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The implementation of novel cancer immunotherapies in the form of immune check-
point blockers represents a major advancement in the treatment of cancer, and has 
renewed enthusiasm for identifying new ways to induce antitumor immune responses 
in patients. Despite the proven efficacy of neutralizing antibodies that target immune 
checkpoints in some refractory cancers, many patients do not experience therapeutic 
benefit, possibly owing to a lack of antitumor immune recognition, or to the presence 
of dominant immunosuppressive mechanisms in the tumor microenvironment (TME). 
Recent developments in this field have revealed that local radiotherapy (RT) can 
transform tumors into in situ vaccines, and may help to overcome some of the bar-
riers to tumor-specific immune rejection. RT has the potential to ignite tumor immune 
recognition by generating immunogenic signals and releasing neoantigens, but the 
multiple immunosuppressive forces in the TME continue to represent important barriers 
to successful tumor rejection. In this article, we review the radiation-induced changes 
in the stromal compartments of tumors that could have an impact on tumor immune 
attack. Since different RT regimens are known to mediate strikingly different effects on 
the multifarious elements of the tumor stroma, special emphasis is given to different 
RT schedules, and the time after treatment at which the effects are measured. A better 
understanding of TME remodeling following specific RT regimens and the window of 
opportunity offered by RT will enable optimization of the design of novel treatment 
combinations.

Keywords: radiotherapy, tumor microenvironment, immunotherapy, tumor stroma, angiogenesis, extracellular 
matrix, mesenchymal cells, myeloid cells

iNTRODUCTiON

Radiation therapy (RT), either used alone or combined with systemic therapies, is a cornerstone 
of cancer treatment. Technological improvements now enable precise delivery of large radiation 
doses to tumors, stimulating profound changes in RT treatment schedules for some cancers. The 
use of stereotactic body radiotherapy (SBRT), in which high-dose radiation is delivered with 
extreme precision in small numbers of fractions, is becoming increasingly widespread (1). RT 
impacts upon both tumor and host cells, exerting multiple effects beyond the simple destruction of 
malignant cells. In recent years, we have witnessed an increased awareness of the role played by the 
complex tumor microenvironment (TME) in the response to therapy (2, 3). Consequently, recent 
research has investigated the effects of radiation on tumor stroma elements such as fibroblasts, 
connective tissue, vasculature, or immune cells.

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.01679&domain=pdf&date_stamp=2018-07-26
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.01679
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:turid.hellevik@unn.no
https://doi.org/10.3389/fimmu.2018.01679
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01679/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01679/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01679/full
https://loop.frontiersin.org/people/122826
https://loop.frontiersin.org/people/98447


2

Martinez-Zubiaurre et al. Immunoregulatory Networks of Irradiated Stroma

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1679

The field of cancer immunology has also witnessed tremendous 
progress, leading to the development of new therapies that do 
not target tumor cells but instead boost the host immune system 
to fight against malignancy. The clinical implementation of novel 
immunotherapies in the form of immune checkpoint inhibitors 
(ICIs) is becoming one of the greatest advancements in the his-
tory of cancer treatment (4). In responders, ICIs may induce 
long-lasting tumor regression, even in patients with multiple 
metastatic lesions (5). Recently, the immune contexture of the 
TME was introduced as a new concept that classifies tumors by 
quantifying immune cell densities, and may define the likelihood 
of responding to immunotherapy (6). Patients with lymphocyte-
rich “hot” tumors have been seen to respond remarkably well to 
ICI with long-lasting tumor regression. Unfortunately, the major-
ity of patients present with “cold” tumors, which may explain 
the relatively low response rates observed when ICI is given as 
monotherapy.

Radiotherapy has been proposed as a promising, readily 
available, non-toxic, and cost-effective partner to immuno-
therapy. The immune-stimulatory properties of RT have 
generated widespread interest based on preclinical and clinical 
observations that localized RT can induce regression of non-
irradiated metastases (abscopal effects) (7). However, it remains 
to be determined whether radiotherapy is only an occasional 
enhancer of ICI effects or represents a true “game changer” 
(8). In addition, our understanding of how, and how often, 
radiotherapy can convert tumors from being unresponsive to 
responsive is limited. As a proof-of-principle, it was demon-
strated more than 30  years ago that T-cells can contribute to 
radiation-induced tumor control, a phenomenon that adds to 
the direct killing of malignant cells (9, 10). Moreover, it has 
been shown that radiation is able to ignite adaptive antitumor 
immune responses through the induction of immunogenic 
cell death and the release of endogenous adjuvants from dying 
tumor cells (11, 12). Likewise, systemic antitumor responses 
after combined ICI and local RT have been demonstrated in 
some murine models (13–15). Nevertheless, abscopal effects of 
RT in the clinic remain rare, thus highlighting the need to better 
understand and address the obstacles to effective in situ tumor 
vaccination.

Numerous reports have demonstrated that the “in  situ  
vaccination” effects of local radiotherapy are mediated through 
induction of immunogenic cancer cell death and the associ-
ated release of powerful danger signals, which are essential to 
recruit and activate dendritic cells (DCs) and mount an adaptive 
immune response. However, efficient immune rejection is often 
hindered by intrinsic barriers within the TME (16). For instance, 
migration of effectively primed T-cells into the tumor can be 
inhibited by the disorganized vasculature, high interstitial fluid 
pressure, and other mechano-biological and chemotactic signals. 
In addition, resident and recruited cells (and molecules) in 
the TME can impair the survival, activation, proliferation, and 
effector-function of cytotoxic T-cells. Given the importance of 
the multifactorial immunosuppressive forces encountered in the 
TME, in this review we focus on RT effects on stromal elements 
that may influence antitumor immune responses. Intentionally, 
we will not cover RT effects on the malignant component of 

tumors, which have been comprehensively reviewed by other 
authors in the past (17, 18).

In our view, insufficient consideration has been given to the 
divergent biological effects elicited either by different radiation 
regimens, or to the timing of key biological processes. Most 
preclinical studies exploring the immunogenic effects of RT 
(alone or in combination with immuno checkpoint blockers) 
have been limited to testing a single radiation dose or schedule at 
a single time point, despite the unquestionable fact that different 
radiation regimens induce markedly different cellular and tissue 
responses (2, 18). In addition, the numerous ongoing clinical 
trials exploring RT-IT combinations are not consistent with each 
other, and are largely designed based on empirical choices of 
radiation regimens instead of rational ones (19). Consequently, 
the outcomes are likely to be divergent and/or inconclusive, 
and may fail to demonstrate the ability of radiation to synergize 
with immunotherapy. In this review, therefore, we put special 
emphasis on describing effects associated with specific radiation 
regimens, and draw attention to the chronology of events. To 
avoid misinterpretation, we refer to radiation doses of 2 Gy or 
less as “low,” doses of 4–10 Gy as “intermediate,” and doses above 
10 Gy as “high.”

eFFeCTS OF RT ON eCM ReMODeLiNG, 
CONDUCTiviTY, AND TiSSUe STiFFNeSS

Solid tumors generally display increased tissue stiffness and 
tensile strength compared to neighboring normal tissues. Tumor 
stiffening results from augmented deposition of interstitial 
extracellular matrix proteins, mainly collagen (fibers), but 
also hyaluronan, elastin, and fibronectin, along with a steadily 
increasing population of non-malignant and malignant cells. The 
mechanical forces mediated by these structural components (20) 
constitute physical barriers that hinder access and motility of 
blood-borne antitumor T-cells (21, 22), (therapeutic) antibodies 
(23), liposomes, and nanoparticle drugs (24), thereby greatly 
affecting immune surveillance and immunotherapy responses.

