCiNATiON: 
MULTiTASKiNG CARRieRS

The traditional vaccination approaches consisted in the admi-
nis tration of live or attenuated micro-organisms. Up to now, several 
innovative strategies have emerged to address the need for effi-
cient vaccines, especially against diseases that are critical to treat, 
as cancer and the infectious diseases already mentioned. The 
main purpose is to convey ag, adjuvant, and targeting-molecule 
in a unique compound to increase the efficacy of the ag-specific 
immune response. To address this issue, different approaches 
have been explored or are currently under investigation, as 
shown in Figure 2.

Recombinant antibody (rAb) represents a feasible option. 
This approach exploits the possibility to chemically fuse pep-
tide ag, adjuvant, and targeting-molecule to Ab to tailor DCs 
targeting (110–112). In addition to rAb, single-chain fragments 
variable (scFv) revealed to be an appealing strategy due to their 
reduced size and enhanced infiltration into tissues, as in solid 
tumors (113).

Other approaches involve the use of nano-carries as vehicles. 
The most promising solution to target phagocytes is indeed the 
use of particulate materials (114, 115). Nanoparticles (NPs) are 
the best candidates as delivery system, since they can be manipu-
lated to efficiently and predominantly target phagocytes. This 
is possible, thanks to the versatility of NPs due to: (i) the large 
amounts of existing different nanomaterials; (ii) the possibility 
to adjust their size, morphology, and deformability with great 
precision; (iii) the possibility to load virtually any different type 
of drug molecules (116).

Viral vectors-based vaccines or virus-like particles rely on 
the intrinsic capability of viruses to infect cells and exploit 
their protein-encoding machinery, allowing expression in the 
cytosol of the engineered plasmid-genes, as ag, costimulatory 
molecules, cytokines, and adjuvants, providing the bases for 
strong CTL induction (117). On the other hand, naked DNA 
can be directly injected or conjugated to nano-carriers to favor 
specific targeting. The easy designing of nano-carriers-based 
vaccines along with their multi-component loading feature 
improve targeting of specific subsets (118) and shape immune 
responses (119, 120), favoring their application in several fields. 
In a cancer setting, nano-carriers allow to avoid killing of healthy 
cells, by delivering tumor ags or DNA encoding these peptides 
to APCs, inducing specific antitumor responses. Indeed, NPs 
allow endocytosis and MHC presentation on both class I 
and II (121) eliciting broad adaptive immunity, even against 
cancer cells. Rosalia and colleagues designed a polymer-based 
biodegradable poly(lactic-co-glycolic acid) PLGA NPs loaded 
with ag, Pam3CSK4, and Poly(I:C) and coated with an agonistic 
αCD40-monoclonal Ab (NP-CD40). This multi-functional 
strategy resulted in efficient and selective delivery of NPs to DCs 
in vivo upon s.c. injection and induced priming of CD8+ T cells 
against tumor associated ags, increasing tumor-bearing mice 
survival (109). PLGA NPs carrying the poorly immunogenic 
melanoma-derived antigen tyrosinase-related protein 2 along 
with 7-acyl lipid A, manage in breaking the immunotolerance 
acting against tumor-antigens. Indeed, administration of the 
abovementioned NPs resulted in antigen-specific CD8+ CTL 
responses, characterized by IFN-γ production and increase of 
pro-inflammatory cytokines in the tumor microenvironment 
(TME) (59). Another nano-carrier-based approach relies on 
liposome, self-assembled vesicles composed by lipid bilayers 
with high functionalizing properties. Besides, Maji and col-
leagues reported that after uptake by DCs, cationic liposomes 
localize in endosomal compartments that allow ag presenta-
tion preferentially on MHC I but do not exclude MHC II ag 
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TABLe 1 | Targeted receptors for tailored ags delivery.

