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Toll-like receptor 9 (TLR9) belongs to the group of endosomal receptors of the innate 
immune system with the ability to recognize hypomethylated CpG sequences from DNA. 
There is scarce information about TLR9 expression and its association with the circadian 
cycle (CC). Different patterns of TLR9 expression are regulated by the CC in mice, with 
an elevated expression at Zeitgeber time 19 (1:00 a.m.); nevertheless, we still need to 
corroborate this in humans. In systemic lupus erythematosus (SLE), the inhibitory effect 
of chloroquine (CQ) on TLR9 is limited. TLR9 activation has been associated with the 
presence of some autoantibodies: anti-Sm/RNP, anti-histone, anti-Ro, anti-La, and anti-
double-stranded DNA. Treatment with CQ for SLE has been proven to be useful, in part 
by interfering with HLA-antigen coupling and with TLR9 ligand recognition. Studies have 
shown that TLR9 inhibitors such as antimalarial drugs are able to mask TLR9-binding sites 
on nucleic acids. The data presented here provide the basic information that could be 
useful for other clinical researchers to design studies that will have an impact in achieving 
a chronotherapeutic effect by defining the ideal time for CQ administration in SLE patients, 
consequently reducing the pathological effects that follow the activation of TLR9.
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iNtrODUctiON

The main role of the immune system is to identify and eliminate health threats through mechanisms 
of both adaptive and innate immunity (1, 2). The adaptive immune system specifically recognizes 
pathogens through T cell receptors and B cell receptors, while for the innate immune system, the use of 
pattern-recognition receptors (PRRs) has long been identified to help recognize pathogen-associated 
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molecular patterns (PAMPs) and damage-associated molecular 
patterns (3). Toll-like receptor 9 (TLR9) is a PRR that recognizes 
hypomethylated CpG-DNA sequences in bacteria, viruses, and 
host DNA, which favor TLR9 signaling when they are included 
in immune complexes (4–7). Moreover, it has been proposed that 
TLR9 might be responsible for the initiation of autoimmunity, 
particularly in systemic lupus erythematosus (SLE), where the 
production of autoantibodies against double-stranded DNA 
(dsDNA) is a common characteristic (8). Historically, the use 
of antimalarial drugs (AMDs) such as chloroquine (CQ) and 
its analogs has been shown to be effective in the treatment of 
autoimmune diseases such as SLE (9–11). In general, it has been 
suggested that CQ could inhibit the endosomal acidification that 
is necessary for intracellular antigen processing and presentation 
(12). However, for the inhibition of TLR9 activation, acidifica-
tion might not be the most important factor, since TLR9 requires 
contact with its ligand, and CQ has been shown to interfere by 
masking the TLR9-binding sites on the ligands. Therefore, this 
pathway has been described as one of the mechanisms through 
which CQ decreases the inflammatory response (13). It has been 
widely reported that cells and proteins of the immune system are 
regulated by the circadian cycle (CC) (14, 15); however, there are 
few studies that describe the impact of TLR9 circadian regulation 
and the therapeutic repercussions for SLE. This perspective deals 
with the evidence of TLR9 expression patterns related to CC 
and the interference of CQ in TLR9 activation, suggesting that 
in theory, it is possible to improve the benefit of CQ treatment 
based on its chronotherapeutic effect, and this might be exploited 
to reduce the activation of TLR9 that includes the production of 
autoantibodies and inflammatory cytokines in SLE. This infor-
mation will be useful to conduct future clinical studies to achieve 
the best treatment results with CQ.

tOLL-LiKe recePtOr 9

Toll-like receptor 9 identification occurred during homology 
structure studies on different Toll-Like Receptors (TLRs) (4, 16–18). 
TLRs are highly conserved proteins by means of positive selection 
induced via gene duplication (19–22). The human TLR9 (hTLR9) 
gene is localized on chromosome 3p21.3 and consists of two exons 
that encode for 1,032 amino acids (aa) (18). There are five reported 
isoforms of TLR9, produced by alternative splicing: TLR9A to 
TLR9E, with variable expression in B and T cells (18, 23, 24). The 
protein structure of TLR9 has three domains: (1) an extracellular 
domain with leucine-rich repeats that recognizes pathogens, (2) 
a single transmembrane domain, and (3) an intracellular toll-
interleukin 1 receptor (TIR) domain for signal transduction (25).