Dynamic RT effects on eCM Remodeling
Based on the idea that depletion or reduction of intratumoral col-
lagen can reduce solid stress and open up compressed blood and 
lymphatic vessels (25), several laboratories have demonstrated 
improved blood-borne drug delivery by reducing collagen 
content (25–27). Paradoxically, RT, despite being a well-known 
trigger of fibrotic tissue reactions (28–31), has been shown to 
augment tumor penetration by “large” macromolecules such as 
monoclonal antibodies (32–34), and also liposomes, and nano-
particles (35–39), enhancing the passive processes of enhanced 
permeabi lity and retention (40). The clue to understanding this 
paradox is time. Obviously, temporal aspects of drug/antibody 
adminis tration versus RT delivery are of utmost importance in 
achieving optimal responses. The limited time-frame for using 
RT to improve drug distribution was highlighted by Jain et al. (29), 
who measured the effects of ionizing radiation (IR) (1 × 10 Gy) 
on tumor hydraulic conductivity, hyaluronan, and collagen type-I 
in colon adenocarcinoma xenograft tumors. They found unchanged 
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collagen levels 24 h post-RT, but 4 days later hydraulic conducti-
vity was decreased (12-fold) while collagen-I levels were elevated. 
Lower radiation doses may not induce such fibrotic reactions.  
In a preclinical study by Appelbe et al., quantification of collagen 
in xenograft tumors excised 17 days post-RT revealed increased 
collagen-I staining after high (1 × 15 Gy) but not low or moderate 
radiation doses (2 and 5 Gy) (38).

Enhanced intra- and inter-molecular cross-linking of col-
lagen and elastin fibers is another factor directly affecting tis-
sue stiffness. The enzyme lysyl oxidase (LOX), which initiates 
cross-linking in the extracellular space, is elevated in response 
to hypoxic microenvironments and various cytokines (41, 42), 
and is associated with metastasis and poor survival in breast and 
head-and-neck cancer (43). Inhibition of LOX activity decreased 
levels of fibrillar collagen, increased tumor infiltration of mac-
rophages and neutrophils, eliminated metastases in models of 
orthotopic breast (43) and transgenic pancreatic cancer (44), 
and enhanced drug delivery in a PDAC tumor model (44). Of 
note, IR promotes secretion of LOX from several tumor cell lines 
in a time- and dose-dependent manner (45). Shen et al. analyzed 
conditioned medium from lung tumor cells collected 16–20 h 
after exposure to single RT doses (2, 5, or 10 Gy), and observed 
increased secretion of both active LOX enzyme and inactive 
LOX pro-enzyme, with 10 Gy increasing LOX secretion 15-fold. 
Histological quantification in irradiated lung tumor xenografts 
revealed no change after 24 h, but prominent changes in LOX 
were observed 48  h post-RT for the two regimens examined 
(1 × 10 Gy) and (2 × 10 Gy). Moreover, LOX blood serum levels 
48 h post-RT were doubled in mice that received (2 × 10 Gy) 
compared to the group receiving (1 × 10 Gy) (45). Others have 
collected murine lung tissue 2, 4, 8, and 20 weeks after thoracic 
radiotherapy (5  ×  6  Gy), and found elevated LOX expression 
and activity at every time point (46). Time post-RT is clearly an 
important factor to consider.

The Role of Transforming Growth Factor 
Beta (TGF-β)
Radiation-induced fibrotic reactions are initiated and sustained 
by a cascade of pro-inflammatory cytokines, which are released 
hours to days after radiation exposure (28). TGF-β—a master 
switch for the fibrotic program (47)—stimulates collagen pro-
duction and functions as a chemoattractant for fibroblasts, with 
the capacity to reprogram fibroblasts into tumor-promoting and 
fibrosis-associated myofibroblasts (48). Rube et  al. irradiated 
the thoracic region of fibrosis-sensitive mice and examined 
temporal aspects of TGF-β expression. They found a dose-
dependent induction of TGF-β in lung tissue: a single dose of 
12 Gy triggered TGF-β release that peaked after 12 h, whereas 
6  Gy released minor amounts of TGF-β (49). In a similar 
experiment, Finkelstein et al. found upregulated TGF-β during 
14 days (50). In line with the notion that TGF-β is critical for 
radiation-induced fibrosis, blocking TGF-β reduces the fibrosis 
induced by high-dose RT in animal models (51, 52). In a mouse 
model of mammary carcinoma, Liu et  al. blocked TGF-β and 
found decreased collagen content and normalized tumor inter-
stitial matrix, which improved drug uptake and decreased tumor  

growth (25). Besides the well-known immune-suppressive 
func tions exerted on inflammatory and immune cells, TGF-β 
modulates ECM deposition and tissue stiffness, thus exerting 
both direct and indirect immunoregulatory effects. TGF-β 
could therefore represent a major obstacle to radiotherapy-
induced antitumor immunity, which may be overcome by TGF-β 
neutralizing antibodies (53). TGF-α may also be involved in 
radiation-induced lung injury, as elevated tissue levels of TGF-α 
(46) post-RT have been demonstrated.

Dynamic effects of RT on Proteases  
of the eCM
Connective tissue homeostasis is tightly controlled by the 
balanced expression of proteases and their inhibitors. Matrix 
metalloproteinases (MMPs) and their endogenous inhibitors, 
TIMPs, are key matrix regulators. Studies in  vitro and in  vivo 
have demonstrated radiation-induced alterations in protease 
activity, which may lead to increased tumor invasion (54, 55). 
In particular, transient and dose-dependent upregulation of 
extracellular MMP-2 and MMP-9 have been observed in irradi-
ated cell lines derived from pancreatic cancer (54), glioma (56), 
lung cancer (57, 58), melanoma (59), fibrosarcoma (55), and 
hepatocarcinoma (60).

Transient upregulation of various MMPs in response to IR 
has been characterized in many experimental settings. Speake 
et al. analyzed conditioned medium from a fibrosarcoma cell 
line (55), and demonstrated pro-MMP-2 and pro-MMP-9 lev-
els to peak at 24 and 48 h post-RT, respectively, whereas others 
found MMP-2 secreted by lung tumor cells to peak at 12 h (58) 
or 24 h (57) post-RT. Co-culture systems—exemplified by glial 
and endothelial cells (ECs)—are also responsive to RT, with 
MMP-2 and MMP-9 levels being markedly elevated 72 h after 
irradiation (61). Stromal cells also contribute to release of pro-
teases into the TME. Human lung tumor fibroblasts respond 
to single-high radiation doses (18 Gy), by reducing secretion 
of MMP-1 when measured 5  days post-irradiation, whereas 
MMP3 levels are enhanced and MMP2 unchanged at the same 
time point (62).

