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The alternative pathway is a continuously active surveillance arm of the complement 
system, and it can also enhance complement activation initiated by the classical and 
the lectin pathways. Various membrane-bound and plasma regulatory proteins control 
the activation of the potentially deleterious complement system. Among the regulators, 
the plasma glycoprotein factor H (FH) is the main inhibitor of the alternative pathway 
and its powerful amplification loop. FH belongs to a protein family that also includes 
FH-like protein 1 and five factor H-related (FHR-1 to FHR-5) proteins. Genetic variants 
and abnormal rearrangements involving the FH protein family have been linked to numer-
ous systemic and organ-specific diseases, including age-related macular degeneration, 
and the renal pathologies atypical hemolytic uremic syndrome, C3 glomerulopathies, 
and IgA nephropathy. This review covers the known and recently emerged ligands and 
interactions of the human FH family proteins associated with disease and discuss the 
very recent experimental data that suggest FH-antagonistic and complement-activating 
functions for the FHR proteins.

Keywords: age-related macular degeneration, atypical hemolytic uremic syndrome, C3 glomerulopathy, 
complement activation, complement de-regulation, factor H, factor H-related protein, opsonization

iNTRODUCTiON

While initially only regarded as a supporting factor for the effectivity of immunoglobulins, the 
complement system is nowadays widely recognized as a crucial part of the innate immune system 
involved in many different processes (1). In addition to acting as a first line of defense by directly 
targeting and killing invading pathogens, with or without the help of immunoglobulins, its role in 
inflammation, immune cell recruitment, and clearance of immune complexes, apoptotic cells, and 
necrotic cells places complement at the center of the human immune system. The relevant role of 
complement is corroborated by the variety of pathological situations associated with complement 
deficiency or dysfunction.

Three complement activation pathways have been defined, each comprised of various proteins 
forming an intricate cascade of activation events (Figure  1). Both the classical and the lectin 
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FigURe 1 | Overview of the role of factor H (FH) within the complement system. (I) The complement system is activated via binding of C1q (classical pathway), or 
mannan binding lectin/ficolins (MBL/FCN) (lectin pathway) in complex with serine proteases to specific molecules, or through the spontaneous activation of C3 into 
C3(H2O) (alternative pathway). Upon activation, the three pathways form C3 convertases (C4b2a or C3(H2O)Bb) resulting in the generation and deposition of C3b on 
the activating surface. (II) C3b forms new C3 convertase molecules (C3bBb) that enhance C3b deposition and amplify complement activation. (III) C3b can also bind 
to C3 convertases to generate C5 convertases (C4b2a3b or C3bBb3b); this process initiates the terminal pathway of complement activation, and the formation of the 
lytic C5b–C9 complex. FH keeps the spontaneous activation of C3 under control, and it also inhibits the complement system at both the activation and amplification 
stages. FH binds to deposited C3b and C3bBb complexes on human cell surfaces and inhibits further activation by three mechanisms: it competes with factor B (FB) 
for C3b binding and C3bBb generation; it increases the decay of C3bBb complexes, and it acts as a cofactor for factor I (FI), which in turn cleaves C3b into inactive 
C3b (iC3b).

2

Sánchez-Corral et al. FH/FHR Proteins in Complement Regulation

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1607

pathways are initiated when pattern recognition molecules 
(PRMs) that are complexed with zymogens of serine proteases, 
bind to their ligand. The classical pathway is activated by the 
binding of the C1 complex to immunoglobulins and pentrax-
ins, while the lectin pathway uses various PRMs, including 
mannose-binding lectin and ficolins, which bind to specific 
carbohydrate moieties. These ligands are normally not present 
on healthy human cells. In contrast, the alternative activation 
pathway is initiated through the constitutive low rate hydrolysis 
of the internal thioester bond of C3, allowing binding of various 
activating complement proteins. All three pathways lead to the 
cleavage of C3 into C3a and C3b. C3b contains a highly reactive 
thioester group that is exposed upon C3 cleavage, resulting in 
the deposition of C3b onto virtually any molecule or cell surface 
in close proximity. When left unchecked, C3b on its own will 
again initiate the alternative pathway. As both the classical and 
the lectin pathway will also activate the alternative pathway 
once C3b is formed, thus enhancing complement activation, the 
alternative pathway has a pivotal role as an amplification loop 
within the complement system. Up to 80% of total complement 
activation has been ascribed to this amplification loop (2). Due 
to the spontaneous nature of the alternative pathway, it must 
be tightly controlled to prevent unwarranted and dangerous 
complement activation.

Complement regulation takes places both on the human cell 
surface and in the fluid phase. Several regulators, like most com-
plement components, are found in the circulation. In addition, 
human cells express a wide array of membrane-bound comple-
ment regulators that control the system at various steps. Especially 
due to the activating proteins of the alternative pathway, regula-
tion in the fluid phase is crucial, as unchecked, spontaneous C3 
activation would lead to complete consumption of C3 and loss 
of complement activity. The 155-kDa glycoprotein complement 

factor H (FH) is the major regulator of the alternative pathway, 
inhibiting C3 activation both in the fluid phase as well as on 
human cell surfaces (Figure 1) (3). Similar to other complement 
regulators encoded in the regulators of complement activation 
(RCA) gene cluster, FH is composed of complement control 
protein (CCP) domains, often also referred to as short consensus 
repeat domains. FH is composed of 20 CCPs (Figure 2) (4). The 
first four N-terminal domains contain the complement inhibiting 
activity, such as decay accelerating activity and co-factor activity 
(5). The two most C-terminal CCP domains (19 and 20), together 
with a region located in CCPs 6–8, are crucial for binding of FH to 
surfaces, such as human cell membranes, as well as for mediating 
binding to several host and non-host ligands (discussed below) 
(6, 7). FH is highly abundant in plasma, with circulating levels 
of 233–400 µg/mL on average, although it has to be noted that 
some of the assays used might detect other FH family members 
as well (8–11).

Factor H-like protein 1 (FHL-1) is a splice variant derived 
from the CFH gene. Serum levels of FHL-1 are estimated to be 
10–50 µg/mL (12, 13). FHL-1 is identical to the first seven CCP 
domains of FH, with an unique, four amino acid long C-terminus 
(14, 15). Thus, FHL-1 shares the C3b binding and regulatory 
domains CCPs 1–4 with FH and, like FH, it has complement 
inhibiting activity (16). Likewise, due to the shared CCPs 6–7 
domains, FHL-1 and FH bind some common ligands, such as 
heparin, the pentraxins C-reactive protein (CRP) and pentraxin 
3 (PTX3), and malondialdehyde epitopes (Figure 2). However, 
there are also differences in ligand interactions between FHL-1 
and FH, not only because of the extra domains in FH but also due 
to the difference in their conformation and the unique SFTL tail 
at the C-terminus of FHL-1. For example, it was recently reported 
that the SFTL tail increases the interaction of FHL-1 with CRP 
and PTX3 (17).
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FigURe 2 | Factor H (FH) family proteins and their ligands. The schematic complement control protein (CCP) domain structure of FH, FHL-1, and the FHR proteins 
is shown, with CCPs aligned vertically to the homologous domains in FH. The N-terminal CCPs 1–4 of FH and FHL-1 mediate the complement regulatory functions 
of these proteins (shown in yellow). CCPs 7 and 19–20 (shown in blue) harbor the main ligand- and host surface-recognition sites; selected ligand binding sites are 
indicated by horizontal lines. The CCPs 1–2 of factor H related protein 1 (FHR)-1, FHR-2, and FHR-5 are closely related to each other and mediate dimerization of 
these FHRs. The CCPs in FHRs with high sequence identity to the homologous FH domains are indicated by identical/similar colors.
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Next to FH and FHL-1, humans (and several non-human 
species; not discussed here) possess FH-related (FHR) pro-
teins, homologous to FH. They are encoded separately, with 
their genes (CFHR1 to CFHR5) lying in tandem next to CFH 
at 1q31.3. The CFHR genes originate from CFH through gene 
duplication events (18). The CFH–CFHRs loci contain several 
segmental duplications, making them prone to genetic structural 
rearrangements due to nonallelic homologous recombination 
(NAHR) events. This has led to copy number polymorphisms 

(CNPs), with the very common 86.3-kb deletion (CNP147) 
that results in loss of CFHR3–CFHR1 (ΔCFHR3–CFHR1), and 
the very rare 122-kb deletion (CNP148) resulting in loss of 
CFHR1–CFHR4 (ΔCFHR1–CFHR4) (19). Like FH, the FHRs 
are entirely composed of CCP domains (Figure 2), which dis-
play high sequence similarity with CCP domains of FH known 
to be involved in ligand and surface binding. Remarkably, none 
of the human FHR proteins possess CCP domains homologous 
to FH CCPs 1–4. Thus, based on their primary structure, FHR 
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TAble 1 | Reported serum levels of the factor H-related (FHR) proteins.

