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CD1d-restricted invariant natural killer T (iNKT) cells are considered an attractive target 
for cancer immunotherapy. Upon their activation by glycolipid antigen and/or cytokines, 
iNKT cells can induce direct lysis of tumor cells but can also induce an antitumor immune 
response via their rapid production of proinflammatory cytokines that trigger the cyto-
toxic machinery of other components of the innate and adaptive immune system. Here, 
we provide an overview of various therapeutic approaches that have been evaluated 
or that are currently being developed and/or explored. These include administration of 
α-GalCer or alternative (glyco) lipid antigens, glycolipid-loaded antigen-presenting cells 
and liposomes, strategies that enhance CD1d expression levels or are based on ligation 
of CD1d, adoptive transfer of iNKT cells or chimeric antigen receptor iNKT cells, and 
tumor targeting of iNKT cells.
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THe invARiAnT nATURAL KiLLeR T (inKT) CeLL AS TARGeT 
FOR CAnCeR iMMUnOTHeRAPeUTiC APPROACHeS

Invariant natural killer T  cells belong to a population of T  lymphocytes, which harbor distinct 
characteristics of both natural killer (NK) and T cells (1). These cells express a semi-invariant T cell 
receptor (TCR), in humans consisting of a Vα24-Jα18 chain paired with Vβ11, and NK cell markers 
(e.g., CD161 and NKG2D) (2). Two CD1d-restricted NKT cell subtypes exist, the classical (type I) 
iNKT and non-classical (type II) NKT subsets expressing a diverse TCR repertoire (1). Both subsets 
are able to secrete immunoregulatory cytokines upon glycolipid recognition presented via the human 
leukocyte antigen class I-related molecule CD1d (2). iNKT cells release, upon their interaction with 
CD1d, a broad spectrum of cytokines, which in turn activate T cells, NK cells, B cells, and dendritic 
cells (DCs), thereby initiating a T helper (Th) 1, Th2 or Th17 response (1, 3–6). The role that the 
type I CD1d-restricted iNKT cell population can play in the antitumor immune response will be the 
main focus of this review.

CD1d-restricted iNKT cells can play a role in mediating antitumor immunity in various ways: 
indirectly via recognition of glycolipid-loaded CD1d molecules expressed by antigen-presenting 
cells (APCs), directly via recognition of glycolipid loaded CD1d expressed by tumor cells and 
alternatively via a TCR-independent manner through cytokines (6, 7). In case of recognition of 
glycolipid-loaded CD1d on APCs, the antitumor effect is mediated via secretion of inflammatory 
cytokines. Ligation of glycolipid-loaded CD1d molecules by iNKT cells amplifies IL-12 production 
and, like CD4+ T helper cells, can induce maturation of DCs, conversely resulting in enhanced IFN-γ 
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production by the interacting iNKT cells (8, 9). Secretion of these 
inflammatory cytokines in turn promotes the cytolytic function 
of cytotoxic CD8+ T cells and NK cells. In case of recognition of 
tumor cells expressing CD1d, iNKT cells can exert a direct anti-
tumor effect via secretion of perforin and granzymes and death 
inducing receptors (e.g., Fas and TRAIL) reviewed by Bassiri 
et  al. (9). Because of the cytotoxic capacity of iNKT  cells and 
their ability to orchestrate pro- and anti-inflammatory immune 
responses, these cells are very attractive targets to exploit for 
cancer immunotherapy. Here, we will outline multiple strategies 
that can be used in order to promote iNKT  cell based cancer 
immunotherapy.

α-GALACTOSYLCeRAMiDe

Several glycolipids have been demonstrated to act as activat-
ing agents for both murine and human iNKT  cells, of which, 
α-galactosylceramide (α-GalCer) is the best known and most 
intensely studied. This glycosphingolipid was originally isolated 
from the marine sponge Agelas mauritianus and activates 
iNKT  cells in a very potent way (10). Upon activation with 
α-GalCer, iNKT  cells secrete Th1, Th2, and Th17 cytokines, 
modulating immune responses against tumors, microbial infec-
tions, viral infections, and auto-immune diseases (3, 5, 11, 12).
α-GalCer-induced antitumor immune responses in several 
in  vivo models using different tumor types (13). Subsequent 
clinical studies with α-GalCer did not show any adverse events 
but also did not result in clinically relevant antitumor effects in 
advanced cancer patients (14). The effect of α-GalCer may be 
limited by the relatively short-lived and in part antagonizing 
nature of the mix of Th1 and Th2 cytokines that is produced by 
activated iNKT cells, followed by long-term anergy of iNKT cells 
(10, 15, 16).

