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There is now compelling evidence that tumor necrosis factor (TNF) preferentially acti-
vates and expands CD4+Foxp3+ regulatory T cells (Tregs) through TNF receptor type II 
(TNFR2). However, it remains unclear which signaling transduction pathway(s) of TNFR2 
is required for the stimulation of Tregs. Previously, it was shown that the interaction 
of TNF–TNFR2 resulted in the activation of a number of signaling pathways, including 
p38 MAPK, NF-κB, in T cells. We thus examined the role of p38 MAPK and NF-κB in 
TNF-mediated activation of Tregs, by using specific small molecule inhibitors. The results 
show that treatment with specific p38 MAPK inhibitor SB203580, rather than NF-κB 
inhibitors (Sulfasalazine and Bay 11-7082), abrogated TNF-induced expansion of Tregs 
in vitro. Furthermore, upregulation of TNFR2 and Foxp3 expression in Tregs by TNF was 
also markedly inhibited by SB203580. The proliferative expansion and the upregulation 
of TNFR2 expression on Tregs in LPS-treated mice were mediated by TNF–TNFR2 inter-
action, as shown by our previous study. The expansion of Tregs in LPS-treated mice 
were also markedly inhibited by in vivo treatment with SB203580. Taken together, our 
data clearly indicate that the activation of p38 MAPK is attributable to TNF/TNFR2-
mediated activation and proliferative expansion of Tregs. Our results also suggest that 
targeting of p38 MAPK by pharmacological agent may represent a novel strategy to up- or 
downregulation of Treg activity for therapeutic purposes.
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inTrODUcTiOn

CD4+Foxp3+ regulatory T cells (Tregs) are crucial for the maintenance of immune homeostasis and 
for the prevention of autoimmune responses (1). They also play a major role in immune evasion of 
cancer by dampening immune responses against tumor (2). Targeting Tregs has become a strategy 
in the treatment of major human diseases, such as cancer, allergic and autoimmune diseases, 
transplantation rejection, and GVHD (3). A thorough understanding of biological pathways that 
regulate Treg function is a prerequisite for the up- or downregulation of Treg activity for therapeutic 
purposes.

We (Xin Chen and Joost J. Oppenheim) for the first time report that tumor necrosis factor-alpha 
(TNF) can activate Tregs through TNF receptor type II (TNFR2), one of TNF receptors, which is 
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preferentially expressed by Tregs (4). Furthermore, we found that 
expression of TNFR2 identifies the maximally potent suppressive 
human and mouse Treg subsets (5, 6). In contrast, Tregs without 
TNFR2 expression only had minimal or no suppressive acti-
vity (5, 7, 8). Moreover, TNF–TNFR2 signaling is important for 
the phenotypical stability of Tregs, including Foxp3 expression  
(4, 8, 9). The notion that TNF–TNFR2 signaling plays a decisive 
role in the activation, expansion, and phenotypical stability of 
Tregs is now supported by compelling evidences from other 
groups (10–21). Nevertheless, which signaling transduction 
pathway(s) of TNFR2 is required for Treg-stimulatory effect of TNF 
remains unknown.

The biological functions of TNF are transduced by two 
receptors, TNFR1 (p55) and TNFR2 (p75) (22). In contrast 
to the ubiquitous expression of TNF receptor type I (TNFR1), 
TNFR2 is mainly expressed by lymphocytes (23). Signal 
transduction by TNFR1 has been intensively investigated and 
well defined, while the TNFR2 signaling pathway is less well 
understood (24). So far, three signaling pathways of TNFR2 in 
T lymphocytes have been documented, including IKK/NF-κB, 
MAPK (Erk1/2, p38, JNK), and PI3K/Akt pathways (25, 26). 
Previously, p38 MAPK signaling pathway has been shown to 
play a key role in the immunosuppressive function of induced 
Tregs (iTregs) in both in  vitro and in  vivo studies (27–29).  
It was also reported that inhibition of p38 MAPK signaling 
was able to reduce immunosuppression of iTregs on Teffs, and 
consequently enhanced antitumor immune responses (29, 30).  
It has been shown that TNF stimulation resulted in the activa-
tion of p38 MAPK, in addition to the activation of NF-κB, in 
Tregs (31, 32). Thus, we hypothesized that p38 MAPK sign-
aling pathway may be also attributable to the activation and 
proliferation of Foxp3+ naturally occurring Tregs (nTregs) by 
TNF–TNFR2 interaction.