In an animal model of Lewis lung carcinoma, serial measure-
ment of urinary MMP-2 revealed increasing levels during tumor 
growth, but reduced levels 6  days post-RT (2  ×  20  Gy) (63).  
At the clinical level, Susskind et  al. measured plasma levels of 
MMP-9 and TIMP-1 in lung and breast cancer patients and 
observed very high levels before initiation of fractionated radio-
therapy (66 Gy, 2.0 Gy/fx), a sharp decline in MMP-9 levels within 
10 days of completion of RT, but no change in TIMP-1 levels (64). 
The latter finding is in line with results from irradiated human 
lung tumor fibroblasts (62). IR also affects membrane-associated 
metalloproteinases (or ADAMs). McRobb et  al. found that a 
single dose of 20 Gy to brain microvascular ECs downregulated 
the alpha secretase ADAM10, with concomitant upregulation of 
ADAM10 target proteins at the cell surface (65). Another study 
by Sharma et al. revealed that radiotherapy activates ADAM17 
in non-small cell lung cancer (NSCLC), inducing shedding of 
multiple survival factors, growth factor pathway activation, and 
IR-induced treatment resistance (66).
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Collectively, these studies underscore the importance of tissue 
stiffness on drug uptake and immune cell infiltration. Lessons 
learned from the field of drug delivery indicate that RT can be 
used to transiently reduce intratumoral interstitial pressure and 
increase vascular permeability. However, the effects of RT are 
temporary and only provide a window of opportunity during 
the first day(s) after the radiation insult. By contrast, prolonged 
exposure to multiple fractions of RT seems to induce matrix 
deposition, long-term fibrotic reactions, and increased stiffness. 
A summary of radiation-induced effects on ECM remodeling  
and tissue stiffness is presented in Figure 1.

eFFeCTS OF RT ON TUMOR 
vASCULATURe AND LYMPHATiC 
veSSeLS

Trafficking of newly activated antigen-specific T-cells is dysfunc-
tional in cancers. Tortuous and leaky vessels hinder transit and 
extravasation of leukocytes into tumors; an imbalance of pro- 
and anti-angiogenic factors in solid tumors contributes to such 
vascular aberrations. The tumor vasculature is also a recognized 
obstacle to therapeutic access, and both preclinical and clinical 
studies have shown that vascular normalization can augment 

drug delivery in tumors. Such approaches may also enhance 
antitumor immunity.

Dynamic RT effects on Tumor vessels
Effects of RT on blood endothelial cells (BECs) are highly 
dependent on total dose and fraction-size, as well as tumor 
stage-location-type and maturation stage of vessels. High-dose 
RT (≥10 Gy) is more likely to induce EC death (67) and tumor 
vessel collapse (68, 69), whereas at low doses (≤2  Gy), BEC 
survival is promoted through miRNA upregulation (70) with 
enhanced EC migration and angiogenesis (71). There is some 
evidence that intermediate doses (4–10 Gy) may induce tumor 
vessel normalization and vessel dilation, reducing vascular 
leakage and increasing tumor oxygenation (72, 73). Scheduling 
must also be taken into consideration if combination strategies 
are to be optimized. Kabacik and Raj found that endothelial 
permeability to macromolecules of various sizes increased in 
a radiation dose-dependent manner, and involved ADAM10 
activation and cleavage of VE-cadherin junctions (74). Park 
et al. measured vascular permeability in the skin of C3H-mice 
exposed to local irradiation (2, 15, or 50 Gy), and found that it 
peaked 24 h post-IR, followed by a gradual decrease to baseline 
over the next 3–10  days. Of note, the extent and duration of 
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vascular permeabilization was dose-dependent (75). Kalofonos 
et al. also measured vascular permeability and vascular volume 
of irradiated (1 × 4 Gy) colon adenocarcinoma xenografts (34), 
and observed increased vascular permeability 24  h post-RT, 
but no differences between treated and control tumors at 72 h. 
Appelbe et al. (38) applied an intermediate radiation dose (5 Gy) 
to mammary adenocarcinoma xenografts, with drug adminis-
tration before and after RT, and demonstrated 1.2- to 3.3-fold 
enhancement of probe accumulation in tumors. In addition, 
they observed maintained vascular integrity during the first 
2  days post-RT, even at doses up to 15  Gy. They concluded 
that intermediate to high doses of radiation—insufficient to 
achieve tumor control—are sufficient to enhance drug deliv-
ery, independent of endothelial integrity. Other authors have 
also observed that low to intermediate RT doses (≤5 Gy) can 
stimulate angiogenesis (71) and/or vasculogenesis (76) in ECs. 
Hallahan et al. measured microvascular blood flow in irradiated 
murine hind-limb tumors just before and 24  h after RT, and 
found that a single-low dose of 2 or 3 Gy increased tumor blood 
flow 24 h post-RT, whereas 6 Gy markedly reduced blood flow 
(77). Others have observed that a single dose of 8  Gy causes 
minimal damage to microvessels and the EC lining (78), with 
a modest 4.3% reduction in perfusion (4 h post-RT). Kolesnick 
et al. have previously suggested a threshold dose of (1 × 10 Gy) 
for induction of apoptosis in ECs (79).

While inconsistencies in the preclinical literature persist, 
accumulating evidences indicate that the main response of qui-
escent BECs to IR is induction of premature senescence rather 
than apoptosis (80). Panganiban et al. found that 10 Gy induced 
accelerated senescence in the majority of pulmonary artery ECs 
(87%, 120 h post-IR), but only residual levels of apoptosis (81). 
Moreover, at doses above 8 Gy, 99% of the ECs were alive but not 
competent to form colonies. Oh et  al. irradiated bovine aortic 
ECs (5, 10, and 15  Gy) and observed increasing numbers of 
large, flattened senescent-like cells at higher doses, with a twofold 
increase in average cell surface area after 15 versus 10 Gy (67). 
Massive cell death appeared 2–5  weeks after 15  Gy, whereas 
5 Gy induced only transient morphological disturbances. Others 
have also demonstrated radiation-induced senescence in BECs 
(82–84), with long-lasting DNA damage responses and durable 
nuclear foci formation (82, 84). Of note, the extent and duration 
of senescence in various types of BECs after different radia-
tion doses corresponds with radiation-induced senescence in 
lymphatic endothelial cells (LECs) (85) and cancer-associated 
fibroblasts (CAFs) (62).

In general, extensive endothelial damage after doses above 
10  Gy causes reduced vascular flow, which impairs effector 
T-cells recruitment to the tumor, and exacerbates the hypoxia-
driven immunosuppressive environment. Hypofractionated 
regimens using doses per fraction below 10  Gy might induce 
sufficient cancer cell death without exacerbating hypoxia and 
immunosuppression.

RT effects on Cell Adhesion  
Molecules in eCs
Dysfunctional extravasation of leukocytes into tumors because 
of structural abnormalities of vessels is exacerbated by changes 

in the adhesive properties of tumor ECs. Reduced expression of 
E-selectin may lead to impaired lymphocyte recruitment. Other 
adhesion receptors such as ICAM-1, ICAM-2, and VCAM, 
which facilitate integrin-mediated extravasation, are often poorly 
expressed by tumor-associated ECs.