Changing the route of administration of α-GalCer may 
enhance efficacy. Direct intravenous administration of α-GalCer 
in patients with solid tumors led to an increase in serum cytokine 
levels but also to the disappearance of iNKT cells from the cir-
culation within 24 h (14). Furthermore, upon repeated systemic 
administration of α-GalCer, increases in serum cytokine levels 
were no longer observed, which was in line with the induction 
of iNKT  cell anergy observed in mouse studies. The anergy of 
iNKT cells in these cases may have been related to the fact that 
also non-professional APCs presented α-GalCer to iNKT  cells 
(16). An attractive alternative route of administration to overcome 
these problems might be the skin. Here, α-GalCer would be taken 
up predominantly by skin-residing DCs or DCs in skin-draining 
lymph nodes. A study performed by Bontkes et al. compared the 
effect of intradermal versus intravenous injections and indeed 
showed prevention of iNKT cell anergy by intradermal injection of 
α-GalCer (17). Furthermore, intradermal α-GalCer triggered an 
earlier iNKT cell response and an increase in systemic iNKT cell 
numbers, leading to enhanced protective immunity in response to 
intradermal vaccination with protection against tumor outgrowth 
in five out of six mice. To add to this, Tripp et al. showed presen-
tation of α-GalCer directly to iNKT cells in the draining lymph 
nodes in an in vivo mouse model, thereby bypassing migratory 
DCs and possibly iNKT cell anergy (18). Intranasal injection of 

α-GalCer was also shown to effectively reduce iNKT cell anergy 
in an in vivo mouse model as repeated dosing of α-GalCer via this 
route boosted iNKT cells and DCs without inducing anergy, as 
opposed to the intravenous route (19).

AnALOGS OF α-GalCer

As a result of the limited effects of α-GalCer in clinical studies, 
subsequent research focused on the development of glycolipid 
analogs with more distinct iNKT  cell activating properties. 
Whereas some of these glycolipids predominantly induce Th2 
type cytokine production in iNKT  cells and were suggested 
to be mainly of potential use in auto-immune diseases (e.g., 
OCH and α-GalCer20:2), other glycolipid activators (e.g., those 
encompassing an aromatic ring in either the acyl- or shingosine 
tail) induced a predominant Th1 type immune response (20). 
Such Th1-biased glycolipids are more effective in triggering TCR 
activation and iNKT cell expansion compared to α-GalCer (21). 
These Th1 biased analogs include, e.g., α-C-GalCer and 7DW8-5.
α-C-GalCer is a C-glycoside analog of α-GalCer and harbors 
a methyl group instead of a glycosidic oxygen. In a mouse 
melanoma metastasis model, α-C-GalCer was found to increase 
IL-12 and IFN-γ production and to decrease IL-4 production 
in comparison with α-GalCer and in addition exerted a more 
potent prophylactic effect against lung metastasis (22). Also 
in combination with monoclonal antibodies targeting tumor 
necrosis factor-related apoptosis-inducing ligand receptor (DR5) 
and 4-1BB, α-C-GalCer outperformed α-GalCer in experimental 
(established) mouse breast and renal tumors (23). Furthermore, 
while high concentrations of α-GalCer led to toxicity, this was not 
observed with α-C-GalCer.

The synthetic α-GalCer analog 7DW8-5 has a shorter fatty 
acid tail with a fluorinated benzene ring at the end and binds 
stronger to the CD1d molecule than α-GalCer (24). In vaccination 
studies, 7DW8-5 induced 100-fold stronger IFN-γ production 
by iNKT cells as compared with α-GalCer (24). When used as 
adjuvant for vaccination with tumor-associated antigens (TAAs) 
in a B cell lymphoma mouse model, IL-12 and IFN-γ production 
and an enhanced magnitude of the CD8+ T cell response were 
observed leading to an enhanced antitumor response (25).