In this study, we investigated the effect of SB203580, a p38 
MAPK-specific inhibitor, on the expansion of Tregs induced 
by the interaction of TNF–TNFR2 in both in vitro and in vivo 
experimental settings. The results showed that SB203580 
potently inhibited TNF-induced proliferative expansion of 
Tregs. Furthermore, other stimulatory effects of TNF on Tregs, 
such as upregulation of TNFR2 and Foxp3 expression were also 
abrogated by SB203580. Therefore, p38 MAPK represents a major 
component of signaling pathway of TNFR2 in the activation  
of Tregs.

resUlTs

sB203580 inhibits TnF-induced 
Proliferation of Tregs In Vitro
We firstly examined the in  vitro effect of p38 MAPK-specific 
inhibitor SB203580 (33) on the expansive proliferation of Tregs 
induced by TNF. To this end, CD4+ T cells were purified by MACS 
from spleen and LNs of normal mice. The cells were cultured with 
IL-2 to maintain their survival (34). Consistent with our previ-
ous report (4, 17), addition of TNF preferentially stimulated the 
proliferation of Tregs, resulting in proliferation of greater than 
60% of Tregs (Figure  1A). Consequently, the absolute number 

of Tregs in the cultured CD4+ T cells was increased twofold by 
TNF stimulation (Figure 1E). As shown in Figures 1B–C, in a 
concentration range of 1–25 µM, SB203580 inhibited the TNF-
induced proliferation of Tregs in a dose-dependent manner, 
with a percent inhibition of 32.0–73.2% (p <  0.05–0.001). The 
proportion of Foxp3+ Tregs in the cultured CD4+ T cells was also 
markedly reduced by SB203580 treatment, with a percent inhibi-
tion of 24.9–47.05% (Figure 1D, p < 0.05–0.01). Furthermore, 
the absolute number of Tregs in each well was markedly reduced 
(Figure  1E, p  <  0.05). In contrast, treatment with two NF-κB 
inhibitors [Sulfasalazine (35) and Bay 11-7082 (36)] failed to 
inhibit TNF-induced proliferative expansion of Tregs in the 
cultured CD4+ T cells (Figures 2A–F). These results suggest that 
the activation of p38 MAPK, rather than the activation of NF-κB, 
is required for the proliferative expansion of Tregs triggered by 
TNFR2 signaling. Treatment with SB203580 in the concentration 
range used in our in vitro study did not induce cell death (Figure 
S1 in Supplementary Material). Furthermore, SB203580 treat-
ment did not reduce the number of Tregs in CD4 T cells cultured 
with IL-2 alone (Figure S2 in Supplementary Material). These 
data exclude the possibility that the inhibitory effect of SB203580 
was based on the cytotoxic effect.

sB203580 Downregulates TnFr2 surface 
expression on TnF-stimulated Tregs
The surface expression levels of TNFR2 are correlated with immu-
nosuppressive function of Tregs (5, 6). Previously, we showed that 
treatment with TNF preferentially upregulates TNFR2 expression 
on Tregs (37). To determine if p38 MAPK pathway plays a role in the 
upregulation of TNFR2 expression on Tregs, MACS-purified CD4+ 
T cells were cultured with IL-2, with or without TNF. The cells 
were treated with SB203580 (1–25 µM). As shown in Figure 3A, 
the treatment with TNF upregulated TNFR2 expression on Tregs 
by >2-folds, as compared with IL-2 cultured alone. TNF-induced 
upregulation of TNFR2 expression was inhibited by SB203580 in 
a dose-dependent manner (Figures 3A,B, p < 0.01–0.001), with 
a percent inhibition of 32.3–62.6% (Figure 3C, p < 0.01–0.001). 
Thus, inhibition of p38 MAPK with SB203580 can inhibit surface 
expression of TNFR2 on TNF-treated Tregs.