Receptor expression Activity Clinical trials

CLEC9A C-type lectin receptor Human: CD11c+ CD141+ XCR1+ conventional DCs (cDCs)
CD14+ CD16- monocytes
MOUSE: plasmacytoid DCs (pDCs)
XCR1+ CD8α+ lymph node-resident dendritic cells (DCs)

Major histocompatibility 
complex (MHC) class I
MHC class II
Ag presentation

–

DEC-205 Endocytic receptor Human: cDCs, monocytes, B cells
MOUSE: CD8α+ DCs
Dermal/interstitial DCs
Langerhans cells

MHC class I
MHC class II
Ag presentation

NCT03358719: recruiting
NCT01834248: completed
NCT02166905: recruiting
NCT01522820: completed

CD40 Transmembrane glycoprotein
Surface receptor

Human/mouse: cDCs and pDCs, monocytes, B cells,  
endothelial cells

DCs activation NCT03329950: recruitinga

NCT02706353: recruiting
NCT03214250: recruiting
NCT03389802: recruiting
NCT03418480: recruiting
NCT03123783: recruiting

aThere are currently more than 30 clinical trials involving the anti-CD40 antibody. Here, the more recent trials regarding DCs-based vaccination strategies are reported.

6

Gornati et al. New Vaccination Strategies

Frontiers in Immunology | www.frontiersin.org June 2018 | Volume 9 | Article 1484

presentation (122), suggesting a crucial role in antitumor or 
antiviral immunity supported by Th responses.

In addition to the use of NPs, targeting DC-specific receptors 
has become an attractive strategy for vaccine development due 
to the enforced efficiency of immune responses when compared 
to generic-delivering approaches. Here, we report the more 
characterized DCs receptors, currently under investigation in the 
scenario of tailored-vaccination, as shown in Table 1.

CLEC9A or DNGR1 is a C-type lectin receptor that medi-
ates endocytosis, but not phagocytosis, with low pH endosomes 
promoting the drift toward cross-presentation. Importantly, 
CLEC9A binding of antigens induces antigen presentation 
on both MHC I (cross-presentation) and MHC II. It is highly 
and specifically expressed on CD11c+CD141+XCR1+ cDCs and 
CD14+CD16− monocytes in human and in murine pDCs and 
XCR1+ CD8a+ LN resident but not CD103+XCR1+ migrating DCs 
(123, 124). Indeed, CD141+XCR1+ DCs constitute the human 
counterpart of CD8α+ XCR1+ murine DCs (125). They share 
XCR1, the receptor of XCL1. XCL1 is released by activated T cells 
and the axis XCR1–XCL1 is necessary for robust CTL responses 
(126). CD141+XCR1+ DCs are the main cross-presenting DCs 
in human, thus they appear promising for CTL-mediated 
responses, in tumors and viral infections (127). This specific 
subset is characterized by the expression of TLR3 that may be 
exploited to fully activate CLEC9A+XCR1+ DCs since antibody 
binding of CLEC9A leads to its rapid internalization but not 
TLR-pathway activation, preventing pro-inflammatory cytokine 
production and full maturation of DCs (127). Conversely, 
Caminschi and Li independently demonstrated the potentiality 
of targeting Clec9A that resulted in enhanced humoral immu-
nity independently of TRIF-MyD88 or TLR4 pathway, even in 
the absence of adjuvants (128, 129). Targeting Clec9A induces 
enhanced CD4+ T cell proliferation in vivo, which supports B cell 
immunity, when compared to the targeting of another endocytic 
receptor, discussed later, DEC-205, independently of the use 
of adjuvants as CpG (130). Some years later, different authors 
demonstrated that this strong humoral response is endorsed 
by the establishment of follicular T helper cells memory, even 

upon vaccination with glycoprotein D of HSV, both in mice and 
non-human primates (128, 131, 132). These promising results 
were confirmed also in a human in vitro setting, on CD141+ DCs 
(133). Finally, the efficacy of targeting Clec9A has been evaluated 
in the delivery of poorly immunogenic virus-derived antigens. 
Park and colleagues managed in conferring specific humoral 
response, protective upon reinfection (134). Thus, exploiting the 
specific expression of this receptor on the most specialized DCs 
in cross-presentation in combination with TLR3 ligands, will 
enhance antiviral and anticancer responses (135), combined 
with robust humoral immunity.