GLYCOLiPiD-LOADeD APCs

Professional APCs are well equipped to provide optimal stimula-
tory signals to T cells that recognize their cognate antigen and are 
thereby capable of mediating antigen-specific immune responses 
against various targets. This potential of APCs could be used as a 
means to further strengthen the antitumor effect of glycolipids. 
Indeed, APCs that were loaded with α-GalCer ex vivo enhanced 
antitumor immune responses compared to α-GalCer alone in a 
B16 melanoma mouse model (26). This observation triggered 
multiple clinical phase I studies using mature or immature 
DCs pulsed with α-GalCer. Nieda et al. started the first phase I 
clinical trial where they administered α-GalCer pulsed immature 
moDCs to 12 patients with metastatic malignancies (27). They 
found increased serum IL-12 and IFN-γ levels and activated T 
and NK cells, indicating that NKT cells indeed bridged innate and 
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adaptive immunity. This group performed another phase I clini-
cal trial involving 12 patients with metastatic solid tumors (28).  
Effective iNKT  cell activation was observed using immature 
moDCs pulsed with α-GalCer. Therapy was well tolerated and 
the majority of the patients experienced disease stabilization. 
Of note, intravenously administered α-GalCer pulsed DCs 
induced greater immunological effects compared to intrader-
mally administered α-GalCer pulsed DCs. Several phase I and II 
clinical trials have been performed focusing on lung cancer using 
either α-GalCer pulsed DCs, peripheral blood mononuclear cells 
(PBMCs), or APCs (29–31). No adverse effects were observed and 
treatment was found to be safe and well tolerated. Chang et al. 
performed a phase I study in advanced cancer patients using 
intravenous administration of mature α-GalCer pulsed moDCs 
(32). Activation and a persistent expansion of the iNKT  cell 
pool in combination with signs of secondary activation of other 
immune cell populations (including B cells, NK cells, and T cells) 
were observed as well as an increase in serum levels of IL-12 and 
IFN-γ. Interestingly, in a phase I clinical trial with asymptomatic 
myeloma patients, combination of low-dose lenalidomide with 
α-GalCer pulsed mature moDCs led to increased activation of 
innate immune cell subsets including iNKT, NK cells, monocytes, 
and eosinophils and a reduction in tumor-associated monoclonal 
immunoglobulin in three of four patients with measurable dis-
ease (33). Gasser et al. administered autologous moDCs loaded 
with α-GalCer, synthetic long peptides spanning immunogenic 
regions of the cancer-testis antigen NY-ESO-1, and short MHC-I-
binding peptide sequences from the influenza virus intravenously 
in eighth high-risk stage II–IV melanoma patients (34). In three of 
these patients, a significant increase of peripheral iNKT cells was 
observed and four patients showed increased frequencies of IFN-γ  
positive cells when PBMCs were re-stimulated with α-GalCer. 
Five melanoma patients showed increases in cytokines related to 
α-GalCer stimulation found in the serum, and an increase in cir-
culating NY-ESO-1-specific T cells was detected in seven patients.

To further enhance the effect of α-GalCer loaded APCs, com-
binations with chemotherapeutic agents known to induce immu-
nogenic cell death were investigated. These chemotherapeutics 
can promote immune responses against the tumor by inducing 
activation of multiple cell death pathways and by enhancing the 
subsequent uptake of tumor peptides by APCs in the context 
of damage-associated molecular patterns (35). For example, 
gemcitabine and mafosfamide were tested in combination with 
α-GalCer-loaded bone marrow-derived DCs in a murine meta-
static breast cancer model (36). Chemotherapy alone resulted 
in an increase in tumor cell CD1d expression, facilitating rec-
ognition by iNKT cells. Furthermore, α-GalCer-loaded DCs in 
combination with gemcitabine or mafosfamide led to increased 
IFN-γ production and a significant increase in survival.

inCORPORATiOn OF GLYCOLiPiDS  
in nAnOveCTORS

Another approach that is being explored with the aim to enhance 
the effect of α-GalCer entails its incorporation into nanovectors, 
which can act as vaccine carriers to induce an immune response by 
delivering their content to endosomes. Presentation of α-GalCer 

by CD1d-expressing APCs was indeed improved using liposomes 
and resulted in increased expansion and IFN-γ production 
by iNKT  cells and a potent anti-metastatic effect in a highly 
malignant metastatic lung murine cancer model (37). Khan et al. 
used liposomes incorporating glycosphingolipids isolated from 
Spingomonas paucimobilis, which can, like α-GalCer, specifically 
activate iNKT cells (38). When these liposomes were loaded ex 
vivo onto bone marrow-derived DCs and used as treatment for 
mice with dimethyl-α-benzanthracene-induced tumors, a more 
sustained secretion of IFN-γ and a potent antitumor response 
was induced compared to administration of glycosphingolipids 
alone. A different approach consists of iNKT cell activation via 
targeted delivery of α-GalCer and OVA or tumor self-antigens 
(PLGA)-based nanoparticles that target the endocytic pathway 
of the cross-presenting CD8α+ DC subset via DEC205 (39) or 
Clec9a (40). Delivery of α-GalCer to CD8α+ DCs via this route 
enhanced iNKT  cell transactivation of NK and T  cells and a 
cytotoxic T  cell response in in  vivo mouse models and could 
promote both prophylactic and therapeutic antitumor responses 
in an advanced solid tumor model in mice. Notably, this approach 
could also target human CLEC9A-expressing DC to mediate the 
expansion of tumor self-antigen specific CD8+ T cells in PBMCs 
samples of melanoma patients in vitro, thereby underscoring the 
translational potential of this approach.

