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Allergic diseases, such as respiratory, cutaneous, and food allergy, have dramatically 
increased in prevalence over the last few decades. Recent research points to a central 
role of the microbiome, which is highly influenced by multiple environmental and dietary 
factors. It is well established that the microbiome can modulate the immune response, 
from cellular development to organ and tissue formation exerting its effects through 
multiple interactions with both the innate and acquired branches of the immune system. 
It has been described at some extent changes in environment and nutrition produce 
dysbiosis in the gut but also in the skin, and lung microbiome, inducing qualitative and 
quantitative changes in composition and metabolic activity. Here, we review the poten-
tial role of the skin, respiratory, and gastrointestinal tract (GIT) microbiomes in allergic 
diseases. In the GIT, the microbiome has been proven to be important in developing 
either effector or tolerant responses to different antigens by balancing the activities of 
Th1 and Th2 cells. In the lung, the microbiome may play a role in driving asthma endo-
type polarization, by adjusting the balance between Th2 and Th17 patterns. Bacterial 
dysbiosis is associated with chronic inflammatory disorders of the skin, such as atopic 
dermatitis and psoriasis. Thus, the microbiome can be considered a therapeutical target 
for treating inflammatory diseases, such as allergy. Despite some limitations, interven-
tions with probiotics, pre biotics, and/or synbiotics seem promising for the development 
of a preventive therapy by restoring altered microbiome functionality, or as an adjuvant 
in specific immunotherapy.

Keywords: microbiome, microbiota, allergy, allergic diseases, prebiotics, probiotics, synbiotics

inTRODUCTiOn

Allergic diseases, include heterogeneous inflammatory pathologies such as respiratory and food 
allergies (FA), which are characterized by an immunological response with T lymphocytes produc-
ing IL-4, IL-5, and IL-13 and low production of IFN-γ (Th2) (1) and others producing IL-9 and IL-10 
(Th9) (2) as the main effector T cells. They promote the induction of other effector cells involved in 
allergic inflammation, such as mast cells, basophils, and eosinophils (1). These diseases have dramati-
cally increased in prevalence over the last few decades (3–6) and recent research points to a central 
role of the microbiota (7, 8). It is well established that the microbiome can modulate the immune 
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response, from cellular development to organ and tissue forma-
tion (9) exerting its effects through multiple interactions with 
both the innate and acquired branches of the immune system. In 
the late 80s, Dr. Strachan proposed what is now referred to as the 
“hygiene-hypothesis” (10), in which changes in environment and 
nutrition produce a dysbiosis in the skin, gut, or lung microbiome 
inducing qualitative and quantitative changes in composition 
and metabolic activity (11, 12). Furthermore, it was proposed 
that a lower incidence of infection in early childhood, which 
may be associated with low microbiota diversity, could explain 
the increase in prevalence of atopic diseases (13). It should be 
pointed out that the hygiene hypothesis has not been found to 
apply to individual hygiene [no relation between personal or 
home cleanliness and increased risk of asthma or allergy has been 
found (14)], but to independent host factors such as number of 
older siblings, contact with pets and rural versus urban living, all 
of which have been shown to affect microbiome composition and 
the development of immunologic tolerance (15). Today, the use 
of bacterial culture-independent tools such as next-generation 
sequencing to identify different microbes has permitted the 
investigation of complex populations and their roles in health and 
disease. Here, we review the potential role of the skin, respiratory, 
and gastrointestinal tract (GIT) microbiomes in allergic diseases.

MiCROBiOMe

The term “microbiome” refers to the microorganisms that live on 
or inside another organism. They interact with each other and 
with their host and can be classified as beneficial (symbiotic) or 
dangerous (pathogenic) (16). Microbiome in humans can account 
for 90% of the cells by a ratio of 10:1 (17). New studies point out 
that the number of bacteria in the body is of the same order as 
the number of human cells (18). Most of these microorganisms 
inhabit the gut. The microbiome effectively adds a huge amount 
of genes to the human genome, potentially increasing it up to 200 
times (19). As a result, the composition of the human microbiome 
could be important in the context of health or disease.

