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Kinetoplastida trypanosomatidae microorganisms are protozoan parasites exhibiting 
a developmental stage in the gut of insect vectors and tissues of vertebrate hosts. 
During the vertebrate infective stages, these parasites alter the differential expression of 
virulence genes, modifying their biological and antigenic properties in order to subvert 
the host protective immune responses and establish a persistent infection. One of the 
hallmarks of kinetoplastid parasites is their evasion mechanisms from host immunity, 
leading to disease chronification. The diseases caused by kinetoplastid parasites are 
neglected by the global expenditures in research and development, affecting millions 
of individuals in the low and middle-income countries located mainly in the tropical and 
subtropical regions. However, investments made by public and private initiatives have 
over the past decade leveraged important lines of intervention that if well-integrated 
to health care programs will likely accelerate disease control initiatives. This review 
summarizes recent advances in public health care principles, including new drug dis-
coveries and their rational use with chemotherapeutic vaccines, and the implementation 
of control efforts to spatially mapping the kinetoplastid infections through monitoring of 
infected individuals in epidemic areas. These approaches should bring us the means to 
track genetic variation of parasites and drug resistance, integrating this knowledge into 
effective stewardship programs to prevent vector-borne kinetoplastid infections in areas 
at risk of disease spreading.
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iNTRODUCTiON

Protozoan infections are one of the most devastating causes of human death worldwide. These 
infections are caused by protozoan parasites, microorganisms originally classified in the Kingdom 
Protozoa, which comprises a diverse group of unicellular eukaryotes (1). Although the majority of 
the protozoan exists as free-living microorganisms in different aquatic and humid environments, 
there are many species living in association with host organisms, causing severe human diseases 
(1, 2). This is the case of Kinetoplastid parasites, a group of flagellated protozoans that parasitize 
most plant and animal species; and cause human diseases with public health threats and social- 
economic effects (3).
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FiGURe 1 | Kinetoplastid transmission cycles. The life cycles of kinetoplastid protozoan parasites show development stages in both invertebrate and vertebrate 
hosts. In leishmaniasis, promastigotes (flagellate and mobile forms) are inoculated into the skin along with the saliva of phlebotomine vectors (Diptera: Psychodidae). 
In the vertebrate hosts, they are maintained inside phagocytic cells under the proliferative form, amastigotes. When ingested by insect vectors, the amastigote forms 
are transformed into promastigotes which multiply in the intestinal tissue, then migrate as metacyclic promastigotes into the stomodal valve to be later injected into 
the skin during blood meal. In Chagas’ disease, the etiologic agent Trypanosoma cruzi is transmitted to vertebrate hosts as a metacyclic trypomastigote forms by 
infected triatomine bugs (Triatominae: Reduviidae) during blood feeding. Once in the vertebrate, trypomastigotes differentiate into intracellular amastigote forms. 
These proliferative stages multiply by binary division, and then differentiate into trypomastigotes, which are released into the bloodstream. When the triatomine bug 
takes a blood meal from an infected vertebrate host containing circulating parasites, the ingested trypomastigotes forms to differentiate into epimastigotes in the 
medium intestine of the vector, multiplying by binary division, after which they differentiate into infective metacyclic trypomastigote forms. In sleep sickness or human 
African trypanosomiasis, the parasite Trypanosoma brucei is transmitted by the bite of the tsetse fly (Glossinidae: Glossina). The parasite exists in the saliva of the 
invertebrate vector and is injected when the insect feeds on human blood. Unlike Trypanosoma cruzi, trypomastigotes of T. brucei do not invade host cells and, 
therefore, does not differentiate into intracellular amastigote forms. Instead, T. brucei parasites multiply as trypomastigotes in the blood of infected vertebrate host. 
The parasite cycle continues when a new vector feeds on a contaminated individual. In the invertebrate vector, the parasites differentiate into proliferative 
epimastigotes forms, invading the insect salivary glands to continue the cycle.
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The kinetoplastids are a monophyletic group related to the 
euglenids. These microorganisms are distinguished from other 
protozoan groups mainly by the presence of kinetoplasts, a granule 
that contains "kDNA," a DNA located in the mitochondria, asso-
ciated with the base of the flagella (3). Three distinct kinetoplas-
tids cause human disease: Trypanosoma brucei [human African 
trypanosomiasis (HAT) or sleeping sickness], Trypanosoma cruzi 
(Chagas disease), and Leishmania spp. (leishmaniasis) (3, 4), 
which are still recognized as neglected tropical diseases (NTDs) 
by the World Health Organization. These two genera of parasites 
are found in the blood and/or tissues of infected humans and  
are transmitted by arthropod vectors (Figure 1) (5).