Protein measured gene copies levels (μg/ml) N Reference

Factor H (FH) – 400 SD = 62 1,004 (8)
– 319.9 SD = 71.4 358 (9)
– 233.24 SD = 56.65 63 (10)
– 232.7 SD = 74.5 1,514 (11)

FHL-1 – 47 SD = 11.3a 2 (12)
Total factor H-related protein 1 (FHR-1) 1*CFHR1 61 SD = 31 24 (54)

2*CFHR1 122 SD = 26 44 (54)
Not defined 94 IQR = 70.5–119.6 158 (55)
Not defined 1.63 SD = 0.04 344 (66)

FHR-1 homodimers 1*CFHR1 4.88 SD = 1.33 36 (53)
2*CFHR1 14.64 SD = 3.04 77 (53)

FHR-1/2 heterodimers 1*CFHR1 5.01 SD = 1.49 36 (53)
2*CFHR1 5.84 SD = 2.41 77 (53)

FHR-2 homodimers 0*CFHR1 3.1 Pool of four donors (53)
1*CFHR1 0.85 SD = 0.41 36 (53)
2*CFHR1 0.65 SD = 0.41 77 (53)

Total FHR-2 Not defined 3.64 SD = 1.2 344 (66)
FHR-3 1*CFHR3 0.38 SD = 0.23 26 (58)

2*CFHR3 0.83 SD = 0.48 69 (58)
2*CFHR3*A 0.55 SD = 0.15 16 (60)
2*CFHR3*B 0.82 SD = 0.08 4 (60)
Not defined 1.06 SD = 0.53 21 (47)
Not defined 0.020 SD = 0.001 344 (66)

FHR-4A – 25.4 Range = 6.5–53.9 11 (27)
– 2.42 SD = 0.18 344 (66)
– 2.55 SD = 1.46 129 (63)

FHR-4B – Not detected – (63)
FHR-5 homodimers – 5.5 Range = 3.4–10.1 13 (65)

– 5.49 SD = 1.55 344 (66)
– 2.46 IQR = 1.79–3.67 158 (55)
– 1.66 SD = 0.43 115 (53)

aFHL-1 levels were determined indirectly, by subtracting the values of FH measurements from those of FH + FHL-1 measurements. N: number of samples; SD: standard deviation; 
IQR: interquartile range.
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proteins are not expected to have any direct complement inhib-
iting activity similar to FH. Nonetheless, several reports have 
observed direct complement inhibitory activity for some of the 
FHRs, albeit often weak compared to FH (20–24). However, 
other studies have not found such activity for FHRs, questioning 
whether this is truly the physiological role of the FHR proteins 
(25–30). Instead, the FHRs are currently hypothesized to have 
an antagonistic function over FH, competing with binding to 
FH ligands and cell surfaces. By lacking direct complement 
inhibiting activity, binding of FHRs instead of FH would allow 
complement activation to proceed (31). This process has also 
been termed complement de-regulation. Indeed, binding to 
various (FH) ligands has been reported for all FHRs, which 
will be discussed below. In addition, some FHRs were reported 
to promote alternative pathway activation by binding C3b and 
serving as a platform for the assembly of the C3 convertase  
(27, 32, 33). Recent characterization of some of the mouse FHRs 
supports a role of these proteins as positive regulators in the 
modulation of complement activation (34, 35).

In this review, we outline and provide an update on the recent 
developments regarding the FH protein family. New insights 
regarding circulating levels of FHRs, ligand binding, and disease 
associations allow re-assessing the role of FHRs in the comple-
ment system. Together, these results shed light on the balance of 
the FH–FHRs axis, and the role of FHRs in non-pathological and 
pathological conditions.

QUANTiTATiON OF FHR PROTeiNS

Factor H, FHL-1, and the FHR proteins are mainly synthesized by 
hepatocytes, but synthesis by other cells and tissues has also been 
reported, particularly for FH and FHL-1 (36–38). FH production 
has been detected in endothelial cells, platelets, mesangial cells, 
keratinocytes, fibroblasts, retinal pigment epithelial cells, mono-
cytes, and dendritic cells, among others (39–46). On the other 
hand, little information on the extrahepatic expression of the FHR 
proteins is available. Both CFHR3 mRNA and FHR-3 protein 
have been identified in retinal macrophages, while no FHR-3 
expression was found in other retinal cell types (47). Extrahepatic 
synthesis of FH/FHRs most likely contributes to an efficient con-
trol of complement activation locally, but a relevant contribution 
to the plasma levels of these proteins is unlikely, considering the 
relative low expression compared to the hepatic source.

Accurate quantification of the FHR proteins has been a great 
challenge since their discovery. Due to the high sequence similar-
ity among FH and FHR proteins, it has proven to be very difficult 
to obtain specific reagents for each of the FHR proteins. For some 
time, only concentration estimates were available for most of the 
FHR proteins (21, 48). However, with recently renewed and suc-
cessful efforts in generating highly specific antibodies, specific 
immunoassays for each of the FHR proteins are now becoming 
available, although some discrepancy about their actual physi-
ological levels still remains (Table 1).
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Factor H-Related Protein 1 (FHR-1)
Factor H-related protein 1 is composed of five CCP domains, 
and circulates in two forms (37 and 42 kDa), with either one or 
two N-linked carbohydrate moieties (30, 49, 50). Two genetic 
variants of FHR-1 have been described, FHR-1*A and FHR-1*B, 
the difference being three amino acids in CCP3 (51). FHR-1*B 
CCP3 is identical to FH CCP18, whereas FHR-1*A CCP3 shares 
95% sequence identity with FH CCP18. FHR-1 CCPs 4 and 5 
share high sequence identity (100 and 97%) with FH CCPs 19 
and 20, respectively. FHR-1 has a dimerization motif located 
in CCPs 1–2 that are highly similar (>85% sequence identity) 
to CCPs 1–2 of FHR-2 and FHR-5, and allow the formation of 
FHR-1 homodimers and heterodimers with FHR-2 (26, 52, 53). 
While identified in vitro, the existence of FHR-1/FHR-5 heter-
odimers in vivo is still controversial (26, 52, 53). Similarly, FHR-1 
quantification also remains controversial. In 2017, several groups 
determined FHR-1 levels. Tortajada et al. reported an average of 
122 µg/mL in 44 healthy controls with two copies of CFHR1, and 
an overall average of 90.4 µg/mL in 76 controls (including eight 
homozygous ΔCFHR3–CFHR1 carriers and 24 heterozygous 
ΔCFHR3–CFHR1 carriers) (54). Using the same immunoassay, 
Medjeral-Thomas et  al. reported 94.4  µg/mL FHR-1 in 158 
controls (of whom 133 were genotyped: 3 ΔCFHR3–CFHR1 
homozygous, 45 ΔCFHR3–CFHR1 heterozygous, and 85 with-
out ΔCFHR3–CFHR1) (55). Of note, the immunoassay des-
cribed by Tortajada et  al. does not distinguish between FHR-1 
homodimers or heterodimers. In contrast, using immunoassays 
specific for FHR-1 homodimers and FHR-1/-2 heterodimers, van 
Beek et al. reported ~10-fold lower levels (averages of 11.33 and 
5.48 µg/mL, respectively), in 115 healthy donors (2 homozygous 
ΔCFHR3–CFHR1, 36 heterozygous ΔCFHR3–CFHR1 carriers, 
and 77 without ΔCFHR3–CFHR1) (53).