CD1d-inDUCinG AGenTS

As iNKT cells can directly kill CD1d-expressing tumor cells, one 
can hypothesize that the efficacy of iNKT cell-based antitumor 
responses can also be improved by increasing CD1d-expression 
levels on tumor cells as this may facilitate their recognition by 
iNKT cells. It has been reported that inhibitors of histone dea-
cetylases that regulate expression, cell cycle progression, and cel-
lular proliferation are able to induce CD1d expression levels (41). 
Next to this, all-trans retinoic acid and certain chemotherapeutics 
have also been reported to increase CD1d expression levels and 
are, therefore, of potential interest either alone or in combination 
with other iNKT cell-based therapeutic approaches (36, 42).

ADOPTive TRAnSFeR OF inKT CeLLS

It is known that relatively low numbers of iNKT cells are present 
in peripheral blood of healthy individuals. This number is further 
reduced in many, but not all, cancer types (43–46). A higher num-
ber of circulating iNKT cells predicted improved outcome in head 
and neck squamous cell carcinoma (HNSCC) patients treated 
with curative-intent radiotherapy (47). Several studies were 
designed to increase the size of the iNKT cell population. Mouse 
in vivo studies support this strategy as adoptive transfer of murine 
iNKT cells, activated with IL-12 ex vivo, showed a potent antitu-
mor response in a B16 melanoma and a lung metastasis model 
(48). Adoptive transfer of iNKT cells has the added advantage of 
reversing the defective iNKT cell IFN-γ production commonly 
observed in cancer patients, which is known to be important for 
promoting antitumor immune responses (45, 49, 50).

Several clinical trials have been performed using adop-
tive transfer of iNKT  cells. In a phase I study of patients with 
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advanced melanoma, Vα24 iNKT  cells were isolated from 
patients PBMCs and ex vivo expanded for several weeks (45). 
After adoptive transfer, an increased number of iNKT cells and 
an increased activation state of iNKT cells and other immune cell 
subsets was observed without signs of toxicity. A slightly differ-
ent approach was used in clinical trials in patients with HNSCC. 
Here, iNKT cells were isolated from PBMC and expanded ex vivo 
with α-GalCer and IL-2, while APC fractions were generated 
from PBMC by culturing them in the presence of GM-CSF and 
IL-2 (51). Expanded iNKT cells were then intra-arterially infused 
in the tumor-feeding artery while α-GalCer pulsed APCs were 
injected in the nasal submucosa. Therapy was found to be safe 
and resulted in an objective response rate of 50%. Increased intra-
tumoral accumulation of transferred iNKT cells was associated 
with improved clinical outcome. Additional clinical trials were 
designed combining administration of expanded iNKT  cells 
with α-GalCer pulsed DCs in patients with recurrent HNSCC 
reviewed by Motohashi et al. (52). Again, combination therapy 
appeared to exert beneficial clinical effects with disease stabiliza-
tion and tumor regression associated with increased intratumoral 
iNKT  cell numbers (53, 54). Based on these positive results, 
additional trials involving the adoptive transfer of iNKT  cells 
in various tumor types were initiated, the results of which are 
eagerly awaited (NCT03093688; NCT02619058; NCT01801852).

TUMOR TARGeTinG OF inKT CeLLS

All strategies described above are based on either the intravenous 
or intra-arterial administration of iNKT cells or the systemic or 
intradermal/intranasal activation of iNKT cells. Although these 
approaches can trigger antitumor immune responses, antitumor 
activity may be more pronounced and consistent when one can 
specifically target and activate iNKT cells in the tumor microen-
vironment. The potential of this approach has been demonstrated 
using a bispecific molecule generated by genetic fusion of a 
single chain variable fragment (scFv) targeted to a specific tumor 
peptide and CD1d, which can be loaded with specific glycolipids 

to allow iNKT cell activation. The antitumor activity of such a 
bispecific approach outperformed the activity of α-GalCer as 
was demonstrated in vivo in mice inoculated with Her2 or CEA 
expressing tumors using Her2- and CEA-targeted constructs, 
respectively (55–57). iNKT, NK, and T cells were found to accu-
mulate at the tumor site using these targeted approaches and, in 
addition, treatment was not accompanied by iNKT cell anergy 
as iNKT cells remained responsive to repeated injections of the 
CD1d fusion proteins loaded with α-GalCer (55, 56).