Human Gut Microbiome and  
implications in Food Allergy
The GIT has a very important immune function in developing 
either effector or tolerant responses to different antigens by 
balancing the activities of Th1 and Th2 cells as well as regulating 
Th17 and T regulatory (Treg) cells in the lamina propria (20–23). 
Immune dysfunction in allergic diseases such as asthma and atopy 
seems to be related to differences in the function and composition 
of the gut microbiome (24).

The gut microbiome constitutes a highly complex ecosystem 
which includes eukaryotic fungi, viruses, and some archaea, 
although bacteria are the most prominent components (25). Its 
composition is generally formed during the first 3  years of life 
(26); however, recent work has suggested that its colonization may 
begin in utero (27), contrary to the widely held dogma of the fetus 
as a sterile environment. Despite its early formation, its composi-
tion is highly dynamic and dependent on host-associated factors 
such as age, diet, and environmental conditions (26, 28–31) with 
the major phyla being Actinobacteria, Bacteroi detes, Firmicutes, 

and Proteobacteria. The gut microbiome is not homogeneous 
throughout the GIT, showing higher diversity in the oral cavity 
and intestine, and lower diversity in the stomach, mainly because 
of the acid environment (32). Aerobic species are mainly located in 
the upper small intestine and anaerobic species in the colon (33).

Most antigens in the GIT come from dietary factors and gut 
microbiota, both of which can affect immune tolerance being the 
promotion of Treg cells to these dietary factors crucial to avoid 
an immune response to dietary antigens (34). Alterations in 
GIT bacterial levels or diversity (dysbiosis) can disrupt mucosal 
immunological tolerance, leading to allergic diseases including 
FA (35) and even asthma (36–38). Moreover, low IgA levels at the 
intestinal surface barrier can also contribute to FA. In fact, low 
microbiota levels and IgA appear to be related: gut microbiota can 
stimulate dendritic cells (DCs) in the Peyer’s patches (digestive 
type of mucosa lymphoid-associated tissue) to activate B  cells, 
leading to specific IgA antibodies production through class 
switching (39). This stimulation may occur through the produc-
tion by members of the microbiome of metabolites, such as short 
chain fatty acids (SCFAs). Thus, the immune tolerance network 
in the intestinal lumen can be considered to include the gut 
microbiota, their metabolic products, dietary factors, epithelial 
cells, DCs, IgA antibodies, and regulatory T cells (Figure 1).

Several factors associated with dysbiosis may influence FA, 
such as cesarean versus vaginal delivery (40), low versus rich 
fiber diet (41), breastfeeding (42), and/or early-life-antibiotic 
exposure, all of which affect bacterial load and diversity.

Once thought to be almost sterile, the esophagus has been 
shown to comprise around 300 bacteria species. Significant 
differences in the microbial composition of children with active 
esophageal inflammation caused by eosinophilic esophagitis 
compared with controls have been reported (43). Importantly, 
both the degree of inflammation and the treatment regimen seem 
to impact the esophageal microbiota (43).

Human Lung Microbiome and  
implications in Respiratory Allergy
As with the esophagus and fetus, the lung has long been thought 
of as sterile; however, recent evidence has shown it to harbor 
various bacteria phyla, including Actinobacteria, Bacteroidetes, 
Firmicutes, and Proteobacteria, even in healthy subjects (44). 
Similar to the gut, the lung microbiome changes rapidly in the first 
years of life, before beginning to stabilize (45, 46). Colonization 
occurs gradually in healthy children, starting with Staphylococcus 
or Corynebacterium, followed by Moraxella or Alloiococcus (46). 
A breakdown in the development of the commensal population 
can lead to dysregulation of the IgE–basophil axis, with elevated 
serum IgE concentrations and increased of circulating basophil 
populations as has been described in murine models of allergic 
airway disease (47). Importantly, this link was found to be B-cell 
intrinsic and dependent on the MYD88 pathway. Moreover, the 
lung microbiome may also play a role in driving asthma endotype 
polarization, by adjusting the balance between Th2 and Th17 
patterns. Enterococcus faecalis can suppress Th17 immunity and 
symptoms of allergic airway disease, and thus it has even been 
considered a potential therapeutic agent for both asthma and 
Th17 immunity (48).
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FiGURe 1 | Interaction between gut microbiota and immune system. Gut microbiota metabolites and dietary factors constitute the main antigen load of the 
gastrointestinal tract. Macrophages (CXCR1+) and dendritic cells (DCs) are stimulated and T regulatory (Treg) cells are activated by metabolic products such  
as short chain fatty acid (SCFA). Follicular T cells activate B cells inducing the production of IgA antibodies.
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Differences in levels and diversity of the lung microbiome have 
been found between healthy people and patients with asthma 
and allergic diseases, with an increase of Proteobacteria in the 
latter; moreover, their presence has been linked to increased 
severity of asthma probably through the upregulation of Th17-
related genes (49, 50).