Factor H-Related Protein 2
Factor H-related protein 2 is the smallest FHR protein, composed of 
four CCP domains (56). FHR-2 circulates either non-glycosylated  
(24  kDa) or with one N-linked carbohydrate moiety in CCP2 
(29 kDa). FHR-2 CCP1 and CCP2 are nearly identical to FHR-1 
CCP1 and CCP2 (100 and 98%), respectively, including all 
residues comprising the dimerization motif (26). Similar to the 
proposed FHR-1/FHR-5 dimers, FHR-2/FHR-5 dimers remain 
to be identified in vivo, while FHR-2 homodimers and FHR-1/
FHR-2 heterodimers have been confirmed (52, 53). FHR-2 
homodimer levels have been shown to be around 3 µg/mL; with 
these relatively low levels, FHR-2 seems to be the limiting factor 
in the formation of FHR-1/FHR-2 heterodimers and, indeed, 
most FHR-2 is found dimerized with FHR-1 (53).

Factor H-Related Protein 3
Factor H-related protein 3 is composed of five CCP domains, of 
which CCP1 and CCP2 have high sequence similarity with FH 
CCP6 and CCP7 (94 and 86%), respectively (57). The C-terminal 
CCPs 3–5 are virtually identical to the C-terminal domains of 
FHR-4A and FHR-4B (93–100%). FHR-3 contains four N-linked 
glycosylation sites, and it circulates in plasma as multiple gly-
cosylation variants ranging from 37 to 50  kDa. A quantitative 

FHR-3-specific immunoassay was first described by Pouw et al., 
reporting levels of 0.38 and 0.83 µg/mL for healthy individuals 
carrying either one or two CFHR3 copies, respectively (58). These 
results were later confirmed in a similar assay, reporting mean 
levels of 1.06 µg/mL (47). Two major genetic variants of CFHR3 
(CFHR3*A and CFHR3*B) have been described (59); interest-
ingly, these are quantitative variants, with CFHR3*B determining 
higher FHR-3 levels than CFHR3*A (60). The FHR-3*A and 
FHR-3*B allotypes differ at aminoacid 241 in CCP3 (Pro/Ser), 
but its functional relevance has not been determined.

Factor H-Related Protein 4
CFHR4 is the only known CFHR gene that expresses two splice 
variants, FHR-4A and FHR-4B (61, 62). FHR-4A is composed of 
nine CCP domains (86 kDa), while FHR-4B has five CCP domains 
(43 kDa). All FHR-4B domains are also present in FHR-4A, with 
FHR-4B CCP1 being identical to FHR-4A CCP1, and FHR-4B 
CCPs 2–5 being identical to FHR-4A CCPs 6–9. FHR-4A CCPs 
2–4 seems to have arisen from internal gene duplication, and have 
high sequence similarity (85–93% amino acid identity) with the 
other CCPs in FHR-4A/B (61). Thus, obtaining specific reagents 
to distinguish FHR-4A from FHR-4B is challenging on first 
sight. Quantification by using an immunoassay that in principle 
measures both FHR-4A and FHR-4B resulted in average levels 
of 25.4 µg/mL (27). However, FHR-4A-specific antibodies have 
been described recently and used in an FHR-4A-specific ELISA 
which shows 10-fold lower levels for FHR-4A (2.55 ± 1.46 µg/mL)  
(63). In line with the complete sequence identity of FHR-4B with 
several FHR-4A domains, no specific antibodies for FHR-4B 
could be obtained. Strikingly, FHR-4B was not detected in plasma 
using various antibodies that did react with recombinant FHR-4B 
(63). This indicates that free FHR-4B must be in an extremely low 
concentration or even absent from plasma.

Factor H-Related Protein 5
Factor H-related protein 5 is composed of nine CCPs and is the 
only FHR with domains (CCPs 3–7) homologous to FH CCPs 
10–14 (64). FHR-5 CCPs 1–2 are highly similar (85–93% amino 
acid identity) to CCPs 1–2 of FHR-1 and FHR-2, although not all 
residues identified in the FHR-1/2 dimerization motif are present 
in FHR-5 (26). This could explain why the presence of FHR-5 het-
erodimers in vivo is still controversial (26, 52, 53). FHR-5 seems 
to circulate predominantly as homodimer in vivo (53), making 
quantification a bit more straightforward. FHR-5 serum levels 
were reported to be 3–6 µg/mL (24), which was later confirmed 
in 13 healthy individuals, with median levels of 5.5 µg/mL (65). 
Similar FHR-5 levels (median 2.46 µg/mL) were found in a larger 
group of 158 healthy controls using the same immunoassay (55). 
More recently, an average concentration of 1.66 µg/mL was shown 
in 115 controls by using a newly developed FHR-5 ELISA (53).

Other Quantifications
In addition to the specific immunoassays described above, mass 
spectrometry has also been used to quantify the FHR proteins 
(66). While this approach allows specific measurement of FHRs 
based on unique peptide sequences, quantification of FHR 
dimers is not possible. Results similar to the immunoassays were 
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obtained for FHR-2 (3.64 ± 1.2 µg/mL), FHR-4A (2.42 ± 0.18 µg/mL),  
and FHR-5 (5.49  ±  1.55  µg/mL). However, much lower 
levels were found for FHR-1 (1.63 ±  0.04 µg/mL) and FHR-3 
(0.020 ± 0.001 µg/mL). It is unclear why such lower concentra-
tions were found for FHR-1 and FHR-3, although the frequency 
of ΔCFHR3–CFHR1 in the studied population (n = 344, Icelandic 
origin) was not determined. Of note, the peptide used for FHR-4 
quantification is only present in FHR-4A, thus providing no extra 
information whether FHR-4B exists in vivo.

Kopczynska et  al. measured FHR-1, FHR-2, and FHR-5 
altogether in one immunoassay, finding a total FHR-1/2/5 con-
centration of 10.67 µg/mL (±5.42) in 42 healthy individuals (67). 
This result is in great contrast to previously reported levels of 
approximately 100 µg/mL for FHR-1 (54, 55), but is comparable 
to a combined mean FHR-1/2/5 concentration of 19.27 (53) and 
10.76 µg/mL (66).

The reasons for the huge differences in FHR levels outlined 
above are unclear. Moreover, the existence of homo- and heter-
odimers, and the fact that the frequency of the ΔCFHR3–CFHR1 
polymorphism is highly population-dependent (19, 68, 69), 
further complicate the accuracy and assessment of measure-
ments. To exclude any possible cross-reactivity that interferes 
with FH or FHR quantifications, it is crucial to extensively 
characterize antibodies generated against FH or any of the 
FHRs. FH immunoassays should ideally use at least one anti-
body targeting an epitope located in domains absent from the 
FHRs, such as CCPs 15–17. Furthermore, when quantifying 
FHR proteins, it is highly recommended to stratify protein levels 
based on CFHR CNPs, as well as distinguishing between hetero-  
and homodimers. This would aid in comparison of control 
and patient groups, as CNP frequencies and dimer formation 
might be altered in patients. CNPs should be determined at the 
genetic level, as stratification based only on protein levels seems 
not to be possible due to the wide range in protein concentra-
tion within each CNP group (53, 58). CNPs are most commonly 
determined using multiplex ligation-dependent probe amplifi-
cation (MLPA), although there is currently no commercial kit 
available that also covers CFHR4. In addition, while normal 
levels of FHR proteins are now being reported, further data are 
necessary to reach consensus on their actual concentrations in 
circulation.

ligANDS OF FH AND THe FHR PROTeiNS 
AND THeiR RelevANCe

As outlined above, FH is a major inhibitor of the alternative 
pathway in plasma and when bound to cells and surfaces like 
the glomerular basement membrane. This complement regula-
tory activity is due to the interaction of FH with C3b (70). In 
addition, FH binds to several other ligands (Figure 2) and, when 
ligand-bound, in many cases maintains its complement inhibi-
tory activity. These FH interactions ensure proper regulation of 
complement activation, as well as the resulting opsonization and 
inflammation.

Complement activation can be initiated on modified, danger-
ous self surfaces, which are recognized by PRMs within (C1q, 

ficolins, MBL, and properdin) and outside the complement sys-
tem (e.g., pentraxins). FH along with other regulators may ensure 
targeted but restricted complement activation and an optimal 
degree of opsonization, while preventing overt inflammation 
and damage resulting from cascade over-activation (71, 72). The 
FHR proteins appear to counter-balance this activity of FH and 
enhance complement activation by binding to the same or similar 
ligands and outcompeting FH (Figure 3), and in some instances 
also by interacting with C3b and other ligands independent of 
FH (31). This section briefly summarizes the main ligand inter-
actions of FH and the FHR proteins (Figure  2), and indicates 
their relevance in the regulation and modulation of complement 
activation.