According to various studies, hTLR9 expression is predominant 
in the spleen, lymph nodes, tonsil, skin (keratinocytes), kidney, 
and peripheral blood leukocytes [dendritic cells (DCs), B  cells, 
macrophages, neutrophils, eosinophils, natural killer, and T cells] 
(26–34). In all of them, TLR9 elicits their activation after engaging 
PAMPs. Despite the typical intracellular localization of TLR9 in 
endosomes, two additional sites of expression were described: 
(1) the cell surface of human and mouse neutrophils, intestinal 
epithelial cells (IEC), mouse colonic tissue, and hepatocellular 
carcinoma cells (35–37) and (2) a soluble form in bacterial pleural 

effusions and human embryonic kidney 293 cells (Figure  1A) 
(38, 39). The different localizations of TLR9 possibly have a role in 
its function (40), a concept that will be discussed in detail in the 
following section.

tLr9: tHe PAtH tO eNDOsOMes  
FOr LiGAND iDeNtiFicAtiON  
AND ActivAtiON

Endosomes or phagosomes are cell structures that contain PAMPs  
derived from phagocytosed pathogens. Inside these structures 
is where TLR9 engages targets and elicits cell activation (41, 42). 
Importantly, in studies performed with laser scanning confo-
cal microscopy, it was found that before TLR9 interacts with 
endosomes or lysosomes, it is located in its full-length form 
(immature) inside the endoplasmic reticulum and/or the Golgi 
apparatus (GA) (43, 44) (Figure 1B). TLR9 is then translocated 
with unc-93 homolog B1 (UNC93B1), a facilitator protein, from the 
GA toward the cell surface, where it is associated with an adaptor 
protein complex 2 for internalization to endosomes (45–47). The 
binding between TLR9 and UNC93B1 depends on the presence 
of a specific sequence of aa located in the juxtamembrane region 
of TLR9. This finding became evident after the observation that 
mutated proteins with changes in the aa residues from Asp812 to Ser 
(D812S) and from Glu813 to Thr (E813T) in mice avoided the inter-
action between TLR9 and UNC93B1 and disrupted the continuous 
trafficking of TLR9 toward the endosome (48). There is still missing 
information as to whether this intracellular trafficking is required 
for other TLRs since, in the case of TLR7, for example, although it 
interacts with UNC93B1 protein, transportation from the GA to 
endosomes occurs without cell surface expression (46, 49). Once 
TLR9 is located in endosomes, it undergoes proteolytic cleavage 
performed by cathepsins (50, 51), generating a protein of 80 kDa, 
which is required for the adequate functioning of the receptor (52). 
Other proteolytic cleavage sites by cathepsins have been described 
in the aminoterminal region (NH31-723 aa) of TLR9, producing a 
protein of 100 kDa that lacks the transmembrane and TIR domains, 
i.e., a soluble form retained in endosomes that inhibits TLR9 sign-
aling (39). Importantly, the proteolytic function of cathepsins and 
other enzymes involved in the activation and signaling of TLR9 
within the endosome microenvironment are carried out at an 
acidic pH (5.0 ± 0.2) (50, 53, 54). It is clear that the endosomal pH 
is an important factor for the activation of TLR9; however, when 
referring to TLR9 being expressed on the cell surface, there are no 
conclusive studies on its function or form of activation. However, 
one study performed in human hepatocellular carcinoma cell lines 
concluded that the expression of TLR9 on hepatocyte cell surface 
promotes tumorigenesis and cancer progression by promoting cel-
lular proliferation and cell survival after receptor stimulation with 
CpG-oligodeoxynucleotides (CpG-ODNs) (55). Other studies sug-
gest that cell surface expression of TLR9 is a rescue mechanism for 
the activation of neutrophils when their ligands are not internal-
ized to endosomes or when intracellular TLR9 shows resistance to 
activation (35). Once endosomal TLR9 is sensitized by its ligand, it 
triggers MyD88-dependent signaling that induces the production 
of pro-inflammatory cytokines after activation of NF-kB (56–59).
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FiGUre 1 | Different locations of TLRs and the TLR9 signaling route. (A) (1) TLRs (and their respective ligand) expressed on the cell surface: TLR1/TLR2 (triacylated 
lipopeptides), TLR2/TLR6 (diacylated lipopeptides), TLR5 (flagellin), TLR4 (LPS), and TLR10 (unknown). (2) TLRs expressed in endosomes: TLR3 (ds-RNA), TLR7/
TLR8 (ss-RNA), and TLR9 (CpG-DNA). (3) TLR9 cell surface expression related to their signaling route and soluble form identified in pleural effusions and HEK 293 
cells, although its production and functions are unknown. (B) Before TLR9 is located inside the endosome, it can be identified in the ER, the GA, and lysosomes.  
(1) Inside the ER, the juxtamembrane region of TLR9 interacts with UNC93B1, a facilitator protein that allows the exit of TLR9 toward the cell surface or directly to 
endosomes (dotted blue line). (2) Once on the cell surface, TLR9 becomes associated with AP-2 for cell internalization through the interaction with phagosomes or 
endosomes. (3) In this location, TLR9 modifies its structure by the action of AEP and cathepsins generating a mature form (80 kDa) and a soluble form (100 kDa) 
without transmembrane and TIR domains, this form is retained in the endosome and prevents the activation of TLR9. Abbreviations: ER, endoplasmic reticulum;  
GA, Golgi apparatus; LPS, lipopolysaccharide; HEK 293, human embryonic kidney 293; UNC93B1, unc-93 homolog B1; AP-2, adaptor protein complex 2; AEP, 
asparagine endopeptidase; TLR9, toll-like receptor 9; TIR, toll-interleukin 1 receptor; LRR, Leucine-rich repeats.
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sLe, AMDs, AND tHe iNHiBitiON  
OF tLr9