Although the advances in the development of drug therapies 
and vector control agents against kinetoplastid diseases (6), new 
strategies are required for global elimination of epidemies. The 
main limiting efforts for this accomplishment obviously relies on 
the global investments in R&D for these NTDs when compared 
to other diseases with higher levels of financial support, such as 
malaria, tuberculosis, and HIV, known as “big three” (7). The ana-
lysis of the global sums of expenditures for each of these diseases, 
and their correlations with the social impact indexes on public 
health indicates a correlation that goes far beyond the political 
question (8). Such correlation is proportional to the severity of 
each disease (Figure 2), as to the metric of the disability-adjusted 
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FiGURe 2 | Overall funding for research and development investment 
correlated with disability-adjusted life years, estimated from the Global 
Burden of Disease Study.
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life year (DALY), an index calculated as the sum of the years of 
life lost due to premature mortality of patients and the years lost 
due to disability for people living with the illness (9).

In spite of the low priority of the investments received, stud-
ies in the past decades have pointed out the paths for developing 
effective actions to control human kinetoplastid protozoan 
infections through a better understanding of the pathogen–
vertebrate host interactions during their life cycles, disease 
pathogenesis in the hosts, and methods that allow the diagnosis, 
even in the acute phase of the infection (3, 4). This has provided 
a better opportunity to prospect new therapeutic targets, more 
effective drug development approaches, and promising vaccines 
that, together, may combat these diseases more robustly in the 
near future (5).

TReNDS iN DRUG DeveLOPMeNT FOR 
KiNeTOPLASTiD iNFeCTiONS

Treatment approaches based on drug therapies in kinetoplastid 
infections are scarce and have been considered to be highly 
toxic (10). However, interest in research and exploration of new 
approaches has given a sign of change. Since kinetoplastid infec-
tions lead to chronic persistent diseases, it is critical that drug 
therapy interventions would be focused on the acute phase, with 
hopes of achieving complete eradication of disease transmission. 
To that end, it is necessary to establish technical procedures that 
allow early diagnosis of acute kinetoplastid infection (5). This 
intervention approach aims to act at a stage of infection in which 
pathogen has not yet established itself and is present with a low 
parasitism burden and few down modulatory mechanisms in 
place over the host immune responses (1, 11, 12).

In addition, a rapid and efficient intervention during acute 
phase of the infection, when the host is still under low tissue 
parasitism, decreases the chances of acquiring drug resistance 
(13, 14). In Chagas disease, benznidazole and nifurtimox have 
long been the only clinical treatment options for infection  
(15). However, progress has been made in the research of new 

promising drugs against the disease. E1224, a pro-drug of ravu-
conazole, has shown some efficiency in combating the disease 
(16). The results of the first phase 2 clinical trial in Bolivia, 
conducted by drugs for neglected diseases initiative, have shown 
satisfactory protective results for E1224. This drug was effective  
in controlling T. cruzi parasitism in infected patients. Further-
more, its use in combination with benzanidazole is more effective 
as compared to monotheraphy-based protocols (16).

To treat HAT, five drugs have been approved: pentamidine, 
melarsoprol, eflornithine, suramin, and nifurtimox (17). Penta-
midine and suramin are used in monotherapies in the early 
stage of T.b. gambiense and T.b. rhodesiense infections, whereas 
melar soprol is used for the second stage of the disease (18, 19). 
Nifur timox has been used since 2009 in combination with eflo-
rnithine, mostly in the second stage of T.b. gambiense infection. 
The combination therapy protocols for these two drugs have 
been improved, although there are still practical restrictions to 
their potential use in large-scale applications (20). Currently, new 
drugs designed to improve patient care are being considered to 
meet current elimination targets. Most of them have been opti-
mized to undergo clinical trials (17).

Fexinidazole and oxaborole SCYX-7158, are already being 
studied in clinical evaluation as oral therapies in phase IIb/III 
and phase I trials, respectively (21, 22). Other important R&D 
studies have focused on the virulence responses of the parasite. 
The cell surface of African trypanosomes (T. brucei spp.) is cov-
ered by a dense coat of glycoconjugates that play important roles 
in the evasion of host immune responses (23). New strategies 
in drug discovery against HAT aim the development of specific 
carbohydrate-binding agents capable of inhibiting the action of 
glycosyltransferases and glycosidases of the parasite, thus alter-
ing the nature of the parasite’s cell-surface glycans as a treatment 
target for sleeping sickness (24).