We would like to briefly note that tumor cells and microbes 
can bind FH in an attempt to avoid their destruction by host 
complement. In addition, the main microbial ligand binding sites 
of FH are in CCPs 6–7 and 19–20, and homologous domains are 
conserved in the FHRs, thus these proteins may modulate opsoni-
zation/killing of microbes. These aspects have been reviewed in 
detail (6, 31, 73–75).

C3b
The main ligand of FH is the active C3 fragment C3b, which can 
be generated by fluid phase and surface-bound C3 convertases. 
Since C3b is the central component that promotes complement 
amplification via the alternative pathway, and is also required 
for the assembly of C5 convertases and the initiation of the 
terminal pathway, its regulation is key to maintain the proper 
balance of complement activation and inhibition. FH interacts 
with C3b at two main sites, harbored by CCPs 1–4 and 19–20 
(76). The N-terminal C3b binding site is active when FH is in the 
fluid phase (e.g., in blood plasma) and also when FH is bound 
to cells or other surfaces [via glycosaminoglycans (GAGs), 
sialic acid, or a specific receptor—see below] (Figure 3A). FH 
may also bind C3b by CCPs 1–4 when already bound to other 
ligands, such as pentraxins, because these interactions typically 
involve CCPs 6–7 and 19–20 (74, 77–79). Thus, FH maintains 
its complement regulatory activity when bound to cells or other 
ligands.

Structural studies revealed that FH engages surface-deposited  
C3b in the context of host GAGs/sialic acid, i.e., CCPs 19–20 
bind to these ligands at the same time, which allows avid 
interaction of FH with a host surface under complement attack. 
The FH C-terminal site also binds C3d, the final C3b degrada-
tion product that remains covalently attached to the surface  
(80, 81).

The FHR proteins also bind to C3b, but the nature of these 
interactions is inherently different from that of FH because 
FHRs lack domains homologous to FH CCPs 1–4. Thus, FHRs 
lack FH-like cofactor activity and decay accelerating activity, 
although some residual activity may be present due to the 
interaction of the C-terminal domains of these proteins with 
C3b. This should be investigated in detail in the future to clarify 
the currently contradicting reports in this regard (20, 23, 24, 
26, 27, 32, 33).

In contrast to possible inhibitory activities, FHR-1, FHR-4, 
and FHR-5 were reported to activate the alternative pathway, by 
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is mediated by complement control proteins (CCPs) domain 19–20 indicated in blue. Through the activity of the N-terminal regulatory domains (CCPs 1–4, in yellow), 
FH assists factor I (FI) in the proteolytic cleavage of C3b into inactive C3b (iC3b). (b) Mutations in the regulatory or recognition domains, and (C) autoantibodies 
bound to these domains can cause functional FH defect and result in impaired surface complement control. (D) FHRs can also interact with similar surfaces and 
ligands as FH, and compete with FH for binding (de-regulation), and/or they can directly activate the alternative pathway by binding C3b and serving as a platform 
for the assembly of an active C3bBb convertase. The black star-shape indicates newly exposed ligand/altered self. (e–H) The relative FH/FHR concentrations, the 
ligand density (avidity), and the dimeric/oligomeric states of the FHRs influence surface complement regulation. (e) At low ligand (e.g., deposited C3b) density and 
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binding C3b through their C-terminal domains and forming a plat-
form for the assembly of an active C3bBb convertase (27, 32, 33).  
This activity could take place on surfaces where these FHRs are 
bound directly, or via another ligand, such as pentraxins (33). 
FHR-1 and FHR-5 were shown to enhance complement activa-
tion on the extracellular matrix (ECM) and on the surface of 
apoptotic or necrotic cells (32, 33, 82).

Additionally, FHRs may compete with FH for binding to 
C3b deposited on surfaces, a process termed complement de-
regulation, because FHRs can enhance complement activation 
by inhibiting FH binding (Figure 3D). This activity of the FHRs 
may only be significant—considering their relative serum con-
centrations and avidity for C3b—if increased amounts of FHRs 
or altered FHR forms (such as higher order oligomers) are present 
(Figures 3E–H) (25, 26, 52, 83, 84). For FHR-2, it was described 
that, despite binding to C3b, it cannot effectively compete with 
FH for binding to surface-bound C3b (20).

Altogether, based on these data the FHRs can be regarded as 
positive complement regulators.

Other C3 Fragments
While interacting sites for other C3 fragments were described, 
current evidence strongly supports the physiologically relevant 
binding of FH to C3b via CCPs 1–4 and 19–20, as well as to 
C3d via CCPs 19–20 (76). Interaction of FHR-1 and FHR-2 
with C3d was also shown, but without functional analyses  
(20, 84). Binding of FHR-3, but not of FHR-1, to C3d was shown 
to prevent the binding of C3d to its receptor on B cells, thus 
modulating B cell activation (85). FHR-5 was reported to bind 
to iC3b and C3d with affinities similar to C3b; in contrast, FH 
bound very weakly to iC3b and C3d compared with FHR-5, 
indicating that despite its lower serum concentration FHR-5 
can be an efficient competitor of FH for binding to deposited 
C3 fragments (26).

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


8

Sánchez-Corral et al. FH/FHR Proteins in Complement Regulation

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1607

glycosaminoglycans (gAgs), Sialic Acid, 
and Heparin
Distinction between self, non-self, or altered self surfaces relies 
in part on the recognition of host-specific GAGs and sialic 
acid by FH (and FHL-1). This allows complement activation 
to proceed unhindered on microbial (“activator”) surfaces, but 
prevents activation on host (“non-activator”) surfaces (86). This 
has been a subject of intensive research, often using heparin as 
a model for polyanionic molecules. The main heparin-binding 
sites were identified in FH (and FHL-1) CCP7 and FH CCP20 
(87, 88). This allows recognition of, and attachment to, host 
glycomatrix and cells, such as platelets and endothelial cells 
(89, 90). Recent studies revealed some functional differences 
indicating that while some GAGs are recognized by FH and 
FHL-1 via CCP7, the sialic acid binding site is in CCP20 (91), 
also targeting these host regulators to different surfaces and 
explaining the different consequences of mutations affecting 
these domains (89, 92, 93).

Factor H-related protein 1 can also bind to host surfaces via its 
FH-homologous C-terminus (22, 29), and FHR-3 binds heparin 
through CCP2, which is homologous to CCP7 of FH (23, 87). 
In addition, FHR-5 has a heparin-binding site in CCPs 5–7  
(24, 94). The functional relevance of these interactions needs to 
be investigated further, but they could anchor these proteins on 
certain cells and surfaces.

eCM as a Non-Cellular Surface
Extracellular matrices occur in many tissues and can have different 
functions, the most important ones being the physical support of 
cells and acting as barriers and filters. The composition of ECMs 
differs at distinct anatomic sites and is dynamically regulated. 
Under certain conditions, e.g., endothelial cell activation or 
injury, ECMs can be exposed to body fluids and plasma proteins; 
in addition, the Bruch’s membrane in the eye and the kidney glo-
merular basement membrane are also exposed because the lining 
cell layer is fenestrated. To prevent overt complement activation, 
such ECMs rely largely on soluble complement regulators, such 
as FH and FHL-1, which can bind via their GAG binding sites 
and locally regulate complement (95). As noted above, differences 
in ECMs and in domain composition of the FH family proteins 
may target FH and FHRs toward distinct sites, such as FH to the 
glomerular basement membrane (via CCPs 19–20) and FHL-1 
to the Bruch’s membrane (via CCP7) (95). FHR-5 was shown to 
bind to MaxGel, an ECM extract, and de-regulate complement 
on this surface (32); a recent study identified laminin as an ECM 
ligand of FHR-5 (94).

ligands on Dead Cells
Complement is largely involved in the immunologically safe and 
silent disposal of apoptotic and necrotic cells via opsonophago-
cytosis (96). The soluble regulators FH and C4b-binding protein 
bind to dead cells and prevent excessive complement activation 
and potential deleterious effects when membrane-anchored 
regulators are down-regulated on the cells (97). FH can bind to 
Annexin-II, DNA, and histones (98), as well as malondialdehyde 
epitopes on apoptotic cells (94, 99). In addition, the pentraxins 

CRP and pentraxin 3 (PTX3) also bind to dead cells and recruit 
FH (77, 100). For FHR-1 and FHR-5, binding to necrotic cells 
and enhancement of complement activation have been shown 
(33, 82), suggesting that these FHRs modulate opsonization of 
dead cells.