Loss of immunological tolerance in SLE is responsible for the 
secretion of circulating autoantibodies against cellular compo-
nents such as nucleosomes, histones, ribonucleoproteins, DNA, 
and RNA helicase A, among others (60–63). One of the theories 
for autoantibody generation in SLE is the inefficient removal of 
cellular debris after apoptosis and neutrophil extracellular traps, 
two different processes in origin that could lead to an increased 
amount of free DNA and RNA when there is a defective removal 
of debris by macrophages (64–69). The principal autoantibodies 
associated with impaired clearance of cellular antigens in SLE are 
Sm/RNP, histone, Ro/La, and dsDNA (70–72). Artificial autoanti-
body production against nuclear antigens was described with the 
use of hydralazine. The mechanism proposed was the inhibition 
of the ERK signaling pathway with hydralazine, which caused 
a downregulation of the DNA methyltransferase 1 (DNMT1) 
mRNA, necessary for DNA methylation (73–75). It is important 
to acknowledge that hypomethylated DNA is a PAMP recognized 
by TLR9. In addition, both in humans and mice, TLR9 is involved 
in inflammation via the synthesis of inflammatory cytokines and 
activation of autoreactive B  cells, contributing to autoantibody 

production and the subsequent clinical development of autoim-
mune features (76). In murine models of lupus-prone and mixed 
bone marrow chimeras, it became evident that when there was a 
lack of expression of endosomal TLRs, autoantibody production 
was absent. In the absence of TLR7, mice failed to generate anti-
Sm/RNP autoantibodies and mice lacking TLR9 failed to produce 
anti-dsDNA autoantibodies (77, 78). The mRNA expression of 
TLR7 and TLR9 in SLE patients was associated with testing 
positive for anti-extractable nuclear antigens and anti-dsDNA, 
respectively (79). In addition, in kidney biopsies from patients 
with lupus nephritis (LN), there was evidence of TLR3, TLR7, and 
TLR9 overexpression with a positive correlation between TLR9 
expression and high activity, measured by renal-systemic lupus 
erythematosus (R-SLEDAI) (80). Furthermore, SNPs in the TLR9 
gene, such as rs352140, were associated with LN (81).

In recent studies performed on peripheral blood mononu-
clear cells (PBMCs) from SLE patients and healthy individuals, 
there was evidence of elevated expression of TLR9 protein and 
mRNA, with a positive correlation to antinuclear antibodies 
titers (82–84). Therefore, previous studies have proposed that 
the modulation or inhibition of TLR9 is a potential tool for SLE 
treatment (85, 86). CQ was introduced as one of the AMDs that 
later proved to be beneficial for rheumatic diseases, mainly owing 
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to an anti-inflammatory, immunosuppressive, and skin photo-
protective effect (9, 87, 88). The administration of AMDs in SLE 
patients is indicated when there are no major organ manifesta-
tions (89), without standardized time for the prescription of this 
drug. The lipophilic non-protonated form of CQ is diffused in a 
passive way to endosomes, lysosomes, or Golgi vesicles, where it 
is protonated and retained by ion trapping (90, 91), suggesting 
that this protonated form of CQ could change the acidic medium 
necessary for the proteolytic processing of TLR9 in endosomes. 
However, the cleavage of TLR9 is not inhibited by AMDs. 
Studies have shown that TLR9 inhibitors such as CQ are able to 
mask TLR9-binding sites on nucleic acids (13). It is important 
to explore whether CQ, in addition to the findings mentioned 
above, has other mechanisms related to the inhibition of TLR9. 
In this respect, in a mouse model of sepsis, CQ administration 
induced decreased expression of TLR9 in the spleen, which was 
associated with increased survival and reduction of renal injury; 
interestingly, the same effect was evident in the absence of TLR9 
(TLR9-deficient mice) (92). Nonetheless, this effect has not been 
acknowledged in autoimmune diseases or other immune system-
related pathologies.