DEC-205 or CD205 is a 205  kDa endocytic receptor that 
has a cysteine-rich domain, a fibronectin type II domain, 
and 10 C-type lectin-like domains, as well as an internaliza-
tion sequence in its cytoplasmic tail (136). Thus, it mediates 
cross-presentation through clathrin- and dynamin-dependent 
receptor-mediated endocytosis. Indeed, it is expressed by the 
most professional cross-presenting DCs, the CD8α+ DCs sub-
type, while CD8α− DCs display very low level of this receptor. 
In addition, DEC-205 is found on dermal/interstitial DCs and 
LCs (137), thus guaranteeing ag delivery to both skin-resident 
and LN-resident professional APCs. In humans, DEC-205 
is shared among cDCs, monocytes, and B  cells, while pDCs, 
granulocytes, NK cells, and T  lymphocytes express low levels 
of this receptor (138). In addition, DEC-205 regulates molecule 
recycling through late endosomes, promoting also MHC II 
presentation to CD4+ T  cells in LCs (139). Steinman and 
Nussenzweig have addressed this molecule to improve vaccine 
efficacy since 2000 (140). By taking advantage of anti-DEC-205 
rAb conjugated to OVA peptide, they demonstrated that s.c. 
injections of this compound lead to a strong IFN-γ and IL-2-
mediated immunity only when DCs activation was supported 
by αCD40 mAb, otherwise, tolerance against the OVA peptide 
occurs (141). Indeed, diversely from PRR agonists, antibody 
crosslinking the DEC-205 does not induce DCs maturation 
(142). Furthermore, few years later, the combined strategy of 
anti-DEC-205 and αCD40 was reported to confer protection 
against melanoma and intranasal influenza infection (112). 
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In a viral setting, anti-DEC-205 rAb chemically coupled with 
HIV p24 gag protein tested in  vitro on blood cells derived 
by 11 HIV-infected donors has revealed efficient expansion 
of IFN-γ-producing CD8+ T  lymphocytes (143) from all the 
different donors. This indicated that DCs and CD205 can lead 
to the generation of different peptides from a single protein. 
Moreover, vaccines based on the filamentous bacteriophage fd 
presenting an αDEC-205 scFv, efficiently induce DCs matura-
tion via the activation of the TLR9-MyD88 pathway (144), 
without adjuvants and further elicit potent antitumor responses 
when compared to non-tailored ag delivery (145). Intriguingly, 
DEC-205, orphan of a specific ligand, has been proven to be 
necessary for CpG uptake and eventual DC activation (146).

CD40 is a molecule belonging to the TNF receptor family, 
expressed by several cell types and among these, DCs. It has 
emerged as a receptor for the human chaperone Heat shock 
protein (Hsp) 70 that mediates the internalization of peptides 
bound to Hsp70 itself (147). Moreover, upon activation, T cell 
transiently expresses CD40L allowing cross-linking of CD40 
on DCs and completing their maturation. From these notions, 
CD40 appeared an interesting molecule to target for DC-based 
vaccination strategies. Indeed, by engineering antibody 
chemical structure, Schjetne and colleagues demonstrated the 
efficacy of CD40 engagement conferring protection against 
myeloma- and lymphoma-derived ags (148). Moreover, through 
the co-administration of two DNA-based vaccines encoding 
either CD40 and the foot-and-mouth disease-derived ags, the 
transient increase of endogenous αCD40 antibodies allows 
an efficacious DCs activation and an efficient development of 
ag-specific T  cell immunity, if compared to the administra-
tion of DNA encoding ags alone (149). Further promising 
results have been obtained in a vaccine against cyclin-D1 that 
is overexpressed by mantle cell lymphoma (MCL). Thanks to 
algorithm analysis, Chen and colleagues identified three cyclin-
D1-derived peptides that efficiently bind to MHC class I of DCs, 
potentially overexpressed in all MCL patients. By generating a 
rAb targeting CD40, they efficiently delivered these tumor asso-
ciated ags to DCs and mounted IFN-γ-specific T cell responses 
in patients-derived peripheral blood mononuclear cells (150). 
Thus, CD40 represents a specific DC-targeting molecule that 
has been used in combination with other targeting approaches 
to support specific DCs activation, avoid tolerance, and induce 
robust T cell immunity (110, 141).