In leishmaniasis, a notable progress in the disease treat-
ment has been made in the preparation of new formulations of 
amphotericin B, using liposome carriers (25). In addition, new 
drugs have been extensively studied in clinical trials, although 
the effects of HIV co-infection in endemic areas contribute to 
drug unresponsiveness during therapies (26). The use of paro-
momycin, an aminoglycoside class antibiotic, has also been shown 
to be efficient at low cost as a first-line drug (27). Alternatively, 
studies have suggested the effective action of drugs that act on 
a broad spectrum against Leishmania parasites. This is the case 
of miltefosine, a drug that is also used in the treatment of dogs 
with leishmaniasis in Brazil (28). The miltefosine has an inhibi-
tory action on several biological pathways of the parasite, such 
as cytochrome C oxidase, synthesis of phosphatidylcholine, and 
disruption of parasite Ca2+ homeostasis (29–31).

In addition, drug discovery researches for kinetoplastids 
have benefited from investments made in the field of protozoan 
genomics. This is clearly seen in the use of data mining, annota-
tion, and analysis of Leishmania parasite genome that has lead to 
the creation of LeishCyc database (32). This systematic approach 
will allow a complete mapping of Leishmania transcriptomics, 
proteomics, and metabolomics enabling the development of 
new compounds that can be used in high-throughput screen-
ing approaches to search selective drugs against Leishmania  
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parasites (32). In fact omics-based analyses have facilitated the 
broadening of R&D researches in the field of drug development. 
Lipidomics analyses have yielded the characterization of lipid 
structures, protein lipidation pathways in post-translational modi-
fications, and their putative functions for kinetoplastid parasites 
(33, 34). This knowledge will allow the search for new classes of 
anti-parasitic pharmaceuticals.

ReSeARCH AND DeveLOPMeNT OF New 
vACCiNeS AGAiNST KiNeTOPLASTiD 
PARASiTeS

The major challenge in the preventive control of kinetoplastid 
infections and other neglected tropic infectious diseases is 
undoubtedly the implementation of low-cost vaccines for public 
health programs in affected countries, most of them were low- 
and middle-income countries (5, 35). This accomplishment 
would enable to structure intervention actions in health care at 
the level of mass treatment programs, thus avoiding disease re- 
emergence. To reach this ideal scenario, there are serious social-
political obstacles to overcome in order to ensure the development 
of clinical tests. The most incisive limitation is unquestionably 
economic, resulting from a scarce financial incentives and market 
failures in view of the geopolitical areas where epidemics occur 
(35). Such constraints are likely to arouse less interest from fina-
ncial and pharmaceutical institutions in the market development 
strategies for vaccines against NTDs in general.

There are no licensed vaccines for kinetoplastid infections 
yet, reinforcing the need for their development, particularly in 
countries where they are epidemic. Most of the ongoing vaccine 
studies have been conducted at the level of basic research (5). 
Particularly, recent advances in the construction of manipulative 
parasites through genome engineering using CRISPR/Cas9 and 
Cre recombinase have been dedicated to reprogramming their 
genome, allowing the identification of regulatory genes associ-
ated with the cell fates in the host–parasite interplay (36). These 
critical virulence genes represent good candidates to be studied 
as vaccine targets.

Interesting, some kinetoplastid vaccines undergoing clinical 
trials are promising, since they are cost-effective and show long-
term protection against both cutaneous and visceral leishma-
niasis. This is the case of vaccines developed by the Infectious 
Diseases Research Institute, which has included protective 
Leishmania antigen epitopes in its vaccine formulations used 
in clinical trials (37, 38). Another prominent proposal comes 
from initiative studies in cooperation with National Institutes 
of Health. They present a more elaborate vaccine formulation, 
including protective recombinant Leishmania antigens in combi-
nation with sand fly salivary gland antigens, capable of inducing 
a more robust host immune response, considering vector–host 
interactions in the transmission of Leishmania parasites (39).

In the case of Chagas disease, initial studies have pointed out 
potential antigens in experimental mice models capable of induc-
ing host protective immune responses. They were also effective  
in reducing cardiac parasite loads and disease pathology, increas-
ing host survival indices. Those studies have proposed the use of 

Tc24 (calcium binding protein associated with flagellar pocket 
of T. cruzi) and TSA-1 (Trypomastigote surface antigen-1) by a  
global consortium (40–42). These are the first candidates to be 
used in vaccine formulations to prevent Chagas disease. Further-
more, the use of vaccines as a therapeutic approach to treat cha-
gasic patients has also been proposed (42).