Early colonization with Haemophilus influenzae, Moraxella 
catarrhalis, and Streptococcus pneumoniae has been associated 
with recurrent wheezing and asthma (45, 46, 51, 52). Importantly, 
as well as bacteria, viruses will also influence asthma development, 
as has been demonstrated with human rhinovirus infections of 
the nasopharynx in early-life (46). In addition, other associations 
such as helminths may be protective for asthma, as helminth 
infections have been shown to increase the microbiota diversity 
(53). Associations have been found between the composition of 
the lung and gut microbiome and the risk of respiratory allergic 
disease development (54) indicating that both gut and lung 
mucosa may function as a single organ, sharing immunological 
functions (44).

Skin Microbiome and Cutaneous  
Allergic Diseases
Bacterial dysbiosis is associated with chronic inflammatory dis-
orders of the skin, such as atopic dermatitis (AD) and psoriasis 
(55). The composition of the skin microbiota depends on the 
body site samples (56). The relevance of AD, often associated with 
other allergic diseases, has significantly increased in the last few 
decades. Outgrowths of Staphylococcus and reductions of other 
communities like Streptococcus or Propionibacterium species 

correlate with AD flares (57). On the other hand, skin commen-
sal Acinetobacter species have been reported to protect against 
allergic sensitization and inflammation, playing an important 
role in tuning the balance of Th1, Th2, and anti-inflammatory 
responses to environmental allergens (58). Interestingly, studies 
of cutaneous allergic diseases have found an association with gut 
microbiome dysbiosis (59), although the underlying mechanisms 
are still unclear. An initial study of 90 patients with established AD 
found enrichment for Faecalibacterium prausnitzii and decreased 
levels of SCFAs in the gut (60).

Therefore, we can summarize that changes in environment 
and diet produce dysbiosis in gut, skin, and/or lung microbiome 
inducing qualitative and quantitative changes in the microbiota 
which directly affect the immunological mechanisms implicated 
in the prevention of allergic diseases (Figure 2).

FACTORS AFFeCTinG MiCROBiOMe 
DiveRSiTY

Childbirth
The mode of delivery in childbirth can produce profound differ-
ences in the infant gut microbiome, with lower level of Escherichia 
coli, Bifidobacterium, and Bacteroides species in children born 
through cesarean section compared with those delivered vaginally 
(28, 61, 62). Cesarean-born infants typically have a microbiome 
enriched with Staphylococcus and Streptococcus, comparable with 
the maternal skin microbiome (63). These differences appear to 
be associated with higher risk of allergic diseases and asthma 
(64–66). Transfer of maternal vaginal microbes at birth may 
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FiGURe 2 | Dysbiosis induce qualitative and quantitative changes in the 
microbiota that directly affect immunological mechanisms leading to allergic 
diseases.
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mitigate these effects (67). Time of gestation may also be a fac-
tor: premature births are associated with alterations of the gut 
microbiome, but not atopic sensitization (68).

importance of early-Life Microbiome
There is mounting evidence that early-life exposure is critical for 
the microbiome and that gut microbial dysbiosis heavily influ-
ences immune system development (53). Potential factors include 
perinatal exposure to maternal or infant diet, antibiotic use, and 
contact with older siblings (16). Data from different populations 
show that the highest interindividual microbial variability occurs 
during the first 3  years of age (26). Noteworthy, contact with 
the microbiome can start before birth, since a low-abundance 
microbiota in the placenta (69) and meconium (70, 71) have been 
found.

Microbial exposure during the first months of life induces 
the activation of the innate immune system in different ways, 
with consequences for FA. Early inoculation with spore-forming 
Clostridium class IV and XIV species (72) and other bacteria 
(53) leads to decreased levels of circulating IgE in adulthood. 
Conversely, 3-week-old neonates with a higher fecal burden 
of Clostridium difficile and a higher ratio of C. difficile to 
Bifidobacterium showed increased numbers of skin test positive 
results to food and aero-allergens (73). Similarly, high levels of 
fecal E. coli in infants during their first month are associated with 
IgE-mediated eczema (74, 75).