Radiation exposure is known to alter the expression of cell 
adhesion molecules on ECs. Hallahan and colleagues irradiated 
human umbilical endothelial cells (HUVECs) and observed 
induced expression of both E-selectin and ICAM-1 in a dose- 
and time-dependent manner (86). Threshold doses of 1 and 
5 Gy for induction of E-selectin and ICAM-1, respectively, were 
observed, however, VCAM-1 and P-selectin surface expression 
were apparently unaffected by IR. Similarly, Gaugler et al. (87) 
irradiated cultured HUVECs and observed upregulation of 
ICAM-1 but not VCAM-1 after various doses of IR (2, 5, and 
10  Gy). Others exposed epidermal keratinocytes and dermal 
microvascular ECs to 6 Gy, and found that IR triggered surface 
expression of ICAM-1 on these cells within 24 h, independent 
of de novo protein synthesis (88). At sub-lethal doses, IR may 
enhance expression of certain cell adhesion molecules in ECs 
and thereby contribute to leukocyte homing and immune 
recognition.

Recruitment of endothelial Progenitors 
Following RT
Vasculogenesis, the formation of new blood vessels by recruit ment 
of bone marrow-derived endothelial precursor cells (BMDCs), is 
a major mechanism for vessel repair and tumor regrowth after RT 
(89). Several laboratories have demonstrated radiation-induced 
recruitment of proangiogenic myeloid BMDCs into tumors, 
orchestrated by chemotactic SDF-1-CXCR4 signaling. In an 
intracranial xenograft model of glioblastoma (GBM), Kioi et al. 
found that whole brain irradiation (8 or 15 Gy) triggered dose-
dependent recruitment of BMDCs into tumors (90). Interestingly, 
BMDC levels were only slightly elevated from control levels 
after 8 Gy, but more than doubled after 15 Gy. However, BMDC 
influx and/or retention after 15  Gy was efficiently blocked 
by AMD3100, an inhibitor of the SDF-1/CXCR4 axis. In this 
study, AMD3100 was administered on the day of irradiation, 
with continued infusion over the following 21 days. Kozin et al. 
exploited the same concept in breast and lung tumor xenografts, 
and found that combined AMD3100 and local irradiation sig-
nificantly delayed tumor growth, but only when the drug was 
applied immediately after local irradiation (91). In their model, 
drug administration 5  days post-IR was ineffective. Hence, 
radiation-induced recruitment of BMDCs into tumors was 
suggested to be a rapid process (91). Altogether, results from 
preclinical studies indicate that a single large dose of local irra-
diation may trigger two waves of BMDCs influx (92): one shortly 
after exposure (3–5  days) (91) and a second delayed response 
(associated with hypoxia) after about 2 weeks (90). Accumulated 
knowledge coming mainly from preclinical models supports the 
notion that recruitment of bone marrow precursors is the main 
mechanism behind tumor neovascularization following RT, and 
that the effect is proportional to the radiation dose. Importantly, 
this process seems to be activated immediately after radiation 
exposure and completed within few days after tissue damage.
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RT effects on Pericytes
Pericyte coverage is also abnormal in tumor vessels; pericytes 
appear to be loosely associated with vessels and with poorly 
developed basal lamina, therefore contributing to increased leaki-
ness. Increased VEGFA in the TME may hinder pericyte function 
and survival by suppressing PDGFRβ signaling. Pericytes from 
tissues such as the liver may also exert direct immunomodula-
tory effects by expressing negative co-stimulatory molecules (93) 
or, as in malignant glioma, by secretion of paracrine immuno-
suppressive signals, including PGE2, TGFβ, and NO (94).

The effects of radiation on pericytes have scarcely been inves-
tigated. In a xenograft model of neuroblastoma, tumor blood 
volume measurements 6 h post-RT were reduced by 63 and 24% 
after 12 and 2  Gy, respectively. Histopathological examination 
revealed a significant loss of EC at 6 and 12 h, and an additional 
loss of both mature and immature pericytes at 72 h (95). However, 
high-dose RT is postulated to enhance recruitment of mesen-
chymal stem cells to the TME, which could promote pericyte 
recovery and tumor recurrence. In a xenograft study by Wang 
et al. (96), bone marrow mesenchymal precursors were observed 
to home into tumors and transform into pericytes following 
(1  ×  14  Gy) irradiation in an SDF-1 and PDGF-B-depending 
manner. Fractionated irradiation of murine prostate TRAMP-C1 
tumors at intermediate doses (15  ×  4  Gy) resulted in reduced 
microvascular density but increased tumor perfusion, associated 
with dilated vessels tightly connected to BM-derived pericytes 
(97). In a similar manner, Lewis lung carcinoma-bearing mice 
treated with high-dose RT (1 × 12 Gy) or (3 × 12 Gy) exhibited 
reduced microvessel density but increased perfusion, reduced 
hypoxia, and increased pericyte coverage (98).

Collectively, these studies suggest that irradiating tumors  
with both intermediate and high doses results in decreased 
microvascular density but increased perfusion due to dilation of 
surviving vessels and increased pericyte coverage, taking place 
some days after RT.

RT effects on Lymphangiogenesis
Lymphatic vessels constitute a transport route for both antitumor 
immune cells and metastatic spread of tumor cells. However, 
the disorganized lymphatic system that is characteristic of solid 
tumors can lead to impaired fluid flow and increased interstitial 
pressure (99). LECs may also hinder antitumor immunity by 
cross-presentation of tumor antigens in a VEGF-C-dependent 
manner (100). In addition, the lymphatic drainage of tumor anti-
gens may affect antitumor immunity by promoting a tolerogenic 
environment in sentinel lymph nodes (100).

Despite the fact that lymph nodes and vessels are often 
included in the irradiated field in clinical practice, relatively 
few studies have explored the effects of IR on LEC integrity and 
function. An array of studies have documented that, contrary to 
blood vessels, high doses of RT (>10 Gy) do not affect lymphatic 
vessel integrity (101–103). In skin biopsies from breast cancer 
patients, similar numbers of lymphatic vessels were observed in 
irradiated and non-irradiated sites (103). Sung et  al. examined 
responses to high-dose radiation on LECs in the small intestine 
of adult and embryonic mice and in peri-tumoral areas of mice, 

and concluded that intestinal and peri-tumoral LECs are highly 
resistant to radiation-induced apoptosis (102). In fact, LECs 
are likely to respond to IR by the induction of stress-induced 
cellular senescence. Avraham et al. exposed cultures of dermal 
LECs to single doses of 4, 8, or 12  Gy and found that (4  days 
post-IR) senescence was triggered in 53, 64, and 74% of the 
cell population, respectively (85). The same study revealed 
a minor 8% apoptosis-induction in LECs upon (1  ×  15  Gy).  
A recent study by Rodriguez-Ruiz et al., which utilized cultures 
of primary human LECs as well as mouse transplanted tumors 
and pre- and post-RT patient samples (104), revealed a radiation-
dose and time-dependent induction of ICAM-1 and VCAM-1 
surface expression on LYVE-1+ LECs. The maximum effect was 
observed at 20 Gy and persisted for more than 8 days. The authors 
proposed that such an effect may mediate enhanced adherence  
of T-lymphocytes on irradiated LECs.