sB203580 abrogates TnF-induced 
Upregulation of Foxp3 expression in Tregs
TNF–TNFR2 interaction is also crucial for the phenotype stabi-
lity of Tregs, in term of Foxp3 expression, in both in vitro and 
in  vivo settings (8). We thus examined the effect of SB203580 
on Foxp3 expression by TCR-stimulated Tregs. To this end, 
mouse CD4+CD25+ T cells were flow-sorted and stimulated with 
plate-bound anti-CD3 Ab and soluble anti-CD28 Ab for 3 days, 
a known condition, which can downregulate Foxp3 expression 
(8). Treatment with the exogenous TNF could partially maintain 
Foxp3 expression (Figures 4A–C), consistent with our previous 
report (8). The levels of Foxp3 expression on per cell basis (MFI) 
and the proportion of Foxp3-expessing cells were increased by 
twofold after TNF treatment. These effects of TNF were largely 
abrogated by the treatment of SB203580 (Figures  4A–C). 
It is worth noting that SB203580, in the absence of TNF, did 
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FigUre 1 | SB203580 (SB) inhibits tumor necrosis factor (TNF)-mediated expansion of regulatory T cells (Tregs) in vitro. CD4+ T cells were purified from LNs and 
spleen of normal C57BL/6J mice by MACS. The cells were labeled with CFSE and cultured in the presence of IL-2 (10 ng/mL), or IL-2 + TNF (10 ng/mL, each), with 
medium alone or with different concentrations of SB203580 (SB, 1, 5, 10, and 25 µM). After 72 h, the proliferation of Tregs and the proportion of Foxp3+ cells were 
analyzed by FACS, based on CFSE expression and Foxp3 expression. The absolute number of Foxp3-expressing Tregs was calculated. (a) In the presence of IL-2, 
TNF preferentially stimulated the proliferation of Tregs. (B,c) SB203580 blocked TNF-mediated proliferation of Tregs. Analysis was gated on Foxp3+ Tregs. (D) 
SB203580 decreased the proportion of Foxp3+ Tregs in the cultured CD4+ T cells. (e) SB203580 reduced the absolute number of Tregs in the cultured CD4+ T cells. 
(a,B) Show the typical FACS plots. The number in the histogram indicates the proportion of gated cells (%). (c,D) Show the summary of results (N = 3, 
means ± SEM). By comparison with “TNF + IL-2” group, *p < 0.05, **p < 0.01, ***p < 0.001. Data shown are representatives of at least three separate experiments 
with similar results.
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not downregulate Foxp3 expression in Tregs (Figure S2 in 
Supplementary Material).

sB203580 inhibits In Vivo expansion  
of Tregs in lPs-Treated Mice
Previously, we showed that TNF–TNFR2 interaction is respon-
sible for LPS-induced proliferation of Tregs in mice (37). More 
recently, we observed that LPS treatment was able to markedly 