DCs AND CANCeR

When evaluating vaccination strategies for cancer patients, it is 
compulsory to take into account one of the hallmarks of cancer: 
avoiding immune destruction by promoting tolerance and dis-
arming the immune system (5). The orchestration of antitumor 
responses involves multiple protagonists and mediators, among 
these, cytotoxic T  cells and NK  cells, whose activation is sup-
ported by DCs (151). Furthermore, DCs-based vaccines has 
emerged as more efficient in promoting T  cell immunity if 
compared to peptide-based vaccination approaches (152). Thus, 
much effort has been made to improve strategies of DCs-based 
vaccination in neoplastic diseases, to ameliorate the prognosis or 

eradicate both primary tumor and metastases. Up to now, two 
different approaches have been addressed: ex vivo generation of 
autologous pulsed DCs and direct in  vivo targeting of DCs, as 
previously discussed. The former strategy provides a better con-
trol of the maturation and activation state of DCs and a specific 
load of the ag to the selected DCs subset. Despite this, intense 
work is needed to generate this vaccine, since it is personalized for 
each patient and only few subsets of DCs are feasibly generated 
in vitro or collected ex vivo, limiting the access of ags to other 
more functionally driven subsets. Diversely, the in vivo targeting 
methods allow the generation of large amount of vaccine in a 
one-step procedure, and the targeting of diverse DCs subsets in 
their natural environment.

Once the DCs-based vaccine is generated, the efficacy of 
antitumoral responses has to be evaluated. It is mainly related 
to (i) the capability to establish specific antitumor-associated ag 
(TAA) immunity and (ii) the overcome of the tolerogenic status 
promoted by the TME.