Few reports studying normal tissue reactions to radiotherapy 
propose that IR at high doses may induce impairment of the 
lymphatic vasculature (105). However, most studies highlight the 
radioresistant nature of LECs and the beneficial effects of RT on 
induction of adhesion molecules that favor T-cell recruitment 
and extravasation. A summary of radiation-induced effects on 
tumor vasculature and hypoxias is presented in Figure 2.

MeSeNCHYMAL CeLLS, RADiATiON,  
AND iMMUNiTY

RT effects on CAFs
Immunomodulation is one of the best-characterized tumor 
regulatory mechanisms exerted by CAF. In general, CAFs are 
considered to promote an immunosuppressive TME. However, 
new evidence suggests that such effects may be specific for cer-
tain CAF subsets, and may depend on temporal and contextual 
factors (106, 107). Through secretion of a plethora of cytokines, 
chemokines, proteases, and proangiogenic factors, CAFs may 
exert both direct and indirect effects on tumor immunity. Direct 
effects on effector memory T-cells are mediated via secretion 
of potent immunoregulators such as TGFβ, PGE2, TSLP, inter-
leukin (IL)-6, IL-8, or nitric oxide (16). In addition, CAFs may 
mediate indirect effects by expression of ECM molecules that 
attenuate antitumor immunity, such as tenascin-C, galectin-3, 
or thrombospondin-1, by participating in ECM synthesis and 
turnover, or by exerting an impact on tumor angiogenesis (108). 
Moreover, CAFs express cytokines and chemokines that sup-
port the recruitment and maintenance of immunosuppressive 
myeloid cells, promote the polarization of macrophages toward 
the M2-phenotype, and interfere with maturation of DCs (109). 
In the context of RT, CAFs are considered to be very radiore-
sistant (62, 110–112), however, exposure to IR is able to induce 
cellular senescence in fibroblasts, especially at doses above 12 Gy 
(62). In xenograft models, senescent fibroblasts co-transplanted 
with cancer cells have been found to increase tumorigenicity.  
A recent preclinical study by Li and colleagues (113) demonstrated 
radiation (1 ×  4  Gy) to enhance the tumor-promoting effects of 
CAFs, an effect that was associated with increased expression of 
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FiGURe 2 | Chronological effects observed on tumor vasculature and hypoxia after RT delivered at different dose per fraction. The figure is a compilation of 
observations registered in different experimental models, comprising cell cultures (in vitro), animal (mainly mice) models, and clinical observations, on effects of RT 
given at different dose/fraction. Radiation schemes range from single fractions to oligo (daily) fractions and prolonged multifractionated regimens. The vast majority 
of preclinical observations comprise RT regimens of one or few fractions irrespective of the radiation dose. In clinical settings, RT protocols comprising moderate  
or high doses are always applied in one or few fractions. Although some inconsistencies may exist between studies, it is generally observed that small doses in few 
fractions promotes endothelial cell (EC) survival and increased intratumoral blood flow, whereas high-dose RT induces EC apoptosis, hypoxia-response elements 
and the recruitment of EC progenitors during the first days post-RT. Medium radiation doses, given in one or few fractions, induce moderate damage in tumor  
blood vessels, promotes the dilation and normalization of existing vessels, pericyte recruitment, and the expression of cell adhesion molecules. Lymphatic 
endothelial cells (LECs) are more radioresistant than blood vessels but may enter into premature senescence already after moderate radiation doses.
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CXCL12. However, the overall tumor regulatory properties of 
senescent or irradiated fibroblasts remain controversial, as other 
studies have observed no impact of (high-dose) irradiation on 
the tumor enhancing effects of fibroblasts, or even loss of pro-
malignant properties (114–116).

The immunoregulatory phenotype of irradiated fibroblasts is 
less well characterized, since most in vivo studies have been con-
ducted on immunocompromised animals. A recent in vitro study 
revealed that primary lung CAFs maintain their immunosuppres-
sive phenotype after exposure to both high (1 × 18 Gy) and low 
(4 × 2 Gy) radiation doses (117). On the other hand, high dose IR 
(1 × 18 Gy) has been shown to alter the secretory profile of CAFs 
and the expression of factors that could exert immunomodulatory 
effects, directly or indirectly (118). Multiplex protein analyses on 
conditioned medium collected from irradiated human lung CAFs 
from five different donors with NSCLC revealed that single-high 
dose RT (1 × 18 Gy) leads to a prominent (38%) and significant 
reduction of SDF-1 and threefold reduction in macrophage 
inhibitory factor (118). Besides their direct paracrine effects on 
inflammatory and immune cells, CAFs may influence tumor 
immune responses indirectly by mediating ECM remodeling.  
As indicated earlier, CAFs are major contributors of desmo-
plastic reactions in tumors and thus could exert indirect effects 

on tumor immune infiltration by regulating tissue stiffness and 
interstitial fluid pressure. One recent study has compared levels 
of αSMA expressing CAFs in tumor specimens from colorectal 
cancer patients receiving neoadjuvant radio(chemo)therapy 
(45 Gy in 25 fractions) before and after treatment (119). Results 
from this study revealed increased amounts of αSMA expressing 
myofibroblasts and connective tissue post-therapy. Connective 
tissue growth factor (CTGF) is also mitogenic and chemotactic 
for fibroblasts, and stimulates synthesis of collagen-1 (33) and 
fibronectin (34). In response to IR (1 × 18 Gy), secreted levels 
of CTGF from human lung CAFs are reduced 3.5-fold compared 
to controls, suggesting that exposure to ablative radiation doses 
may exert anti-fibrotic effects on CAFs (118). However, in an 
animal model, ex vivo irradiated CAFs (1 × 18 Gy) co-implanted 
with A549 tumor cells induced tumors with similar extents of 
collagen deposition and inflammatory cell infiltration as tumors 
established with non-irradiated CAFs (116).

Recognizing that we still lack knowledge on the effects medi-
ated by irradiated CAFs in the tumor context, and that different 
CAF subtypes may respond differently to IR, overall the existing 
literature indicates that CAFs are likely to survive radiation 
insults and that high-dose irradiation could exert beneficial 
effects in relation to CAF-mediated tumor immune regulation. 
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FiGURe 3 | Chronological effects observed on cancer-associated fibroblasts (CAFs) and mesenchymal cells after RT delivered at different dose per fraction. The 
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are quite radioresistant and may survive even ablative doses of radiation. Small doses may not change importantly the phenotype and functions of CAFs. At high 
doses, CAFs become senescent within few days post-irradiation, less motile, and less proliferative. High RT doses may substantially alter the secretory profile of 
CAFs characterized by reduced levels of SDF-1, MIR, or connective tissue growth factor (CTGF), and increased levels of bFGF, MMP3, or macrophage inhibitory 
factor (MIF), observed within few days post-RT. Of relevance, in vitro observations reveal that the immunosuppressive functions of cultured CAFs are preserved  
after exposure to high and low RT doses. In a long run, mesenchymal progenitors and pericytes recruited after medium and high doses may contribute importantly 
to immunoregulations, to prevent the onset of autoimmune reactions.
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A summary of radiation-induced effects on fibroblasts and 
immuno-regulation is presented in Figure 3.