upregulate the expression of transmembrane TNF on dendritic 
cells (DCs), and such DCs potently stimulated the proliferation 
of Tregs (data not shown). Therefore, LPS-treated mice were 
used to examine if SB203580 had the in vivo activity to inhibit 
TNF-induced expansion of Tregs. As shown in Figures 5A,C, 
the proportion of Foxp3+ cells in splenic CD4+ T  cells was 
increased from 14.6% in control mice to 18.6% in mice 24  h 
after LPS treatment (p  <  0.01). Similarly, the proportion of 
Foxp3+ cells in CD4 T  cells present in peripheral blood and 
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FigUre 2 | Effect of NF-κB inhibitors on tumor necrosis factor (TNF)-mediated proliferative expansion of regulatory T cells (Tregs). CD4+ cells were purified from LNs 
and spleen of normal C57BL/6J mice by MACS. The cells were labeled with CFSE and cultured in the presence of IL-2 (10 ng/mL), or IL-2 + TNF (10 ng/mL, each), 
with medium alone or with different concentrations of Sulfasalazine (Sul, 1, 10, 50, 100 µM) or Bay 11-7082 (Bay, 0.5, 1, 2, and 4 µM). After 72 h, the proliferation of 
Tregs and the absolute number of Foxp3+ cells were analyzed by FACS, based on CFSE expression and Foxp3 expression. (a,B) Typical FACS analysis of Treg 
proliferation, as shown by dilution of CFSE expression (gating on Foxp3+ cells). The number in the histogram indicates the proportion of gated cells,  
e.g., replicating cells (%). (c,D) The summary of proportion of replicating Tregs. (e,F) The absolute number of Treg cells per well. Data shown in (c–F) are 
representatives of at least three separate experiments with similar results (N = 3, means ± SEM).
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FigUre 3 | Upregulation of TNFR2 expression on regulatory T cells (Tregs) induced by tumor necrosis factor (TNF) is abrogated by SB203580. MACS-purified CD4+ 
T cells were cultured in the presence of IL-2 (10 ng/mL), or IL-2 + TNF (10 ng/mL, each), with medium alone or with SB203580 (1–25 µM). The cells were cultured 
for 72 h. The surface expression of TNFR2 and intracellular expression of Foxp3 were analyzed with FACS. (a) Typical FACS dot plot of TNFR2 and Foxp3 
expression. Data shown are representatives of at least three separate experiments with similar results. Number in the FACS plot shows the proportion of cells in the 
respective quadrants. (B) Summary of mean fluorescence intensity (MFI) of TNFR2 expression on Tregs (by gating on Foxp3+ cells. N = 3, means ± SEM). (c) 
Percent inhibition of TNFR2 expression on Foxp3+ Tregs (N = 3, means ± SEM). The formula used to calculate percent inhibition is: (A − B)/A × 100%, A is MFI of 
TNFR2 expression treated with TNF/IL-2, B is MFI of TNFR2 expression treated with SB203580 (1–25 µM) + TNF/IL-2. By comparison with “TNF + IL-2” group, 
**p < 0.01, ***p < 0.001. Data shown are representatives of at least three separate experiments with similar results.
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lymph nodes following intraperitoneal LPS injection was also 
increased compared with control mice (Figure 5C). The expres-
sions of Ki-67, an indicator of replicating cells, and TNFR2 
were markedly increased in the splenic Tregs (Figures  5B,E 
and 6A,C. p < 0.01–0.05), which is consistent with our previous 
report (7). Since the proportion of Tregs were increased in all 
observed tissues, which was accompanied by the upregulation 
of Ki-67, we concluded that the increased number of Tregs in 
LPS-treated mice was resulted from the proliferative expansion 
through the interaction of TNF–TNFR2, rather than resulted 
from the redistribution or alteration of trafficking pattern of 
Tregs (37). LPS treatment also increased the absolute number 
of Tregs in spleen by ~1.5-fold (Figure 5D, p < 0.01). Treatment 
with single dose of SB203580 (25 mg/kg/day, i.p.) immediately 
after LPS treatment completely inhibited LPS-induced expan-
sion of Tregs (Figure 5A). Moreover, LPS-induced upregulation 
of Ki-67 and TNFR2 expression on Tregs was also completely 
abrogated by the treatment of SB203580 (Figures  5B,E and 

6A,C). The inhibitory effect of SB203580 on the proliferative 
expansion of Tregs, as indicated by the proportion of Foxp3+ 
Tregs and their Ki-67 expression, in LPS-treated mice could last 
for at least 72 h (Figure S3 in Supplementary Material). CD152 
(CTLA4) is a characteristic marker and an effector molecule of 
Tregs. Expression of CD152 in Tregs was upregulated by LPS-
treatment (Figures 6B,D, p < 0.001), and the elevation of CD152 
expression in LPS-treated mice was completely abrogated by 
SB203580 treatment (Figures 6B,D). Therefore, SB203580 has 
both in vitro and in vivo activity in the inhibition of TNFR2-
mediated activation and expansion of Tregs.