Remarkably, the same colonization pattern can have different 
consequences at different ages. For example, colonization of  
S. pneumoniae, H. influenzae, or M. catarrhalis within the first 
month of life increases the risk of asthma, leading to high counts 
of atopic markers such as eosinophils and serum IgE, but not 
when colonization occurs at 12 months (45).

Furthermore, respiratory tract infections during early-life 
are associated with asthma development (76, 77). This may be 
because viral infections favor other opportunistic respiratory 
pathogens such as M. catarrhalis and S. pneumoniae, increas-
ing the risk of asthma exacerbations (78). Other possible 
mechanisms may involve respiratory rhinovirus interacting 
with airway epithelial cells, increasing IL-25 and IL-33 pro-
duction and contributing to Th2 immune responses (79). This 
is in line with the higher levels of house dust mite-specific 
IgE found in children infected with rhinovirus (80). Moreover, 
rhinovirus infection can also induce mucus hypersecretion 
and airway hyperresponsiveness in neonatal mice compared 
with adults (81).

Diet and Microbiome Metabolic Products
Another key factor influencing gut microbiome diversity is infant 
feeding, and especially breastfeeding, which has been shown to 
increase colonization by Lactobacilli and Bifidobacteria (82). 
Breast milk contains oligosaccharides and a wide range of fatty 
acids, which will affect the gut microbiome and its capacity to 
produce metabolites that protect against allergies and asthma 
(83) through the development of Treg cells (84). This effect is also 
produced by the intake of unprocessed milk during the first year 
of life, probably related to higher levels of peptides in the serum 
fraction and unsaturated omega-3 fatty acids (85). Other dietary 
components such as polyphenols and fish oils are also important 
for microbiome diversity (86–88).

Some noteworthy bacteria, such as Lachnospiraceae and 
Ruminococcaceae, can also influence the gut microbiome by 
producing SCFAs—including propionate, butyrate, and acetate— 
through fermentation of complex dietary carbohydrates. Impor-
tantly, besides acting as an essential energy source for gastroin-
testinal colonocytes, these acids exert various anti-inflammatory 
effects on the immune system that can modulate FA and respira-
tory diseases (89, 90), by increasing epithelial barrier function 
(91), and inducing Treg cells (colonic CD103+FoxP3+ cells), DCs 
precursors, and IL-10 production (8, 90).

importance of exposure to Antibiotics
The introduction of antibiotics in the 1950s is associated with an 
increasing incidence of allergy. This is thought to be causes by 
antibiotics inducing dysbiosis which has been shown to directly 
impact the development of AD (92) and asthma (48). The age 
of initial exposure could be important since maternal intake of 
antibiotic during pregnancy increases the risk of allergy in chil-
dren (93), and antibiotic use in the first month of life has been 
associated with cow’s milk allergy (94). Intrapartum antibiotics 
have been shown to lead to a modified microbiome in children at 
3 and 12 months (95). Other studies showed that antibiotics affect 
the microbiome in older subjects (96, 97). Antibiotic administra-
tion is associated with severe allergic airway inflammation in 
neonates, but not in adults (98).

Even low doses of antibiotics can affect microbiome com-
position (99); however, the associations between antibiotic 
consumption and allergic diseases increase with the number 
of antibiotics prescribed, and variable effects have been found 
for different antibiotic families. Some studies have indicated 
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that betalactam antibiotics are the most common triggers 
when FA is diagnosed before 2 years of age, while macrolides 
are associated with FA when it is diagnosed later (100). For 
asthma, further studies are needed to clarify whether it is the 
infection rather than the antibiotics themselves that increase 
susceptibility (101).

inTeRvenTiOnS

The microbiota can be considered a therapeutical target for treat-
ing allergy; moreover, certain species can be used to enhance 
tolerance response induction. Different approaches for restoring 
the microbiome involve probiotics, prebiotics, and synbiotics.