effects of RT on Mesenchymal Stromal 
Cells (MSCs)
Tissue damage provoked by RT triggers the recruitment of 
MSCs from distant reservoirs such as bone marrow or adipose 
tissue. Recruited MSCs post-treatment have been associated 
with both pro- and antitumorigenic effects. The migration and 
differentiation potential of MSCs were characterized in a Lewis 
lung carcinoma and malignant melanoma-bearing recipient 
mice treated with (SB)RT, 14 Gy/1 fraction (96). Recruitment 
of circulating MSCs was promoted by secretion of SDF-1 and 
PDGF-B from irradiated tumor cells. In this study, it was pro-
posed that engaged MSCs transform into pericytes to promote 
tumor vasculogenesis and tumor regrowth. On the contrary, 
irradiated MSCs may be a source of antitumor cytokines that 
decrease the proliferative activity and induce apoptosis of tumor 
cells (120). In the study by de Araújo Farias et al. (121), in vivo 
administration of unirradiated mesenchymal cells together 
with radiation lead to an increased efficacy of radiotherapy.  
In a separate study, tumor irradiation was shown to enhance the 

tumor tropism of adoptively transferred human umbilical cord 
blood-derived mesenchymal stem cells in an IL-8-dependent 
manner (122). Enhanced therapeutic effects were associated to 
TRAIL delivered by MSCs.

The effects of RT delivered in low-dose multifraction sched-
ules on MSCs can be more unpredictable. MSCs recruitment 
may start already after the first cycles of radiation, however, IR, 
even when delivered at low doses, can have profound effects on 
the biology of MSCs. In a recent in vitro study, bone marrow-
derived MSCs isolated from normal adults were irradiated with 
2 Gy twice daily for consecutive 3 days (123). Irradiated MSCs 
showed much lower proliferative and differentiation poten-
tial, and induced clonal cytogenetic abnormalities of MSCs. 
Likewise, when isolated MSCs were irradiated with 2 Gy alpha 
particles or X-rays, adverse effects were observed on the vitality, 
functionality, and stemness of MSCs (124).

Collectively, efforts in this field have shown that RT, espe-
cially when delivered at high doses, triggers the recruitment 
of progenitor mesenchymal cells into the irradiated tumors, 
and that such recruitment could exert both tumor-promoting 
or tumor-inhibiting effects. Considering the demonstrated 
immunoregulatory potential of MSCs, recruited MSCs follow-
ing RT could play an important role on immunomodulation, 
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however, this particular hypothesis remains to be demonstrated 
experimentally.

eFFeCT OF LOCAL RADiATiON  
ON iNFLAMMATORY CeLLS

Myeloid-derived cells are an important part of the TME, both 
numerically and functionally, and play central roles in regulating 
tumor vasculature and antitumor immune responses. Myeloid 
cells arise from a common myeloid progenitor that, upon differen-
tiation, gives rise to various cell types including tumor-associated 
macrophages (TAMs), DCs, polymorphonuclear neutrophils, 
and myeloid-derived suppressor cells (MDSCs). Myeloid cells in 
tumors may exist in various differentiation stages, and possess 
a susceptible immunomodulatory phenotype that can be influ-
enced by radiation.

Radiation-mediated changes on myeloid cells include killing 
of tumor-associated pools, recruitment of circulating progenitors, 
repolarization, and reorganization (125). Of note, bone marrow-
derived cell recruitment following RT involves mainly SDF-1/
CXCR4–7, CCL2/CCR2–4, and colony-stimulating factor-1 
(CSF-1)/CSF-1R pathways. Observed effects seem to depend on 
radiation regimens and the timing post-RT, however, pre-existing 
tumor microenvironmental parameters such as hypoxia, necrosis, 
pH, stroma composition, and cytokine milieu may all influence 
tumor leukocyte composition following RT.

RT effects on Macrophages
Tumor-associated macrophages are considered to be relatively 
radioresistant because of their well-developed anti-oxidative 
machinery. However, IR is able to affect both phenotype and 
recruitment of TAMs. Globally, data generated in different 
tumor types and using different RT regimens indicate that high 
doses (10–30  Gy)—either as single dose or oligo-fractioned 
(≤3×)—trigger recruitment of CD11b+ myeloid cells and 
reprogramming of macrophages toward the tumor-promoting 
M2-phenotype (126, 127). Interestingly, selective ablation of 
CD11b+ or CD18+ cells (128), or blockage of the SDF-1/CXCR4 
or CSF-1/CSF-1R pathways prevents accumulation of myeloid 
cells/macrophages and improves antitumor immune response 
and the overall response to IR (90, 129). Of importance, upregu-
lation of the M2-gene signature has been observed within few 
days of irradiation and may last for several weeks or even longer  
(130, 131). In the TRAMP-C1 prostate cancer model, a single 
fraction of 25 Gy or 15 fractions of 4 Gy induced the M2-genes 
COX2 and Arg-1 within few days (126). On the contrary, inter-
mediate radiation doses (2–5  Gy) given in few fractions have 
been reported to repolarize macrophages from M2- to the pro-
immunogenic M1-phenotype in vitro and in vivo. Non-polarized, 
monocyte-derived macrophages established in cultures shifted 
toward the M1-phenotype after daily (5  ×  2  Gy) radiation 
schemes (132). Doses of 5–10 Gy have been shown to increase 
nitric oxide synthase and decrease M2-phenotypic traits (133).  
In vivo experiments have mainly utilized small doses. Klug 
and colleagues demonstrated that single fractions of (0.5–2.0) 
Gy polarize macrophages toward the iNOS  +  M1-phenotype 

(134), whereas whole body irradiation with a single dose of 2 Gy 
caused CD11+ peritoneal macrophages to repolarize into the 
M1-phenotype. In another study, induction of the M1-phenotype 
in tumors after local IR (1 × 2 Gy) was only possible in combina-
tion with CD8+ T-cell transfer (134). Upon M1 repolarization, 
the resulting iNOS expression appears to be responsible for 
vascular normalization, T-cell recruitment and activation, and 
finally tumor rejection. Of note, very low radiation doses (under 
1 Gy) may favor the M2-phenotype of TAMs, as evidenced by 
in vitro culture experiments performed with different macrophage 
sources (135–137).

In summary, the accumulated knowledge in this area postu-
lates that high-dose irradiation or moderate doses in multiple 
fractions facilitate the recruitment and reprogramming of mac-
rophages with immunosuppressive functions, and that medium 
and low-dose radiation (down to 1 Gy) in single or few fractions 
may elicit immune-stimulatory macrophages that could help to 
unlock barriers to immunotherapy responses.