DiscUssiOn

The p38 MAPK signaling pathway is known to play a key 
role in mediating the responses of mammalian cells to LPS 
stimulation (38), including production of TNF by LPS-treated 
macrophages (39). The activation of p38 MAPK contributes to 
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FigUre 4 | SB203580 inhibits Foxp3 expression in tumor necrosis factor (TNF)-treated regulatory T cells. FACS-sorted CD4+CD25+ T cells were stimulated with 
plate-bound anti-CD3 and soluble anti-CD28 Abs, in the presence or absence of TNF (10 ng/mL), with or without 25 µM SB203580 for 3 days. Foxp3 expression 
and ratio of Foxp3+ cells were analyzed by FACS. (a) Typical histograms of Foxp3 expression. Number in the histogram indicates the proportion of gated cells.  
(B) Summary of Foxp3 expression (MFI. N = 3, means ± SEM). (c) Summary of proportion of Foxp3-expressing cells (N = 3, means ± SEM). By comparison with 
TNF group (without SB203580), *p < 0.05, **p < 0.01, ***p < 0.001. Data shown are representatives of at least three separate experiments with similar results.
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the pathogenesis of autoimmune diseases, such as rheumatoid 
arthritis (RA) and inflammatory bowel disease; however, the 
results from clinical trials failed to show the therapeutic effect 
of p38 MAPK inhibitors on these inflammatory diseases (40). 
The p38 MAPK has a multifaceted role in CD4+ T  cells (41), 
including the activation, cytokine expression, the responses to 
TCR/co-stimulation, and effector function of Th1 and Th2 cells 
(42). It was shown that inhibition of p38 MAPK with SB203580 
induced immune tolerance in (NZB  ×  NZW)F1 lupus-prone 
mice, which was purportedly attributable to the increased Treg 
activity (43). However, more evidence indicates that inactivation 
or inhibition of p38 MAPK dampens the suppressive function 
of induced Tregs (iTregs). For example, the number of Tregs was 
increased in mice with T cells deficient in p38α and p38β (44). 
Inhibition of p38 MAPK with SB203580 significantly abrogated 
chronic stress-induced differentiation of Foxp3+ iTregs (45). 
Furthermore, treatment with SB203580 inhibits the induction 
and function of human and mouse iTregs (27, 46, 47) and mouse 
IL-10-producing CD25− suppressive CD4 T cells (29). To date, 
the effect of inhibition of p38 MAPK with SB203580 on naturally 
occurring Tregs (nTregs), especially in an in vivo experimental 
setting, remains unknown.

It has been shown that TNF–TNFR2 interaction was able to 
activate p38 MAPK pathway in T cells through activation of Syk 
protein tyrosine kinase (48). Nagar/Goldstein and colleagues 
examined TNF-induced gene transcription in flow-sorted human 
Tregs (31). GCBI analysis of GSE18893 file uploaded by Nagar/