Pentraxins
The pentraxins are soluble PRMs of the innate immune system 
and, based on their structure, categorized as short and long 
pentraxins. Pentraxins have numerous ligands and functions, 
reviewed in detail elsewhere (101); of note, they participate in 
the opsonization of microbes and dead cells, and they also bind to 
components of the ECM. For the prototypic short pentraxin CRP 
and the long pentraxin PTX3, interactions with both complement 
activators (C1q, MBL) and inhibitors (FH, C4b-binding protein) 
were described (74, 77, 79, 101–107).

C-reactive protein circulates in its native, pentameric form 
(pCRP) in body fluids, but it can adopt an altered conformation 
exposing neoepitopes upon pH change or binding to mem-
branes, and it can even decay to its monomeric form (mCRP) 
in vitro by chelation of the Ca2+ ions or adsorption on plastic. 
FH was described to bind primarily to mCRP via CCPs 7, 8–11, 
and 19–20 (79, 108, 109), but interaction with pCRP via CCPs 
7 and 19–20 at acute phase concentrations was also reported 
(110). The binding to mCRP allows targeting of the comple-
ment inhibitor FH to certain surfaces, including apoptotic cells 
(71, 100, 109). Among the FHRs, FHR-1 binds to mCRP via 
CCPs 4–5 (33) and FHR-5 via CCPs 5–7 (24, 32). The FHR-1/
mCRP interaction enhanced classical and alternative pathway 
activation, and FHR-5 efficiently competed with FH for mCRP 
binding, resulting in enhanced complement activation on 
mCRP (32, 33). In contrast, FHR-4 binds to pCRP via CCP1, 
and this interaction results in enhanced classical pathway 
activation (111, 112).

PTX3 forms a complex, octameric structure stabilized in part 
by covalent bonds (113). PTX3 binds to FH via CCPs 7 and 
19–20, and recruits it to apoptotic cells to downregulate comple-
ment activation (77). PTX3 also binds to FHR-1 (weaker than 
FH) and FHR-5 (stronger than FH); FHR-5 competes with FH 
and enhance complement activation on PTX3 (32, 33, 74).

Malondialdehyde epitopes
Malondialdehyde (MDA) and malondialdehyde-acetaldehyde 
(MAA) adducts of proteins and lipids may be generated 
upon oxidation as oxidation-related neoepitopes, and induce 
inflam matory responses. FH was shown to bind to MDA/
MAA epitopes and inhibit complement activation and the 
proinflammatory effects of such MDA/MAA epitopes (99). 
Two binding sites, within CCP7 and CCPs 19–20 of FH, were 
identified to bind to MDA/MAA epitopes (99, 114). Recently, 
FHR-5 was also shown to bind to MAA epitopes (MAA-BSA) 
via CCPs 5–7 and to compete with FH for MAA-BSA binding, 
thus increasing complement activation. In addition, binding 
of FHR-5 to necrotic cells was mediated by the same domains, 
possibly in part via the MDA/MAA epitopes that appear on 
dead cells (94).
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Other, less Characterized ligand 
interactions of FH
Factor H binds to other ligands that are implicated in certain 
diseases, particularly in the thrombotic microangiopathy aty pical 
hemolytic uremic syndrome (aHUS). One of these ligands is 
thrombomodulin, a transmembrane glycoprotein present in  
endothelial cells, which is involved in the regulation of coa-
gulation and inflammation; thrombomodulin soluble frag-
ments can also be released upon endothelial cell activation or 
injury. Thrombomodulin was shown to bind to FH and the 
FH–C3b complex with nanomolar affinity and to enhance 
FH cofactor activity, which would be reduced in the case of 
thrombomodulin mutations in aHUS (115–117). These data 
suggest a role for thrombomodulin in inhibiting alternative 
pathway activation locally via its interaction with FH, but 
thrombomodulin was also found to inhibit complement 
hemolytic activity in a FH-independent mechanism (116). 
An additional, complement-activating function of thrombo-
modulin by enhancing C3 cleavage into C3b has also been  
described (117).

Similarly, binding of von Willebrand factor (vWF) to FH 
enhances FH cofactor activity and also modulates the vWF 
prothrombotic status (118–120). FH was found co-localized 
with vWF in the Weibel–Palade bodies in human umbilical 
vein endothelial cells, and the complex was also detected in 
human plasma. Purified FH and vWF were shown to interact 
with nanomolar affinity, and to influence their respective func-
tions; vWF enhanced the cofactor activity of FH, whereas FH 
inhibited ADAMTS13-mediated cleavage of vWF and facilitated 
platelet aggregation (120). However, another investigation 
found that FH binds via its C-terminus to the vWF A2 domain, 
and enhances its cleavage by ADAMTS13 (118). FH was also 
reported to reduce large soluble vWF multimers (119). Thus, 
further studies are needed to clarify the functional relevance of 
the complex interaction between FH and vWF, and its potential 
role in disease.

Recently, hemolysis-derived heme was shown to activate the 
alternative pathway in serum and on endothelial cells, and to 
bind both C3 and FH. Heme-exposed C3 and endothelial cells 
displayed increased FH binding, and FH was shown to be a 
major serum factor that regulates C3 deposition on heme-treated 
endothelial cells (121).

Factor H was also reported to bind to apolipoprotein E via 
domains CCPs 5–7, and to regulate alternative pathway activa-
tion on high density lipoprotein particles (122). Complement 
regulation by FH on such lipoprotein particles could be 
potentially impaired in diseases characterized by immune 
deposits containing also apolipoprotein E, such as age-related 
macular degeneration (AMD) and dense deposit disease  
(DDD) (122).

In addition, FH binds to myeloperoxidase (MPO) released 
from activated neutrophil granulocytes, and FH and MPO co- 
localize in neutrophil extracellular traps. Interestingly, the bind-
ing site for MPO in FH was determined to be CCPs 1–4 and, 
thus, MPO inhibited FH binding to C3b, as well as FH decay 
accelerating activity and cofactor activity (123).

binding to Cellular Receptors—Non-
Canonical Roles of the FH Family Proteins
Factor H and some of the FHRs can also bind to cells via specific 
receptors, and may modulate the cell activation and response, 
as well as inflammatory processes. These aspects are reviewed 
in detail elsewhere (124); here, we summarize only some major 
FH/FHR-receptor interactions and their role, particularly those 
described very recently.

Complement receptor type 3 (CR3; CD11b/CD18; or integ-
rin αMβ2) was identified as a main FH receptor on neutrophils 
and macrophages (125, 126). FH maintains its cofactor activity 
when receptor bound, but it also directly affects cellular func-
tions, such as adhesion, cell spreading, migration, and cytokine 
production (125–127). Interestingly, FH was able to inhibit the 
release of extracellular traps by human neutrophils activated 
with immobilized fibronectin plus fungal β-glucan, or with 
phorbol 12-myristate 13-acetate (127). FH can also enhance 
the interaction of certain pathogens with human macrophages 
and neutrophils, and modulate the response of the phagocytes  
(128, 129). This was also shown for FHR-1 which, by binding to 
CR3, could enhance neutrophil responses to Candida albicans 
(129). In addition, FHL-1 was shown to mediate cell adhesion 
and spreading (129, 130).

Described functional effects of FH on monocytes include 
enhancement of IL-1β secretion, respiratory burst, and chemo-
tactic effect (131–134). FH was shown to induce an anti-
inflam matory and tolerogenic phenotype in monocyte-derived 
den dritic cells in  vitro (135). Very recently, in the context of 
inflammation in AMD, FH, and its two variants Y402 and H402 
were investigated in a mouse model. FH was shown to inhibit the 
resolution of inflammation by binding to CR3 and thus block-
ing thrombospondin-1–CD47 signaling that would normally 
promote the elimination of macrophages. The AMD-associated 
H402 FH variant displayed a stronger inhibitory effect compared 
to FH Y402, causing increased accumulation of macrophages in 
the inflamed tissue (136).

Factor H was shown to bind to B cells and may modulate 
some B cell functions, such as proliferation and immunoglobu-
lin secretion, but no specific receptor has been identified to date 
(137–140). A recent report described an indirect modulation 
of B cell activation by FHR-3, which was shown to bind to C3d 
and inhibit its binding to complement receptor type 2, a co-
receptor of the B cell receptor complex; FH and FHR-1 had no 
such effect (85).