RT effects on MDSCs
As with macrophages, local radiation is able to mobilize other 
myelomonocytic CD11b+ cells with immunosuppressive func-
tions in tumors. MDSCs have the unique ability to radioprotect 
tumor cells through expression of high levels of Arginase-I, 
with subsequent depletion of l-arginine from the microenvi-
ronment, a common mechanism behind T-cell and macrophage 
inhibition (138). Many and varying effects of radiation on 
mobilization and function of MSDCs have been reported and 
are likely to be influenced by the pre-existing systemic and local 
immune contexture. As described for macrophages, several 
studies in murine models have reported increased recruitment 
of MDSCs after high-dose RT. In a glioma model, high-dose 
radiation (1  ×  15  Gy) induced more marked recruitment of 
CD11b+ myeloid cells than lower doses (1  ×  8  Gy) (90). In 
addition, selective inhibition of CSF-1/CSFR-1 signaling was 
observed to improve the efficacy of RT by reducing recruitment 
of immunosuppressive MDSCs (129). Low radiation doses may 
exert different effects. Whereas human subjects treated with pro-
tracted RT regimens show elevated CSF-1 in peripheral blood, 
analyses of immune cell composition in peripheral blood of 
patients receiving fractionated chemoradiotherapy often reveal 
a reduction in both MDSCs and Tregs in relation to effector 
T-cells after treatment (139–142). A study comparing intratu-
moral infiltration of immunocytes pre- and post-neoadjuvant 
chemoradiotherapy in rectal cancer specimens demonstrated 
significant elevation of CD8+ and CD4+ T-cells post-treatment 
whereas MDSC, Tregs, and expression of co-inhibitory recep-
tors remained stable (143). Similarly, ablative radiotherapy 
(1 × 30 Gy) has been shown to increase CD8+ cells and decrease 
MDSC in the TME of CT26 and MC38 murine tumors, 
whereas fractionated radiation did not trigger such strong  
lymphocytic responses (144).

RT effects on DCs
Dendritic cells can be divided into several subsets with special-
ized functions, and are key intermediaries between the innate and 
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the adaptive immune systems. However, very few studies have 
documented the effects of RT on DC subsets and their roles in 
immune regulation.

Previous work have shown that DCs are relatively resistant 
to IR and exhibited limited changes in response to high-dose 
irradiation, such as upregulation of CD80 and reduced levels of 
IL-12 but not IL-10 (145). The effect of IR on phagocytosis and 
antigen presentation in DCs appears to depend on radiation 
dose and DC maturation state. For instance, 5 Gy gamma irra-
diation downregulated expression of co-stimulatory receptors 
CD80/CD86 on immature derived DCs but not on mature DCs 
(146). In a different study, CD86 expression was increased in 
immature but decreased in mature DCs after 30 Gy, while other 
markers remained unaffected (145). Of interest, in the former 
study, irradiation impaired the stimulatory effects of both 
mature and immature DCs on proliferation of allogeneic T-cells 
(145). Although in vitro studies suggest that IR compromises the 
stimulatory activities of DCs, in vivo models demonstrate that 
IR at intermediate radiation doses (5 × 8.5 Gy) enhances the abil-
ity of DCs to capture tumor antigens, and promotes DCs migra-
tion to lymph nodes in a toll-like receptor-dependent manner 

(147, 148). A number of studies have demonstrated increased 
presentation of tumor antigens by DCs in the tumor-draining 
lymph nodes after RT. For example, in B16-OVA and B16-SIY 
melanoma models, single radiation doses (15–25  Gy) or five 
fractions of 3 Gy increased the number of antigen-presenting 
cells cross-presenting tumor-specific antigens, which cor-
related with increased priming of antitumor T-cell responses 
(149, 150). It is important to note that in vivo effects mediated 
by recruited “non-irradiated” DCs may explain the discrepan-
cies between in vitro and in vivo observations.

Of importance, IR effects on DCs can also differ between 
murine and human systems. At a dose of 0.2 Gy, ϒ-irradiation 
increased surface expression of CD80, CD86, MHC-class I 
and II receptors in murine DCs, but inhibited their capacity 
for antigen uptake. In addition, this low-dose IR suppressed 
IL-12 production and increased IL-10, implying a shift to 
immune tolerance (151). On the other hand, low-dose radia-
tion under 1  Gy did not affect surface markers or cytokine 
production in either immature or mature human DCs, and 
had no influence on the capacity of DCs to stimulate T-cell 
proliferation (152).
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Different radiation schedules may influence DC function 
and recruitment in different ways. In a murine melanoma study 
testing intratumoral DC vaccination, it was demonstrated that 
(5 × 8.5 Gy) enhanced the ability of DCs to capture tumor anti-
gens without inducing enhanced DC maturation, but improving 
cross-priming of T-cells (147). Hypofractionated RT has been 
shown to recruit and activate DCs, however, this effect maybe 
time-restricted. In a recent preclinical study using colon cancer 
as a model, MHC-II positive DC recruitment into tumors was 
observed only between days 5 and 10 after the first radiation 
dose (153). In patients, conventional low-dose multifraction 
regimens may have detrimental effects on DCs. In head-and-
neck cancer patients, neoadjuvant treatment was associated with 
a general decrease of tumor infiltrating DCs in intraepithelial 
compartments as assessed by IHC (154). In a study from Liu 
et al., authors found a significant decrease of BDCA3+ DCs, the 
immune-stimulatory variant, in the blood of patients treated with 
conventional radiotherapy (155).

The majority of in  vitro studies indicate that moderate and 
high radiation doses are able to inhibit antigen presentation 
capacity and production of Th1 cytokines by DCs. However, 
in  vivo studies seem to reflect opposite effects. DCs responses 
to RT can be very divergent between hypofractionated (SBRT) 
or multifraction regimens. To understand the contradictory 
observations published in this area, it is utterly important to 
consider the difference between tumor-associated DC pools that 
become irradiated during treatment (normally occurring during 
long-lasting conventional RT) versus non-irradiated DCs that 
infiltrate tumors after treatment (possibly occurring in SBRT 
strategies).

A summary of radiation-induced effects on myeloid cells and 
inflammation is presented in Figure 4.

CONCLUDiNG ReMARKS

A considerable number of ongoing clinical trials are aiming at 
improving the efficacy of immune checkpoint blockers by local 
radiotherapy. Mounting evidences reveal that RT may prime 
and/or induce tumor-specific adaptive immune responses 
through the induction of immunogenic cell death the release of 
tumor-specific antigens and danger signals, and the ignition of an 
inflammatory cascade. However, it is still uncertain whether RT 
can be used effectively to enhance the effects of immunothera-
peutic drugs in clinical settings. In fact, radiation may promote 
immunosuppressive reactions in several ways, such as upregula-
tion of co-regulatory molecules PD-L1 and PD-L2 (156, 157),  
transient potentiation of hypoxia, or by recruiting and reprogram-
ming of immunosuppressive myeloid cells. Treatment outcomes 
will ultimately depend on the net effect of pro-immunogenic 
and anti-immunogenic signals, and will be heavily dependent 
on pre-existing host and tumor factors. Moreover, even after 
defining optimal RT regimens for combinatory treatments, 
numerous physical and functional barriers to immune attack 
must be overcome to achieve clinical benefit. These include 
immuno suppressive elements in the stromal components of 
non-irradiated metastasis, and antigenic heterogeneity at differ-
ent metastatic sites.