Goldstein and colleagues (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE18893) indicated that both p38 MAPK 
pathway and NF-κB pathway in Tregs were markedly activated 
after TNF stimulation (Tables S1 and S2 in Supplementary 
Material). Recent evidence also showed that TNFR2-specific 
TNF-variant scTNF(143N/145R) treatment markedly activated 
p38 MAPK and NF-κB in purified human Tregs (32). In our 
study, small molecule inhibitors of p38 MAPK and NF-κB 
pathways, namely SB203580, Sulfasalazine, and Bay 11-7082, 
were employed to determine which TNFR2 signaling pathway 
is required for Treg expansion induced by TNF–TNFR2 interac-
tion. Previously, SB203580 was well characterized as a specific 
p38 MAPK inhibitor (33), and Sulfasalazine was a specific inhibi-
tor of NF-κB activation (35), while Bay 11-7082 was a direct 
inhibitor of IKK and thus inhibits the signal-induced nuclear 
translocation of NF-κB (36). These three compounds have been 
frequently used by investigators to study the effect of inhibition 
of p38 MAPK and NF-κB in T cells, including Tregs (27, 46, 47). 
We confirmed that p38 MAPK and canonical NF-κB pathways 
in Treg cells were activated by TNF stimulation. Furthermore, 
such upregulation of p38 MAPK and NF-κB activity could be 
potently inhibited by SB203580, Sulfasalazine, and Bay 11-7082, 
respectively (Figure S4 in Supplementary Material). Our study 
clearly shows that p38 MAPK-specific inhibitor SB203580, but 
not sulfasalazine nor Bay 11-7082, potently inhibited TNF-
induced expansion, expression of TNFR2 and Foxp3 on Tregs in 
both in vitro and in vivo experiments. Our results thus provide 
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FigUre 5 | SB203580 inhibits expansion of regulatory T cells (Tregs) in LPS-treated mice. C57BL/6J mice were injected with 200 µg of LPS (i.p.) or PBS, and 
treated with or without SB203580 (25 mg/kg/day, i.p.) immediately after LPS challenge. All mice were sacrificed 24 h after LPS treatment. Blood, spleen, and  
lymph nodes were harvested. The proportion of Foxp3+ Tregs in CD4+ T cells and expression of Ki-67 by Tregs were analyzed by FACS, gating on Foxp3+ cells.  
The absolute number of Tregs was calculated. (a) Expression of Foxp3 by CD4+ T cells. Number shows the proportion of gated cells. (B) Expression of Ki-67 by 
Foxp3− and Foxp3+ cells. Number shows the proportion of positive cells in the respective quadrants. (a,B) Typical FACS plots were shown. (c) Summary of 
proportion of Tregs in CD4+ T cells in the peripheral blood, spleen and LNs. (D) Summary of absolute number of Tregs in the spleen. (e) Ki-67 expression (MFI) by 
Foxp3+ Tregs. Data [means ± SEM) in (c) were pooled from three separate experiments (spleen and lymph nodes: N = 9, peripheral blood: N = 6), and in  
(D,e) (N = 3) were representatives of at least three separate experiments with similar results. By comparison with LPS alone group, *p < 0.05, **p < 0.01, 
***p < 0.001.
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FigUre 6 | SB203580 inhibits the upregulation of TNFR2 expression and CD152 expression on regulatory T cells (Tregs) in LPS-treated mice. C57BL/6J mice were 
injected with 200 µg of LPS (i.p.) or PBS, and treated with or without SB203580 (25 mg/kg/day, i.p.). Mouse spleen were harvested at 24 h after injection for the 
FACS analysis of CD152 and TNFR2 expression, gating on Foxp3+ cells. (a,B) Typical FACS histograms were shown. Black solid line: vehicle control; gray-filled 
histogram: LPS treatment; hair line: LPS + SB203580; Dot histogram: isotype control. Summary TNFR2 expression [MFI. (c)] and CD152 expression [MFI, (D)] by 
Foxp3+ Tregs (N = 3, means ± SEM). Data shown are representatives of at least three separate experiments with similar results. By comparison with LPS alone 
group, *p < 0.05, **p < 0.01, ***p < 0.001.
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clear evidence that p38 MAPK may represent an important 
component of TNFR2 signaling pathway in the activation and 
expansion of Tregs induced by TNF.

In our in vitro studies, IL-2 was used to maintain the survival 
of cultured T cells. Previously, we showed that in this in vitro 
culture system, TNF-induced proliferation of Tregs was inde-
pendent of IL-2 (37). This conclusion was further substantiated 
by the studies from other groups (12, 49). Thus, inhibition of 
Treg proliferation by SB203580 is mainly achieved by blockade 
of p38 MAPK activity triggered by TNF–TNFR2 signaling. This 
idea is supported by the observation that SB203580 did not 
reduce the number of Tregs in CD4 T cells cultured with IL-2 
alone (Figure S2 in Supplementary Material). Nevertheless, 
IL-2 and TCR/CD28 co-stimulation can also induce the activa-
tion of p38 MAPK pathway (50, 51) and can also stimulate the 
activation and expansion of Tregs (52, 53). Such effect of IL-2 
and TCR/CD28 may also contribute to in  vivo expansion of 
Tregs in the inflammatory condition, such as in mice treated 

with LPS. If this is the case, targeting of p38 MAPK may be 
able to block Tregs expansion induced by multiple signaling 
pathways.