CHiMeRiC AnTiGen ReCePTOR (CAR) 
inKT CeLLS

Another strategy combining tumor targeting of iNKT cells with 
an increase in the size of the iNKT  cell population consists of 
adoptive transfer of CAR-expressing iNKT cells. CAR therapies 
were first applied to conventional T cells resulting in the approval 
by the Food and Drug Administration of two CAR-T cell thera-
pies for hematological malignancies: one for acute lymphoblastic 
leukemia and one for advanced lymphoma. The currently used 
CARs consist of a scFv for antigen binding, the TCR ζ chain 
for TCR activation, and one or two signaling domains from 
the co-stimulatory molecules CD28 and/or 4-1BB (58). After 
the introduction of the CAR, there is still a large diversity in 
TCR specificity and function among conventional CAR-T cells, 
whereas CAR iNKT  cells (due to the invariant nature of their 
TCR) constitute a more homogenous population with respect to 
both their function and specificity to CD1d, and this may translate 
into a different and perhaps more predictable and manageable 
toxicity profile (58).

Invariant natural killer T cells were reported by Heczey et al. 
to be a safe and effective platform for CAR redirected cancer 
immunotherapy in neuroblastoma (58). This approach showed 
effective in vitro cytotoxicity of Vα24 human iNKT cells with a 
CAR targeting the ganglioside GD2 antigen expressed by neuro-
blastoma cells. Also, iNKT cells retained their ability to kill tumor-
associated macrophages as a result of TCR-mediated recognition 
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of CD1d. Using this therapeutic approach in a neuroblastoma 
mouse model, transfer of GD2-specific CAR iNKT was shown 
to induce antitumor activity resulting in prolonged survival of 
mice. Of importance, GD2-specific CAR iNKT cells did not lead 
to graft versus host disease even after repeated infusions.

In a B  cell lymphoma model, Tian et  al. demonstrated that 
CD19-specific CAR-iNKT  cells expressing CD62L, a ligand 
involved in homing of naïve and central memory T cells to second-
ary lymphoid organs, was the predominant CAR iNKT popula-
tion that mediated tumor regression (59). This potentially allows 
for future selection of a more effective CAR-iNKT approach.  
A phase I clinical trial is currently ongoing wherein children with 
neuroblastoma are treated with GD2 CAR and IL-15 expressing 
autologous iNKT cells (NCT03294954).

CD1d-SPeCiFiC AnTiBODieS

Instead of targeting iNKT cells that interact with CD1d, effects of 
monoclonal antibodies specific for CD1d have also been explored. 
Yue et al. showed that direct ligation of CD1d by monoclonal anti-
bodies on the DC could, at least in part, mimic iNKT cell help to 
DCs (60). Ligation of several monoclonal CD1d antibodies led to 
downstream signaling via NF-κB, resulting in IL-12 production and 
moDC maturation. Recently, CD1d-specific single domain anti-
bodies (sdAb) have been identified with a similar ability to induce 

DC maturation and IL-12 production via CD1d ligation (61).  
sdAb have several advantages over conventional monoclonal 
antibodies, including extended stability, low immunogenicity, 
ease of production and, due to their small size (15 kDa), deep and 
homogenous tumor penetration (62). As sdAbs can also be easily 
cloned to other molecules, e.g., TAAs, this can provide a vaccine 
encompassing a stimulatory signal to DCs, which will promote 
the efficient initiation and development of a tumor-associated 
antigen specific cytotoxic T cell response.

COnCLUDinG ReMARKS

Within the last two decades, the role of iNKT  cells within the 
antitumor immune response has been intensely studied. It is now 
recognized that iNKT  cells play an important role in orches-
trating immune responses, making strategies exploiting these 
cells potentially valuable for cancer immunotherapy. Several 
approaches for therapeutic manipulation of iNKT cells are being 
explored (illustrated in Figure 1), which may ultimately translate 
into a more effective therapy for cancer.
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