These non-canonical functions of the FH family proteins 
deserve further investigation, because they may play roles in 
inflammation and anti-microbial defense that are currently 
underappreciated. Clarification of their cell-mediated effects may 
provide additional insights into disease mechanisms.

DiSeASe ASSOCiATiONS

Studies in patients and controls have shown a variety of com-
mon CFH/CFHRs genetic variants that predispose to autologous 
damage, which is predominantly organ-specific. Prevalent kidney 
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damage occurs in the rare diseases aHUS and C3 glomerulopa-
thies (C3G), and in the more frequent IgA nephropathy (IgAN), 
while destruction of the retinal pigment epithelium by autologous 
complement contributes to AMD. A defective regulation of com-
plement activation on the renal microvasculature endothelium 
occurs in aHUS, while in C3G uncontrolled complement activa-
tion in plasma gives rise to massive deposition of C3b breakdown 
products (iC3b, C3dg, and C3c) in the glomeruli (141–143). 
IgAN is characterized by mesangial cell proliferation and hypo-
glycosylated IgA1 deposits in the glomeruli, and it is likely that 
complement defects contribute, at least in part, to its clinical 
heterogeneity (144, 145). A defective control of complement 
activation in the retina is most relevant in AMD pathogenesis, 
and enhances the inflammatory response (146).

Extremely rare and pathogenic CFH/CFHRs variants have 
been mainly found in aHUS and C3G patients. Some of these 
variants result from gene conversion events between CFH and 
CFHR1, and they give rise to mutated FH or FHR-1. Other vari-
ants are intragenic duplications or hybrid genes resulting from 
gene rearrangements, and generate abnormal proteins; some 
of these proteins have distinct molecular weights and can be 
detected by Western blot analysis. It is interesting that abnormal 
rearrangements involving FH/FHRs associate with aHUS, while 
in C3G patients only FHR proteins are affected.

CFH variants Associated with Renal or 
Ocular Damage
Common SNPs in CFH give rise to different haplotypes that can 
be disease neutral, predisposing, or protecting. Thus, haplotype 
CFH(H1) predisposes to membranoproliferative glomerulone-
phritis (MPGN) and AMD, haplotype CFH(H3) predisposes to 
aHUS, and haplotype CFH(H2) is protective against these three 
diseases (147–149). Haplotype CFH(H2) generates the FH62Ile 
variant, which shows increased binding to C3b and cofactor 
activity in the fluid phase and on cellular surfaces (150), thus 
favoring protection against autologous complement damage.

The common variant FH402His, which is present in FH and its 
shorter isoform FHL-1, is a major predisposing factor in AMD 
(151). The functional relevance of FH402His in C3b, CRP, or heparin 
binding has been analyzed in several studies. Reduced binding 
of FH402His to polyanionic surfaces has been found (152), but 
the pathogenic mechanism may also depend on FHL-1, which 
can regulate complement activation similarly to FH. It has been 
shown that FHL-1, but not FH, is present in the retinal Bruch’s 
membrane, a major target in AMD pathogenesis, and that bind-
ing of the AMD-FHL-1402His variant was lower than binding of 
the FHL-1402Tyr variant (93). Nonetheless, CFH intronic variants 
show stronger association with AMD than FH402His (153). In 
an analysis of seven common CFH haplotypes, haplotypes H1, 
H6, and H7 were found to confer increased risk to AMD; these 
haplotypes share a 32-kb region downstream of rs1061170 (FH 
Tyr402His) that must be critical for AMD development (19), and 
that includes a 12-kb block 89% similar to a noncoding region in 
CNP148 (see below).

Other disease-predisposing FH variants are very rare. One of 
the most relevant is Arg1210Cys (FH1210C), which was initially 

identified in aHUS patients (154), and shown to be covalently 
bound to albumin in plasma (155); the presence of albumin most 
likely prevents the interaction of FH1210C with its physiological 
ligands, generating a partial, pathogenic FH deficiency. FH1210C 
has been also associated with C3G (156), and it highly increases 
AMD-risk and predisposes to early disease onset (157, 158). It 
has been suggested that in individuals with the FH1210C variant 
it is the concurrence of other genetic predisposing factors what 
ultimately determines the clinical phenotype (159).

CFHR1 and CFHR3 variants Associated 
with Renal or Ocular Damage
As happens with the common CFH haplotypes, the two main 
CFHR1 alleles show differential disease associations. CFHR1*B, 
displaying increased similarity with CFH, increases aHUS risk 
(51), and CFHR1*A predisposes to AMD (160). The molecular 
bases for these associations have not been determined, but they 
will most likely depend on subtle functional differences among the 
FHR-1*A and FHR-1*B allotypes. CFHR1*A is in strong linkage 
disequilibrium with the AMD-risk CFH402His allele, and CFHR1 
genotyping has similar predictive value of developing AMD as 
CFH402His;ΔCFHR3–CFHR1 genotyping (160); these findings 
are suggestive of a direct role of FHR-1 in AMD pathogenesis, 
most likely by interfering with the interaction of FH with specific 
ligands and promoting complement activation (33).

The CFHR3 gene also has two major variants, CFHR3*A, more 
frequent in healthy controls, and CFHR3*B, which predisposes 
to aHUS but not to C3G (59). Because the aHUS risk CFHR3*B 
allele generates higher FHR-3 levels than the non-risk CFHR3*A 
allele (60), it seems that increased competition of FHR-3 and FH 
for certain ligands could favor aHUS development. FHR-3 is also 
produced in the retina, and its contribution to retinal degenera-
tion by inhibiting FH binding to C3b and modified surfaces has 
been suggested (47); nonetheless, the relevance of the CFHR3*A 
and CFHR3*B variants in AMD has not been addressed.

The two CNPs in the CFHR genes have been shown to be 
disease-relevant (19). The common variant ΔCFHR3–CFHR1 is 
protective against AMD (161), and IgAN (162), but it predisposes 
to aHUS (163) and to systemic lupus erythematosus (SLE) (69) 
because it is associated with generation of anti-FH autoantibodies 
(discussed on page 13). The rare variant ΔCFHR1–CFHR4 was 
initially identified in a few aHUS patients with anti-FH autoan-
tibodies (51), and is present in 1.4% of aHUS patients and 0.9% 
of controls (164).

The protective effect of the ΔCFHR3–CFHR1 haplotype 
against AMD was first described in 2006 (161), and it is the 
more common copy number variation in the CFH/CFHRs 
region (165). ΔCFHR3–CFHR1 is tagged by CFH rs6677604A 
with 99% accuracy (166), and strongly correlates with the 
86.4-kb deletion CNP147 and high FH levels (8). Because 
protection conferred by ΔCFHR3–CFHR1 was independent of 
the FH Tyr402His polymorphism, a direct effect of FHR-1 and 
FHR-3 in AMD pathogenesis was suggested (21). Nonetheless, 
the strong association of ΔCFHR3–CFHR1 with high FH 
levels, together with the finding that FHR-1 levels were lower 
in AMD patients than in control individuals, suggests that 
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ΔCFHR3–CFHR1 is actually tagging an allele expressing high 
FH levels, but it is not causal in protection against AMD (8). 
The much rarer ΔCFHR1–CFHR4 deletion (also referred to as 
CNP148) also confers protection against AMD independent 
of SNPs in CFH (19); because ΔCFHR1–CFHR4 also removes 
non-coding flanking regions, its protective effect against 
AMD could either be due to the reduction of FHR-1 and/or 
FHR-4A levels, or to the absence of regulatory regions relevant 
for disease pathogenesis.

The first evidence for a direct complement role in IgAN patho-
genesis was the finding that the common variant ΔCFHR3–CFHR1 
protects against IgAN when it is in homozygosis (162), pointing 
out to a possible role of FHR-3 and/or FHR-1 levels in the patho-
genic mechanism. However, because the ΔCFHR3–CFHR1 allele 
generates high FH levels which associate with lower mesangial C3 
deposition, the actual contribution of FHR-1 and/or FHR-3 levels 
to IgAN is unclear (167). Two studies in different IgAN cohorts 
have recently shown that FHR-1 levels and FHR-1/FH ratios are 
increased in patients with disease progression, thus providing 
evidence for a direct role of FHR-1 in the disease mechanism. 
One of these studies reported that high FHR-5 levels were also 
slightly elevated in the IgAN patients, but without any correlation 
with progressive disease (55). The other study also reported low 
FH levels associated with CFH or CFI mutations in a few IgAN 
patients (54).