Elimination of Treg activity, by either reducing their number 
or downregulating their immunosuppressive function, has 
become a strategy to enhance the efficacy of cancer therapy (54). 
Since TNFR2 signaling plays a crucial role in the activation and 
expansion of Tregs, the major component of TNFR2 signaling 
pathway responsible for Treg-stimulatory effect may be harnessed 
to modulate Treg activity. Recent study indicates that TNFR2 is 
an emerging target of cancer immunotherapy (15, 55). As sug-
gested by our study, inhibition of p38 MAPK may enhance the 
efficacy of tumor immunotherapy by eliminating Treg activity. 
Interestingly, it was shown that inhibition of p38 MAPK with 
SB203580 markedly enhances DC’s capacity to activate Teffs and 
overcome Treg-mediated suppression, and consequently pro-
mote antitumor immune response (30, 56, 57). Thus, p38 MAPK 
inhibitors may be useful as an immune adjuvant to enhance the 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


9

He et al. p38 Inhibitor Blocks nTreg Expansion

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1556

efficacy of tumor immunotherapy by simultaneously acting on 
both Tregs and DCs.

The rationale of development of p38 MAPK inhibitor as 
therapeutic agent is largely based on the idea that inhibition of 
p38 MAPK would inhibit the production of TNF (39), since anti-
TNF biologics have been shown great success in the treatment 
of autoimmune inflammatory diseases (58). Although preclini-
cal studies suggest that p38 MAPK inhibitors had therapeutic 
potential in the treatment of inflammatory diseases in animal 
model, such as collagen-induced arthritis (59) and experimental 
allergic encephalomyelitis (60); however, the subsequent clini-
cal trials have generally failed (40). Moreover, treatment with 
p38 MAPK inhibitors has the potential to induce additional 
inflammatory responses in RA patients (61). One possibility 
raised by our studies is that attenuation of Treg activity through 
interruption of TNF–TNFR2 interaction might be related to 
the failure of clinical trials designed to examine the effect of 
p38 MAPK inhibitors in the treatment of chronic inflammatory 
diseases.

Taken together, our data clearly show that p38 MAPK inhibitor 
SB203580 has the capacity to abrogate TNF-induced proliferative 
expansion, expression of TNFR2 and Foxp3 on Tregs. The results 
suggest that p38 MAPK may represent a key component of TNFR2 
signaling pathway, which is required for the activation and expan-
sion of Tregs. Thus, p38 MAPK pathway may be a therapeutic target 
to enhance the efficacy of cancer immunotherapy by eliminating 
Treg activity and other immunosuppressive mechanisms, and  
this possibility should be addressed in the future study.

MaTerials anD MeThODs

Mice and reagents
Female wildtype (WT) C57BL/6J (8–12  weeks old) were 
provided by the Animal Facility of University of Macau. The 
animal study protocol was approved by Animal Research Ethics 
Committee of University of Macau. Antibodies purchased from 
BD Pharmingen (San Diego, CA, USA) consisted of PerCP-Cy5.5 
anti-mouse CD3 (145-2C11), PE anti-mouse CD4 (GK1.5), PE 
anti-mouse CD120b/TNFR2 (TR75-89), PerCP-Cy5.5 anti-
mouse CD25 (PC61), PE anti-mouse CD152 (UC10-4F10-11). 
Antibodies purchased from eBioscience include PE-Cy7 anti-
mouse CD4 (GK1.5) and APC anti-mouse/rat Foxp3 staining set 
(FJK-16s). Functional grade purified hamster anti-mouse CD3ε 
(145-2C11), Functional grade purified hamster anti-mouse CD28 
(37.51), recombinant mouse IL-2 and TNF were obtained from BD 
Pharmingen. Bay 11-7082 (Cat#: B5556), and Lipopolysaccharides 
(rough strains) from Salmonella (LPS) (Cat#: L9764) was pur-
chased from Sigma-Aldrich. Sulfasalazine (Cat#: S1576) and 
SB203580 (Cat#: S1076) was obtained from Selleckchem. LIVE/
DEAD Fixable Near-IR Dead Cell Stain Kit (for 633 or 635 nm, 
L10119) was ordered from Thermo Fisher Scientific.

cell Purification and In Vitro cell culture
Mouse lymphocytes were harvested from spleens, axillary lymph 
nodes, inguinal lymph nodes, and mesenteric lymph nodes.  