tLr9 circADiAN BeHAviOr  
AND sYNcHrONiZAtiON WitH  
cQ ADMiNistrAtiON

The CC is known to regulate the main biological processes (physi-
ological, metabolic, and behavioral) in living organisms, originated 
by oscillations of light and dark conditions within a 24-h period, 
which is aligned with the rotation of the earth on its own axis 
(93–95). Recently, the importance of the CC has been highlighted 
by the recipients of the Nobel Prize in Physiology and Medicine 
2017: Jeffrey Hall, Michael Rosbash, and Michael Young. These 
investigators stated that the CC is a molecular genetic mecha-
nism that directs various functions in Drosophila melanogaster 
(96–100), and knowledge of this has had an impact on the clinical 
course and treatment of the human diseases. The master regulator 
of the CC is localized in the suprachiasmatic nucleus (SCN) of the 
hypothalamus and the activity of this regulator depends on the 
received light through photoreceptors in the retina of both eyes 
(101–104). The SCN is also synchronized with other peripheral 
circadian clocks such as the hypothalamic–pituitary–adrenal axis 
and the immune system (105, 106). The molecular mechanisms of 
these peripheral circadian clocks are autonomous and controlled 
by a transcriptional–translation feedback loop in clock genes 
(107, 108). Some of these clock genes include the heterodimer 
circadian locomotor output cycles kaput gene and brain and 
muscle aryl hydrocarbon receptor nuclear translocator 1 gene 
(Clock:Bmal1) (109–111). This heterodimer functions as a tran-
scriptional factor for the Period (Per) and Cryptochrome (Cry) 
genes (112, 113), whose proteins then become transcriptional 
repressors of the Clock:Bmal1 heterodimer, allowing repeating of 
the cycle (114).

An experimental analysis performed in mouse tissues (aorta, 
adrenal gland, brainstem, fat, cerebellum, heart, hypothalamus, 
kidney, liver, lung, and skeletal muscle) demonstrated that the 

patterns of gene expression in 43% of the entire mouse genome 
had a circadian behavior (115). Particularly when referring to 
the immune system and the CC, it was observed that the num-
ber and functions of leukocytes are controlled by clock genes; 
therefore, they are subjects of this CC (116). Furthermore, after 
analyzing mouse peritoneal macrophages by microarray, 8.1% 
of expressed genes in these cells had circadian control, including 
Bmal1, Clock, Per1, Per2, Cry1, and Cry2, among others (117). 
There is evidence that the expression of these clock genes in 
mouse macrophages, DCs, and B cells is observed at two peaks 
every 12-h under light–dark conditions (118). More specifically, 
the percentage of neutrophils and their phagocytic function 
increase after dark conditions, a phenomenon that occurs in a 
cyclic manner (119).

Silver et al. in 2012 published their results describing that peri-
toneal macrophages derived from Per2-mutant mice (mPer2Brdm1) 
that were subject to conditions of 12-h light/12-h darkness and 
challenged with CpG-ODNs (TLR9 ligand) at different times, 
had a fluctuation in the expression of TLR9 mRNA, with peaks 
at Zeitgeber time (ZT) 11 (5:00 p.m.), which correlated with the 
production of low cytokine levels (TNF-α and IL-12); yet, this 
circadian behavior was not observed in TLR1, 2, 3, 4, 5, 6, and 
7 (120). In addition, they reported an increase in the expression 
of TLR9 mRNA and median fluorescence intensity at ZT19 (1:00 
a.m.) in spleen cells compared with that at ZT7 (1:00 p.m.) (120). 
Moreover, the mRNA expression of TLR1–TLR5 and TLR9 (not 
TLR6 and TLR7) in IEC presents a circadian pattern with higher 
levels at ZT0 (6:00 a.m.) vs. ZT12 (6:00 p.m.) and is dependent on 
the presence of retinoic acid receptor-related orphan receptor-α 
(121). There is a gap in the knowledge of circadian TLR9 expres-
sion. We consider that it would be interesting to research this 
concept in mice in depth. However, the studies performed 
so far have not been examined in the context of human SLE, 
either in the lupus-prone NZBxNZW or pristane-induced lupus 
models, to evaluate the role of circadian expression of TLR9 in 
autoimmunity.