KeY CHALLeNGeS TO KiNeTOPLASTiD 
PARASiTe CONTROL: iNTeGRATiNG  
New APPROACHeS iNTO  
eRADiCATiON STRATeGieS

To eradicate kinetoplastid infections in humans, we must gain 
a better understanding of variants of pathogens and their vec-
tors, the transmission models among their hosts, and efficacious 
preventive vaccine approaches, to understand and design strate-
gies to intervene in the real dynamics of disease spreading in 
epidemic areas (43). To achieve that, diagnostic tests capable of 
detecting infections in the acute phase, and accurate analysis of 
drug resistance in the parasite spreading are essential to trace a 
better correlation between variants of pathogens and the clinical 
spectrum of the disease. Another important step of intervention 
in the transmission cycles of vector diseases is regarding the 
application of health care models based on geographic informa-
tion system (GIS) projects and technologies (44). By using this 
system, we will be able to follow the infection cycle in terms of 
spatial data, geographical and geodatabases, which allows us 
to create mapping models to predict potential areas of risk for 
transmission of vector-borne diseases (45).

The GIS technology is able to compile multi-analysis related 
to public health data collected from endemic urban and wild 
areas, including analyses of disease dispersal, genetic variation 
of parasites, vector and host habitats, and their relationship with 
microclimates in affected areas. These metadata analyses can be  
correlated with geographic positioning system to establish inter-
ventions of potential infections, thus allowing for a rational use 
of medications to prevent the emergence of drug resistance in 
the context of disease surveillance (44, 45). Nowadays, diverse 
stochastic models are used as tools for estimating probability 
distributions of potential outcomes from the understanding of 
environmental and ecological networks involved in the cycles of 
vector-borne diseases. These geographic models have allowed 
disseminating critical information concerning public health sur-
veillance for endemic areas (Figure 3).

In kinetoplastid infections, spatial clustering using GIS tech-
nology when applied with accurate diagnostic test, analysis 
of the phylogenetic distribution of Leishmania spp. together 
with surveillance has been demonstrated to be of great value in 
predicting areas of risk. Epidemiological analysis of the trans-
mission cycles in Europe, and in recent kala-azar outbreaks in 
Nepal, Kenya, and Brazil, have helped to precisely define that the 
priority of intervention is in the vector control with the use of 
insecticides, in order to block the transmission cycle of disease in 
potential risk areas, identified to be priority to reduce the spread 
of infection (46–49).
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FiGURe 3 | Integrating new approaches into control strategies for kinetoplastid infections. In the past decade, genetic sequencing efforts and manipulation of 
trypanosomatid genomes have elucidated the characterization of virulence factors and parasite biochemical pathways involved in the pathogenesis disease.  
These advances allowed the design of new drug targets and therapeutic vaccines capable of reducing the parasitic burden thus controlling the infection and its 
clinical symptoms. The integration of these tools with epidemiological interventions into public health programs should yield substantial gains in controlling the 
transmission cycles of these vector-borne diseases. In this line, important studies in the field of vector control interventions have defined a multi-parametric analysis 
using geographic information system technologies to monitor spatial analysis of drug resistance and parasite polymorphisms to delineate epidemic-prone areas. 
Those studies have offered a powerful platform for prospecting and development of tools and technologies capable of effectively defining elimination programs  
in the control and eradication of kinetoplastid diseases.
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CONCLUDiNG ReMARKS

Neglected tropical diseases caused by kinetoplastid protozoan 
parasites are considered endemic in lower-middle-income eco-
nomies, although in many countries they are in process of 
epidemiological containment and elimination. However, the 
eradication of these diseases is a complex issue that must involve 
health management policies, coordinated among the affected 
countries, such as the development of public policies to combat 
parasitic diseases and improvement of social conditions. This 
will only be possible through the cooperation of local govern-
ments in a participatory search for bilateral relations between 
public and private interests capable of fostering translational 
studies that guarantee the access of the population to appropriate 
treatments. The development of accurate diagnosis capable of 
identifying these diseases in the acute phase of infection, as well 
as the identification of parasite polymorphisms and variants of 

drug resistance, together with application of health care models  
based on GIS technologies will enable both preventive and thera-
peutic actions based on new generations of drugs and vaccines 
currently developed for these neglected diseases.
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