CD4+ T  cells were purified from lymphocytes by using CD4 
(L3T4) microbeads (Miltenyi Biotec, 130-097-145) and MS 
column (Miltenyi Biotec). MACS-Purified CD4+ cells were 
labeled with CFSE and cells (5 × 104 cells/well) were cultured 
in a 96-well plate, then stimulated with IL-2 or IL-2 plus 
TNF, in the presence or absence of SB203580 (1–25  µM) for 
3  days. Proliferation of Tregs was assessed by CFSE dilution 
assay, and the proportion of Foxp3+ cells in CD4+ subset and 
TNFR2 expression on Tregs were analyzed with FACS. In some 
experiments, FACS-sorted CD4+CD25+ cells (cells purity: 98%, 
5 × 104 cells/well) were stimulated with plate-bound anti-CD3ε 
Ab (10  µg/mL) and soluble anti-CD28 Ab (2  µg/mL) in the 
presence of TNF (10 ng/mL) or medium alone, with or without 
25 µM SB203580, for 3 days. Expression of Foxp3 and TNFR2 
were analyzed by FACS.

In Vivo administration of lPs and 
sB203580
C57BL/6J mice were injected intraperitoneally (i.p.) with 200 µg 
of LPS in 0.2 mL PBS. Some mice were treated with SB203580 
(25 mg/kg, i.p.) immediately after LPS treatment. SB203580 were 
dissolved in a stable solvent system (4% DMSO, 30% PEG 300, 
5% Tween 80, and 61% ddH2O). After 24 and 72 h, mice were 
sacrificed. The spleens, lymph nodes at axillary, inguinal, and 
mesenteric regions, and blood were harvested for FACS analysis.

Flow cytometry
After blocking FcR, cells were incubated with appropriately 
diluted antibodies and finally suspended in FACS buffer for cyto-
metric analysis. Acquisition was performed by BD FACSCanto 
II and BD FACSAria™ Fusion flow cytometer. Data analysis was 
conducted by using FlowJo software (Tree Star Inc., Ashland, OR, 
USA).

Western Blot
MACS-purified CD4+CD25+ T cells were stimulated with TNF 
(100  ng/mL), with or without selected inhibitors [SB203580 
(SB), Bay 11-7082 (Bay), Sulfasalazine (Sul)] for 30  min. The 
cells were homogenized in RIPA buffer containing a cocktail 
of proteinase and phosphatase inhibitors. Protein samples 
were separated on a SDS-PAGE gradient gel (4–12% Bis-Tris 
protein gel; Thermo Fisher Scientific) and transferred to PVDF 
membranes. The blots were blocked with 5% BSA for 1 h and 
incubated with phospho-p38 antibody (1:1,000; Cell Signaling 
Technology) and phospho-NF-κB p65 antibody (1:1,000; Cell 
Signaling Technology) overnight at 4°C. The blots were then 
incubated in HRP-conjugated secondary antibody (1:3,000) for 
1 h at room temperature, developed in ECL solution (Thermo 
Fisher Scientific) for 1 min, and exposed by G-Box imager. The 
blots were then incubated in stripping buffer (Thermo Fisher 
Scientific) at 37°C for 15 min and reprobing with IκBα antibody 
(1:1,000; Cell Signaling Technology) or p38 antibody (1:1,000; 
Cell Signaling Technology) or NF-κB p65 antibody (1:1,000; 
Cell Signaling Technology) or GAPDH antibody (1:3,000; Cell 
Signaling Technology).
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statistical analysis
Comparisons of two groups of data were analyzed by t test using 
GraphPad Prism 6.0. Comparisons of more than two groups 
of data were analyzed by one-way ANOVA by using GraphPad 
Prism 6.0 (GraphPad, San Diego, CA, USA).
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