All these results on TLR9 expression confirm the existence 
of circadian behavior in other organs, independent of the SCN 
action. A possible candidate for other anatomical regions capable 
of capturing the external light that entails circadian pathways in 
humans is the skin (122–124). In a scenario of autoimmunity, 
such as that in SLE, injury to the skin is the second most frequent 
clinical feature, which might even induce lupus flares (125). One 
of the main environmental factors associated with a lupus flare 
is UV light exposure (126), which causes DNA damage and 
subsequent apoptosis of keratinocytes (sunburn cells), being 
a source of nuclear autoantigens that undergo relocalization 
of autoantigens such as Ro (125–128). In this respect, in vivo 
studies showed that erythema induced after fixed doses of UV 
light exposure caused an exacerbated inflammatory response in 
the morning in comparison with that in the afternoon (129), 
suggesting that the skin inflammation processes depends on a 
CC and not entirely on UV light exposure. Other autoimmune 
rheumatic diseases associated with environmental triggering 
factors are the idiopathic inflammatory myopathies that are 
more prevalent near equatorial zones (130) since UV light expo-
sure seems to be one important factor associated with its clinical 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


5

Martínez-García et al. TLR9 and the Chronotherapeutic Optimization of CQ

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1497

presentation. Indeed, our group has reported the high prevalence 
of anti-Mi-2 antibodies in these subsets of autoimmune rheumatic  
diseases (131).

On the other hand, it is well known that the CC influences 
the pharmacodynamics of drugs (132, 133), which gives rise to 
the term chronotherapy, defined as the administration of drugs 
according to biological clocks: daily, monthly, seasonal, or yearly, 
leading to the maximum benefit and reduction of adverse effects 
(134). Perhaps the best clinical example is the optimization of glu-
cocorticoid (GC) doses in patients with autoimmune conditions, 
including SLE, where the production of cortisol by the host allows 
a decrease in GC demands, therefore, providing a chronothera-
peutic effect (101, 133, 135, 136). In malaria patients, the influ-
ence of CQ in the development of the parasite in erythrocytes, 
manifestations of the disease, and the timing effect of the drug 
were demonstrated in 1991, highlighting its chronotherapeutic 
effect for the elimination of the parasite (137).

cONcLUsiON AND PersPectives

It would be extremely interesting to verify whether time-
restricted expression of TLR9 and clock gene regulation is present 
in human beings. These findings could be demonstrated with 

clock-adjusted gene expression analysis in PBMCs, which might 
support this chronotherapeutic regimen in SLE, by increasing the 
modulating effect of autoantibody production and inflammation 
(Figure 2). Also, we propose to study the TLR9 expression and 
signaling pathways in non-lupus prone mouse strains such as the 
pristane-induced murine lupus model, owing to its feasibility. 
Here, we provided the basic evidence that different expression 
patterns of TLR9 are sustained in association with the CC in mice. 
Nevertheless, this finding still needs to be addressed in humans, 
taking into account the following key points: (1) the expression of 
TLR9 is controlled by the CC, (2) inflammatory cytokine produc-
tion correlates with the expression of TLR9, (3) CQ has an anti-
inflammatory effect by disrupting the signaling of intracellular 
TLR9, and (4) CQ is already used as monotherapy or combination 
therapy for autoimmune diseases. However, there is no consensus 
with respect to the ideal time for AMDs prescription.

etHics stAteMeNt

All cited studies reported in the present perspective where 
conducted in compliance with relevant Ethical Guidelines. This 
article does not represent work made by the authors with human 
or animal subjects.

FiGUre 2 | Proposal for a chronotherapeutic effect in SLE patients receiving CQ treatment. Ligands for TLR9 include CpG-DNA, which might originate during 
impaired clearance of cellular debris. The expression of TLR9 has shown circadian behavior in mice, with higher expression at ZT19 (1:00 a.m.) and lower expression 
at ZT7 (1:00 p.m.) and this is regulated by clock genes. However, in humans, this information is lacking. CQ acts as an inhibitor of TLR9 by masking its binding sites 
for nucleic acids. We propose that the chronotherapeutic optimization of CQ would make it more beneficial if it is prescribed when there is maximal expression of 
TLR9 in SLE that possibly leads to a reduction in the expression of TLR9, autoantibodies production, and inflammation (dotted blue line). Abbreviations: CQ, 
chloroquine; SLE, systemic lupus erythematosus; ZT, Zeitgeber time; NETs, neutrophil extracellular traps; TLR9, toll-like receptor 9.
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