To select highly immunogenic ags, multiple solutions have 
been tested: whole tumor lysate or killed tumor cells, synthetic 
long peptides (SLPs), full length proteins, transfection or elec-
troporation with DNA or mRNA coding for TAA, transduction 
with lentiviral vectors and neoantigens. The availability of an 
elevated number of antigens through the incubation of DCs with 
whole tumor lysates or autologous tumor cells allows the pres-
entation of multiple epitopes, loaded on both MHC class I or II, 
which leads to Th and cytotoxic responses. Indeed, several clini-
cal trials are currently evaluating the benefits obtained by using 
this approach (NCT01875653; NCT00045968; NCT02496520). 
SLPs are 28–35 aa long peptides cross-presented by DCs (153), 
currently under investigation in both preclinical and clinical 
setting. Compared to short synthetic peptides, the use of SLPs 
lacks the necessity to know the patients’ HLA haplotype, thus 
permitting their full exploitation in a larger cohort of people. 
Moreover, SLPs administration to DCs leads to an enhanced 
CD8+ T cells activation since, once engulfed, they rapidly escape 
from the endolysosome to follow the path of MHC class I pres-
entation, fundamental in antitumor responses. Indeed, SLPs and 
DCs-based vaccines are showing promising results in terms of 
safety and immunogenicity, in both preclinical and clinical set-
tings (154). They have gained attention in the context of human 
papilloma virus cervical (155), ovarian (156), and colorectal 
cancer (157, 158), displaying immunogenic capacities, in terms 
of antibody production and CD4+ and CD8+ T cell activation, 
when delivered with adjuvants, as poly ICLC, Montanide-ISA-51 
(NCT02334735), and IFNα. When comparing SLPs and full 
length proteins, it has emerged that DCs process SLPs better 
that full length protein, due to the slower processing route the 
latter display (154). Concerning transfection or electroporation 
of DCs with mRNA or DNA encoding, not only for TAA but 
also for costimulatory molecules and cytokines, to enforce 
adaptive immunity, has proven to be efficacious in inducing 
antitumor CD4+ and CD8+ T  cells expansion, mediated by 
DCs targeting (159). A similar approach regards in vivo lenti-
viral transduction of DCs, which displays versatility for gene 
delivery and efficient transduction for non-dividing cells, as 
DCs. Indeed, Bryson et al. conceived a multifunctional vaccine 
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composed by a modified lentivirus, whose glycoproteins can 
directly target DC-SIGN on DCs, loaded with breast cancer ags, 
alpha lactalbumin, and erb-b2 receptor tyrosine kinase 2. Single 
injections of the compound provided tumor self-ags-specific 
CD8+ T  cell immunity, reducing tumor growth (160). Despite 
the improvements derived by these advanced strategies, in the 
last years, neoantigens are becoming more and more appealing 
(161). During tumor progression, cancer cells give rise to neo-
antigens, novel ags different from the self-tumor ags, derived by 
the tumor-specific mutations. Therefore, prediction tools, RNA 
mutanome, and deep-sequencing have allowed the identification 
of specific non-self-ags that are fundamental in strong T  cell 
immunity (162–164). Indeed, several clinical trials are cur-
rently investigating the potential of neoantigens (NCT0235956; 
NCT01970358; NCT02149225; NCT02348320; NCT02316457). 
As emerged, different strategies of ags selection have been 
explored and, even though one strategy may result in a more 
enforced antitumor immunity if compared to another, still the 
issue of the TME negative influence on the immune system has 
to be faced. Indeed, the TME actively suppresses the activation 
of the immune system. Tumor cells secrete immunosuppressive 
cytokines, as vascular endothelial growth factor (165, 166), mac-
rophage colony-stimulating factor (167), transforming growth 
factor β (TGF-β) (168), and IL-10 (169, 170). Even though some 
of these cytokine display controversial roles, depending on the 
pathological context, they generally promote DCs tolerogenicity, 
by limiting their activation and increasing their expression of 
pro-tumor molecules, such as programmed cell death 1 (PD-1) 
and indoleamine 2,3-dioxygenase (IDO). Therefore, tolerogenic 
DCs lead to T cells anergy, Tregs expansion, and Th1 responses 
inhibition. Phenotypical characterization of immune cells 
isolated from breast cancer patients, highlighted the functional 
alteration in DCs, T, and NK  cells in promoting antitumor 
responses (171). Furthermore, tumor cells retain DCs into the 
TME, preventing their migration to draining LNs and promoting 
metastatization (172). To address this issue, some ex vivo gener-
ated DCs-based vaccines are directly administered intranodally, 
as for the CD1c+ DCs pulsed with HLA-A2.1-restricted tumor 
peptides administered to patients with stage IV melanoma 
(NCT01690377), which generated tumor-specific CD8+ T cells 
responses and further improvement of survival (173). To reduce 
the tolerogenic influence of the TME on DCs, the positive role 
of GM-CSF in improving DCs survival and responsiveness is 
currently exploited in some clinical trials like a phase I/II trial 
with a DC/tumor cell fusion vaccine administered in association 
with GM-CSF to treat renal cancer (NCT00458536). Similarly, 
others are focusing their attention on FMS-like tyrosine kinase 
3-ligand (FLT3L), another crucial DCs growth factor, in combi-
nation with other compounds (NCT01811992; NCT01976585; 
NCT02129075; NCT02839265). FLT3L has, indeed, been shown 
to increase the efficacy of proteins- and RNA-based vaccines, 
due to a maturation effect on DCs (174–176). Additional efforts 
made to counteract the tolerogenic influence of the TME include 
the use of PD-1 and IDO inhibitors. Co-administration of anti-
PD-1 molecules increases the efficacy of DCs-based vaccines, 
in terms of enforced intratumoral CD8+ T  cell responses and 
trafficking of CD8+ memory T cells, as observed in a preclinical 