Probiotics
According to the Food and Agriculture Organization of the 
United Nations and the World Health Organization, probiotics 
are defined as “live microorganisms which, when administered in 
adequate amounts, confer a health benefit to the host” (102). They 
do so by promoting the appropriate balance of gut microbiota. 
The health benefits attributed to one probiotic strain are not 
necessarily applicable to another one even within one given 
species (103). Furthermore, the effectiveness may depend on 
the time of intervention and aspects of the current microbiota 
composition. In fact, different studies have shown that timing 
is crucial (104).

In the case of FA, co-administration of bacterial adjuvants with 
oral immunotherapy (OIT) has been suggested as a potential treat-
ment. Probiotic therapy with Lactobacillus rhamnosus increases 
efficacy when co-administered with peanut OIT—producing 
desensitization in 82% of treated patients (105)—or with hydro-
lyzed casein in milk allergic patients, in which an increase of fecal 
butyrate levels were found (106, 107). However, other strains of 
Lactobacilli and/or Bifidobacteria did not demonstrate any effect 
in preventing allergic diseases (106, 107). Some investigations 
have shown that the oral administration of probiotics may benefit 
allergic rhinitis patients (108–110); similarly, local nasal adminis-
tration of Lactococcus lactis NZ9000 can affect local and systemic 
immune responses against S. pneumoniae (111). However, Ivory 
et al. reported that even oral delivery of Lactobacillus casei Shirota 
modified the immune system of allergic individuals (110), these 
modifications did not have a significant impact on the allergic 
status (112), highlighting the fact that analysis of immune param-
eters per se is not a real indicator of the therapeutical properties 
of the probiotics.

It has been suggested that probiotics can help preventing 
eczema and they also show some beneficial effects for other 
allergic diseases including asthma (113–117); furthermore, 
another approach based on the intranasal application of 
bacterial products (endotoxin or flagellin) has demonstrated 
immunomodulatory ability, mimicking the effect of probiotics, 
for the lung in different animal models, reducing experimental 
asthma by either re-establishing the expression of the ubiquitin- 
modifying enzyme A20 at the endothelial barrier or inducing 
Tregs (118, 119).

Therefore, it seems that the optimal time periods to apply pro-
biotic intervention are before, during, and just after birth represents. 
Nevertheless, more studies, using clinical trial methodologies 

when possible, should be carried out to confirm these findings and  
determine the optimal probiotics to use.

Prebiotics
Prebiotics are non-digestible food components that benefit the 
host by selectively stimulating the growth and activity of micro-
organisms. Studies have shown that fibers and oligosaccharides 
can improve immunity and metabolism (8) and that the treat-
ment of pregnant and lactating mice increases the proportions of 
Lactobacillus and Clostridium leptum and promotes a long-term 
protective effect against FA in the offspring (120).

Studies evaluating the effect of fiber/oligosaccharide intake in 
modulating asthma (121–123) have shown heterogeneous results, 
with one study reporting a reduction of wheezing (121) but oth-
ers reporting no effect (122, 123). A recent Cochrane review has 
shown that although the addition of prebiotics to infant food may 
reduce the risk of eczema, it is not clear whether their use may 
affect other allergic diseases including asthma (124).

Synbiotics
When the use of a combination of prebiotics and probiotics 
produce synergistic health benefits it is described as a symbiotic. 
In FA mice models, both the microbiome and diet can affect 
the development of food tolerance by the induction of Treg 
cells (34). In cow’s milk allergy, it has been demonstrated that 
treatment with extensively hydrolyzed casein formula plus  
L. rhamnosus GG promotes tolerance through changes in the 
infant gut microbiome (89).

A recent meta-analysis has shown their beneficial effects for 
eczema treatment (125). However, further well-conducted, rand-
omized, placebo-controlled longitudinal studies are still needed 
in this area (126).

COnCLUSiOn

The microbiota is a highly dynamic environment influenced by 
multiple environmental and dietary factors, with a complex role 
in allergic diseases. Further studies with larger number of well-
characterized patients and controls are needed to dissect the role 
of microbiome in allergic diseases are the performance. Despite 
some limitations, interventions with probiotics, prebiotics, and/
or synbiotics show promise for the development of a preventive 
therapy, either by restoring altered microbiome functionality due 
to dysbiosis or as a boosting of immunological system in specific 
immunotherapy. However, the field is still relatively new and 
we expect many key findings to be made in the next few years. 
Detailed prospective, randomized, placebo-controlled studies 
will be essential for this purpose.
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