FH::FHR-1, FHR-1::FH, and FH::FHR-3 
Hybrid Proteins Associate with aHUS
CFH exons 18–20 and CFHR1 exons 4–6 have a high degree of 
sequence similarity, that result in only five amino acid difference 
between CCPs 18–20 of FH (Y1040-V1042-Q1058-S1191-V1197) and CCPs 
3–5 of FHR-1 (H157-L159-E175-L290-A296). Studies in aHUS patients have 
revealed that these differences determine higher binding of FH 
than FHR-1 to cell surfaces. Amino acids S1191 and V1197 in FH 
seem to be particularly important, and single mutations involving 
these amino acids (FHS1191L and FHV1197A) have been found in a 
number of aHUS patients from different geographical origins. 
The double mutant (FHS1191L-V1197A) was observed in two unrelated 
aHUS patients with early disease onset, showed a defective capac-
ity to control complement activation on cellular surfaces, and had 
been generated by gene conversion (168).

FHS1191L-V1197A can also be generated by NAHR events that give 
rise to CFH::CFHR1 hybrid genes. A CFH(Ex1–21)::CFHR1(Ex5–6) 
hybrid gene was first described in a family with many cases of aHUS 
along several generations, and a clinical history of disease recur-
rence in affected individuals (169), demonstrating that FHS1191L-

V1197A is highly pathogenic. This hybrid gene has also been found in 
other non-related aHUS patients. A slightly different CFH(Ex1–22):: 
CFHR1(Ex6) gene which also generates FHS1191L-V1197A has been 
found in another patient with a prompt aHUS onset (170). The 
reverse situation (i.e., the existence of CFHR1::CFH hybrid genes) 
has also been reported. A CFHR1(Ex1–3)::CFH(Ex19–20) hybrid 
gene generated by “de novo” NAHR was identified in one sporadic 
case of aHUS (171), and a CFHR1(Ex1–4)::CFH(Ex20) hybrid 
gene was found in a family with two members affected with 
aHUS (172). These two CFHR1::CFH hybrid genes generated a 

double-mutated FHR-1 protein that carries the homologous amino 
acids in FH CCP20 domain (FHR-1L290S-A296V); these amino acids 
most likely confer the mutated FHR-1 increased competition with 
FH for endothelial cell binding, and result in reduced protection 
against complement damage (173). Screening of CFH::CFHR1 
and CFHR1::CFH hybrid genes is normally done by MLPA 
analysis of copy number variations. The CFH::CFHR1 alleles lack a 
normal copy of CFHR3 and CFHR1, while the CFHR1::CFH allele 
contains two copies of CFHR3; it cannot be ruled out that these 
additional factors also contribute to the pathogenic mechanism.

A FH::FHR-3 hybrid protein containing CCPs 1–19 of FH and 
the five CCPs of FHR-3 was identified in a large family with aHUS 
(174). This protein resulted from an abnormal rearrangement 
that deleted the last exon of CFH, which was then fused to the 
adjacent CFHR3 gene by the genetic mechanism microhomol-
ogy mediated end joining (MMEJ). The absence of FH CCP20 
domain in the hybrid protein and/or the presence of the FHR-3 
CCPs does not affect complement regulation in the fluid phase, 
but cellular surface regulation seemed to be highly reduced. 
Estimation of aHUS penetrance in carriers of the hybrid gene is 
33%. Another FH::FHR-3 hybrid protein containing CCPs 1–17 
of FH and the five CCPs of FHR-3 was found in an aHUS patient 
with a very early disease onset (175). The hybrid protein resulted 
from a “de novo” 6.3 kb-deletion of exons 21–23 of the CFH gene 
through a MMEJ mechanism, and it showed impaired cell surface 
complement regulation.

Abnormal FHR Proteins in C3g
The abnormal rearrangements that predispose to C3G thus far 
described involve exclusively the CFHR genes, but not the CFH 
gene. This is a distinctive feature from aHUS that suggests a more 
important contribution of FHRs in the protection of the glomeru-
lar basement membrane and mesangium than in protection of 
endothelial cells. Abnormal rearrangements include intragenic 
duplications in CFHR1 or CFHR5, and CFHR2::CFHR5 and 
CFHR3::CFHR1 hybrid genes.

FHR-5 and FHR-1 Proteins with Additional 
Dimerization Domains
Larger forms of FHR-1 and FHR-5 with duplicated dimeriza-
tion domains have been observed in a few C3G patients. These 
proteins circulate in plasma together with the normal FHR-1 and 
FHR-5 proteins, but disease penetrance in mutation carriers is 
very high, strongly suggesting a dominant negative effect of the 
larger, abnormal protein. This is particularly evident for a par-
tially duplicated FHR-5 protein initially observed in two families 
of Cypriot ancestry in which renal disease was consistent with 
autosomal dominant transmission (176). All affected individuals 
were heterozygous for a CFHR5 gene in which exon 2 (coding for 
CCP1) and exon 3 (coding for CCP2) were duplicated, giving rise 
to an abnormal FHR-5 protein containing two extra dimeriza-
tion domains (FHR-512123-9). In vitro studies with patient’s sera 
showed reduced binding of the FHR-512123-9 to the cell surface, 
and increased FI cofactor activity, but the relevance of these 
findings for the pathogenic mechanism is unknown. Patients 
carrying FHR-512123-9 had a high risk of progressive renal disease, 
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particularly males. This renal phenotype, which histologically 
corresponds to a C3 glomerulonephritis, is clinically character-
ized by continuous macroscopic hematuria, and was denomi-
nated as “CFHR5 nephropathy.” These seminal observations were 
further extended to 16 pedigrees of Cypriot origin in a study that 
also provided a thorough description of histological, molecular, 
and clinical findings (177). Recurrence of CFHR5 nephropathy 
in a kidney allograft has been reported in one patient, although 
it did not occur in two other cases (178). The same duplicated 
FHR-5 protein observed in patients of Cypriot ancestry was 
found in a familial case of C3 glomerulonephritis with a different 
ethnic origin (179). Of note, this protein was generated from a 
different genomic rearrangement, reinforcing the relevance of 
the duplicated FHR-5 protein for the pathogenic mechanism, 
and the authors proposed that all patients with clinical suspicion 
of CFHR5 nephropathy should be screened for the abnormal 
protein by Western blot.

Another FHR-5 protein with two additional dimerization 
domains was found in a familial case of C3G with DDD (C3G-
DDD) (83). In this family, a genomic 24.8  kb-deletion from 
intron III of the CFHR2 gene to CFHR5 gives rise to a hybrid 
CFHR2::CFHR5 gene which generates a so-called FHR-21,2-FHR-
5-hybrid protein very similar to the FHR-512123-9 protein previously 
described. This hybrid protein shows increased binding to C3b 
and stabilization of the AP C3 convertase, which would explain 
the low C3 and increased Ba levels detected in the patients’ sera; 
in addition, reduced regulation of the AP C3 convertase by FH 
will result in increased generation of iC3b molecules which will 
deposit on the glomerular basement membrane and favor the 
pathogenic mechanism.

To understand how the presence of two extra dimerization 
domains in FHR-512123-9 has pathogenic consequences it is nec-
essary to recapitulate that the dimerization domains in FHR-1, 
FHR-2, and FHR-5 confer these proteins the ability to generate 
homo- and hetero-dimers physiologically (26). Although a 
recent study has not found evidence of the presence of FHR-5 
heterodimers with FHR-1 or FHR-2 (53), the additional dimeri-
zation domains in FHR-512123-9 and FHR-21,2-FHR-5 will most 
likely give rise to higher order oligomeric forms with increased 
avidity for surface-bound C3b, and these multimeric proteins 
will compete more efficiently with FH and favor autologous 
tissue damage, as illustrated in Figure  3. In this context, it is 
intriguing that two very similar FHR-5 proteins result in differ-
ent clinical entities (CFHR5 nephropathy or DDD). FHR-512123-9 
and FHR-21,2-FHR-5 contain the nine CCPs of FHR-5 preceded 
by the two dimerization domains of FHR-5 or FHR-2, respec-
tively, that present 85% aminoacid identity. Functional studies 
with the recombinant forms of these two proteins (referred to as 
FHR-5Dup and FHR-2-FHR-5Hyb) revealed that they exacerbate 
local complement activation by recruiting the complement-
activating protein properdin, and that properdin binding is 
mediated by the FHR-5 dimerization domains, and not by the 
FHR-2 dimerization domains (82). Therefore, local complement 
activation would be higher in patients with FHR-5Dup than in 
patients with FHR-2-FHR-5Hyb, and this could explain the dif-
ferent clinical phenotype. Another, non-exclusive, explanation 
is that the pathogenic mechanism is much dependent on the 

plasma levels of these FHR-5 proteins. In line with this hypoth-
esis, Western blot analyses of patient serum samples showed 
that the FHR-5 band has similar intensity to a normal serum, 
while the intensity of the FHR-512123-9 (32) or the FHR-21,2-FHR-5 
band is much higher, suggesting highly increased levels (82). The 
latter study also showed that FHR-5 binds to necrotic human 
endothelial cells, but not to normal endothelial cells, strongly 
suggesting a role for FHR-5 in complement-mediated elimina-
tion of damaged cells.