model of glioblastoma (177). In parallel, several clinical trials are 
aiming at evaluating the efficacy of DCs-based vaccines com-
bined with anti-PD-1 agents (NCT03014804; NCT03325101; 
NCT03035331). The other tolerogenic marker addressed in cancer 
immunotherapy and DCs-based vaccine is IDO. Indeed, silenc-
ing approaches to reduce the expression of IDO in DCs for vac-
cination in preclinical models, have resulted in decreased T cell 
apoptosis, reduced numbers of Tregs, decreased tumor size when 
compared to mice that had received ags-loaded DCs without 
IDO silencing (178). IDO inhibitors in DCs vaccination are 
currently being tested in phase II clinical trials (NCT01560923; 
NCT01042535).

All these approaches have explored different scenarios to 
evaluate the more efficient therapeutic combination that seems 
to move toward personalized vaccinations for cancer patients.

CONCLUDiNG ReMARKS

In this review, we have underscored the crucial role of DCs 
in orchestrating immune responses and; therefore, the great 
interest in targeting these cells in novel vaccination strategies. 
We have reported examples of different approaches aimed at 
amplifying the efficiency of immunizations against cancer or 
infectious diseases. Indeed, the urgent need of vaccines is as 
relevant as before because of newly emerging diseases with inef-
fective current therapies. Deepen the mechanisms underlying 
these pathologies may provide cues on the more appropriate 
design of vaccines and by merging diverse tailoring strategies 
we could enforce the immune system. As a matter of fact, it 
is suggested to act on different fronts when designing new 
vaccines, since several factors must be considered: (i) target-
ing DC subsets specialized in initiating the desired cellular or 
humoral immunity/memory; (ii) adjuvants that strengthen and 
drive T and B cell responses; (iii) fine and optimized selection 
of the immunogenic ags to drive enforced responses; (iv) novel 
strategies to convey ags and adjuvants to DCs; (v) route of 
administration. Starting from these notions, in the last decades, 
enormous efforts have been made to tailor vaccination strate-
gies. New technologies as well as recent advances have allowed 
extreme flexibility in designing vaccines and shaping the fol-
lowing outcomes. Nowadays, researchers do have smart tools to 
manipulate immune responses with prophylactic or therapeutic 
vaccinations. The abovementioned findings pave the way for 
possible therapeutic approaches, theoretically applicable to 
all pathological contexts. Despite this encouraging evidence, 
several limitations or issues still have to be overcome. Indeed, 
more than a few vaccines do not pass phases I of clinical trials 
either for toxicity issues and lack of immunogenicity in some 
individuals. What is missing? Part of the answer to this ques-
tion could sit on human genetics and population variability. 
Syngeneic animal models are ideal settings in which the systems 
are pushed although they constitute a necessary and useful step 
preceding clinical trials.

Moreover, when translating vaccine testing from in  vivo 
experiments on animals to ex vivo on human cells, often the 
opted choice are blood human cells, while in most of the cases 
vaccines will be administered in the skin, having a complete 
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different DCs-based milieu (15). Crucially, Idoyaga and col-
leagues dissected the interindividual variability in skin-resident 
DCs, stressing the need of shedding light on the effects that 
genetics and environment imprint on DCs. It is compulsory 
to decode the complex scenario of human diversity to provide 
personalized therapies with increased efficacy. In the Omics 
era, systems biology and computational modeling integrate 
huge data-sets to address the urgent need of information on the 
global behavior. Indeed, Genome-wide association studies have 
provided insights into human genetics variants associated to the 
immunogenicity of vaccines (179, 180). Therefore, integration 
of “wet” evidence and “dry” notions may fasten the designing 
process and provide both efficient vaccine strategies and their 
predictive efficacy.
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