An abnormal, large FHR-1 protein was identified in a Spanish 
family with C3G by Western blot analysis (52). This protein was 
generated by an internal duplication of the CFHR1 gene, and 
contains two copies of domains CCPs 1–4. Purification of the 
normal and the duplicated FHR-1 proteins allowed biochemical, 
functional, and structural studies that illustrated that normal 
FHR-1 circulates in plasma as homo- and hetero-oligomers (with 
FHR-2 and FHR-5), and that the duplicated FHR-1 (contain-
ing nine CCP domains) organized into much larger oligomers 
with increased binding to C3b, iC3b, and C3dg. These findings 
provided the first evidence for the existence of oligomeric forms 
of FHR-1, FHR-2, and FHR-5 in normal plasma, and confirmed 
that duplication of their homologous CCPs 1–2 is pathogenic 
and associates with C3G. The authors proposed that multim-
erization of FHR-1 strongly inhibits FH binding to certain cell 
surfaces, but not to endothelial cells, the target surface in aHUS. 
A different FHR-1 protein containing two copies of domains 
CCPs 1–2 has been described in another Spanish patient with 
a C3G clinical phenotype, but further characterization of this 
duplicated FHR-1 (containing seven domains) has not been 
provided (180).

FHR-3::FHR-1 Hybrid Protein
A hybrid CFHR3::CFHR1 gene associated with C3G-MPGN III 
has been described in an Irish family (181). This hybrid gene 
contains exons 1–3 of CFHR3 and exons 2–6 of CFHR1, and 
generates a protein containing CCPs 1–2 of FHR-3 followed by 
the five CCPs of FHR-1. The protein was detected in the patients’ 
plasma by Western blot, and it was apparently at a much lower 
concentration than normal FHR-1. Because patients with the 
CFHR3::CFHR1 gene also has two copies of CFHR3 and CFHR1, 
the authors propose a dominant effect of the hybrid FHR-
3::FHR-1 protein in the pathogenic mechanism. It is of note 
that plasma C3 levels in all affected individuals were normal, as 
opposed to the reduced levels observed in the C3G-DDD patient 
with FHR-21,2-FHR-5-hybrid protein (83); this fact suggests that 
the potential pathogenic effect of FHR-3::FHR-1 on complement 
activation or regulation is surface-restricted. The clinical data 
and outcome of the five patients from this family who received 
renal transplantation has been reported (182); disease recur-
rence in the kidney allograft was high, but the overall graft 
survival was good.

Anti-FH Autoantibodies Predispose  
to Renal Diseases
Disorders related with these autoantibodies are mainly present 
in aHUS and C3 glomerulonephritis patients and secondary in 
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other autoimmune diseases. The anti-FH autoantibodies cause a 
functional FH defect, resulting in impaired complement regula-
tion by FH (Figure 3C).

The existence of anti-factor H autoantibodies in aHUS and 
the resulting functional deficiency of FH were first described in 
2005 (183). The frequency of the anti-FH antibodies associated 
with aHUS is approximately 10% of the pediatric patients in the 
European series and occasionally in patients with adult onset 
(184). These autoantibodies form complexes with FH and induce 
a functional FH deficiency. Characterization of these autoanti-
bodies showed that they recognized the C-terminal region of FH, 
involved in the binding to cell surfaces (185, 186). Moreover, it 
has been shown that, especially in the acute phase, these antibod-
ies are also capable of blocking the activity of FH as cofactor of FI 
and the acceleration of the dissociation of the convertases of the 
alternative pathway (187).

The presence of anti-FH autoantibodies is associated with 
homozygous ΔCFHR3–CFHR1 in several aHUS cohorts (51, 164, 
188, 189). The ΔCFHR1–CFHR4 has also been found in a few 
patients (51, 164), suggesting a relevant role for the absence of 
FHR-1 in autoantibody generation. In this context, it has been 
found that most anti-FH autoantibodies also bind to FHR-1, 
which presents high similarity with FH CCPs 19–20 (29, 164).

The anti-FH autoantibodies in aHUS patients are able of 
forming immune complexes that can be detected in serum. 
The amount of these complexes correlates better with the clini-
cal evolution than the total autoantibody titer (187), because 
FH bound to the complexes cannot regulate the AP on cell 
surfaces. The use of two monoclonal antibodies binding to 
different parts of FH allowed the quantitation of total and 
free FH, which depends on the concentration of circulating 
anti-FH immune complexes (29, 186, 190). In some cases, the 
concentration of total FH was within the normal range, but 
the amount of free FH was practically undetectable, indicating 
that the anti-FH autoantibodies almost completely blocked 
the ability of FH to protect cell surfaces from complement 
activation, although its regulatory activity in the fluid phase 
was conserved (190).

The epitope recognized by anti-FH autoantibodies has been 
defined more precisely using recombinant fragments of CCPs 
19–20 containing point mutations (191). In this work, it was 
found that in patients with FHR-1 deficiency, anti-FH antibodies 
recognize a region that acquires a different conformation in FH 
and FHR-1 after binding to certain ligands, including various 
bacterial proteins. This suggests a model in which the absence 
of FHR-1 plays a role in the loss of tolerance to FH and in the 
generation of anti-FH autoantibodies, thus explaining the fre-
quent association between the presence of anti-FH antibodies 
and homozygous ΔCFHR3–CFHR1 in aHUS. By using the same 
mutated FH recombinant fragments in our series of patients with 
anti-FH autoantibodies, we have obtained concordant results, at 
least in the patients with FHR-1 deficiency, which supports the 
proposed model for the generation of autoantibodies in these 
patients (192). However, the mechanism of anti-FH autoantibody 
generation in aHUS patients without FHR-1 deficiency remains 
to be determined.

Anti-FH autoantibodies have also been described in patients 
with C3G (193–197). This association is much less frequent than 
in the case of aHUS despite having been described for the first 
time (196). In cases in which the effect of these anti-FH autoan-
tibodies has been studied, it has been shown that they inhibit 
the regulatory activity of FH by recognizing and blocking its 
N-terminal region (193, 194, 197), which is a difference with the 
anti-FH autoantibodies from aHUS patients.

In patients with SLE and other autoimmune diseases, a 
greater frequency of anti-FH autoantibodies has been described 
with respect to healthy controls (198). Unlike the anti-FH 
autoantibodies present in aHUS, the epitopes that are recog-
nized by the autoantibodies seem to be distributed throughout 
the entire protein, and they are not associated with FHR-1  
deficiency.

CONClUSiON

The FH protein family remains an intriguing group of proteins. 
FH is well-known for its protecting role against self-damage from 
complement, and the FHRs are emerging as FH antagonists that 
act as an additional regulatory mechanism to control where and 
when FH protects human cells and/or surfaces. With the recent 
development of FHR-specific assays, quantification of the whole 
protein family has now become possible. This has elucidated the 
intricate balance between FH and the FHR proteins, showing 
that overall the balance is in favor of FH. However, this balance 
can shift on altered self, and also genetic variations have a major 
impact on FH and FHRs. This includes decreased FH function 
due to mutations, altered expression levels, as well as hybrid 
FH::FHR and FHR::FHR proteins and unusual FHR multimers 
with abnormal function that disturb complement regulation. 
Associations of increased FHR levels, as a result of genetic varia-
tions, with diseases like aHUS and IgAN are highly suggestive of 
a pathological role for the FHRs. It remains to be seen whether 
the FHRs are indeed causative in these diseases, but it is likely 
that they at least contribute to altered complement regulation on 
host surfaces.
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