The effects of radiation on the multifactorial elements of 
the TME may be tumor type and tumor stage specific, may be 
influenced by the pre-existing tissue contexture, and are likely 
to be highly dependent on the treatment protocol. In this 
review, we have attempted to gather existing knowledge on the 
potential effects exerted by different radiation schemes in the 
compartments of the tumor stroma that may modulate antitumor 
immunity. Published studies range from in  vitro experiments 
to preclinical in vivo models and clinical observations. Despite 
intense endeavors, most of the existing precli nical reports are 
limited to exploring effects of a single radiation dose or regimen. 
The treatment outcomes reported could be equally influenced by 
experimental variables such as the intrinsic immunogenicity and/
or radiosensitivity of the tumor cells, the immune competence of 
the host, implantation site, and tumor stage. Thus, information 
gathered from preclinical studies should not be interpreted as 
universal dogmas or generalizable evidences with direct appli-
cability in the clinics. Also, knowledge from clinical studies is 
limited because of the inherent restrictions associated with the 
clinical protocols, where, for example, immunological effects 
are normally measured from peripheral blood samples and only 
rarely in the irradiated tissues. Conclusion about the relative 
effects of different radiation schemes on immune activation can 
only be made by performing systematic comparisons using the 
same tumor model.

Although the existing knowledge is fragmented, model-spe-
cific and in some cases inconsistent, some key patterns emerge. 
In general, high-dose RT, given as single dose or in few fractions, 
results in severe tissue damage, increased tumor cell death, and 
enhanced release of tumor-associated antigens and related danger 
signals. However, high-dose RT also seems to activate mechanisms 
that counterbalance these potentially overwhelming immune 
reactions. Thus, downstream effects associated with high-dose 
RT comprise substantial damage to tumor vasculature, transient 
potentiation of hypoxia, increased fibrosis and interstitial pressure, 
recruitment and reprogramming of immunosuppressive myeloid 
cells, and release of signals that favor Th2 pathways. On the 
contrary, low-dose radiation protocols (2 Gy/fraction and below) 
are often followed by a number of immune adjuvant effects com-
prising normalization of tumor vasculature, enhanced expression 
of cell adhesion molecules, increased perfusion, decreased inter-
stitial fluid pressure and reprogramming of tumor infiltrating 
macrophages into the antit umorigenic M1-phenotype. However, 
low-dose RT may not be very effective in boosting the generation 
of tumor-associated antigens and danger signals. Furthermore, 
the conventional clinical protocols based on multifraction 
regimens applied over several weeks may exert detrimental 
effects on recruited DCs and effector T-cells, thus hampering the 
establish ment of tumor-specific immune responses. Intermediate 
radiation dose protocols seem to reproduce many of the positive 
effects observed with low radiation dose protocols, including 
vessel normalization and transient induction of pro-inflam-
matory environments. Hypofractionated regimens comprising  
doses per fraction below 10  Gy might generate meaningful 
levels of cancer cell death without exacerbating hypoxia and 
immunosuppression. However, to achieve responses that can 
syn ergize with immunotherapies, it is of the utmost importance 
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to consider time and treatment sequence. In many instances, 
immune adjuvant effects occur within hours of RT treatment, 
and may be maintained for only a few days before the favora-
ble circumstances are changed or lost. In such circumstances, 
radiation should perhaps be applied in reduced number of 
fractions, concomitant with or immediately after administration  
of the immunotherapeutic drug has begun.

For the future, we encourage clinicians and scientists to use 
existing knowledge to design clinical trials for assessing the 
overall clinical benefit of radiation combinations, and employ 
rational choices of dose, fractionation, treatment sequence, and 
timing. In parallel, further mechanistic studies are needed to 
understand how dose and fractionation influence the effects 
of RT on the pre-existing TME. There is a need to systematize 
protocols and knowledge by designing comparative studies of 
different RT-schemes using unmodified and immune compe-
tent animal models. The use of radiotherapy as a partner for 
immunotherapy is an exciting and revolutionary concept, but 
much remain to be learned before its true clinical potential is 
realized.

AUTHOR CONTRiBUTiONS

IMZ and TH contributed equally to the initial conception, the 
development and the writing of the article. AJC has critically 
revised the manuscript for important intellectual content and has 
approved the final version to be published.

ACKNOwLeDGMeNTS

Authors acknowledge the technical assistance of Roy A. Lyså in 
the design and development of the illustrations included in the 
article. The publication charges for this article have been funded 
by a grant from the publication fund of UiT The Arctic University 
of Norway.

FUNDiNG

This project has been supported by grants from the Regional 
Health Authorities (HFN1423-18, HFN1373-17, SFP1137-13, 
SFP1138-13).

ReFeReNCeS

1. Timmerman RD, Herman J, Cho LC. Emergence of stereotactic body radi-
ation therapy and its impact on current and future clinical practice. J Clin 
Oncol (2014) 32(26):2847–54. doi:10.1200/JCO.2014.55.4675 

2. Hellevik T, Martinez-Zubiaurre I. Radiotherapy and the tumor stroma: the 
importance of dose and fractionation. Front Oncol (2014) 4:1. doi:10.3389/
fonc.2014.00001 

3. Barker HE, Paget JT, Khan AA, Harrington KJ. The tumour microenvi-
ronment after radiotherapy: mechanisms of resistance and recurrence. Nat 
Rev Cancer (2015) 15(7):409–25. doi:10.1038/nrc3993 

4. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. 
Nature (2011) 480(7378):480–9. doi:10.1038/nature10673 

5. Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. 
Science (2013) 342(6165):1432–3. doi:10.1126/science.342.6165.1432 

6. Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et al. Towards 
the introduction of the ‘Immunoscore’ in the classification of malignant 
tumours. J Pathol (2014) 232(2):199–209. doi:10.1002/path.4287 

7. Formenti SC, Demaria S. Systemic effects of local radiotherapy. Lancet Oncol 
(2009) 10(7):718–26. doi:10.1016/S1470-2045(09)70082-8 

8. Demaria S, Coleman CN, Formenti SC. Radiotherapy: changing the game 
in immunotherapy. Trends Cancer (2016) 2(6):286–94. doi:10.1016/j.trecan. 
2016.05.002 

9. Stone HB, Peters LJ, Milas L. Effect of host immune capability on radiocur-
ability and subsequent transplantability of a murine fibrosarcoma. J Natl 
Cancer Inst (1979) 63(5):1229–35. 

10. Galluzzi L, Zitvogel L, Kroemer G. Immunological mechanisms underneath 
the efficacy of cancer therapy. Cancer Immunol Res (2016) 4(11):895–902. 
doi:10.1158/2326-6066.CIR-16-0197 

11. Galluzzi L, Kepp O, Kroemer G. Immunogenic cell death in radiation therapy. 
Oncoimmunology (2013) 2(10):e26536. doi:10.4161/onci.26536 

12. Golden EB, Apetoh L. Radiotherapy and immunogenic cell death. Semin 
Radiat Oncol (2015) 25(1):11–7. doi:10.1016/j.semradonc.2014.07.005 

13. Demaria S, Kawashima N, Yang AM, Devitt ML, Babb JS, Allison JP, et al. 
Immune-mediated inhibition of metastases after treatment with local radi-
ation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer 
Res (2005) 11(2 Pt 1):728–34. 

14. Herter-Sprie GS, Koyama S, Korideck H, Hai J, Deng J, Li YY, et  al.  
Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer.  
JCI Insight (2016) 1(9):e87415. doi:10.1172/jci.insight.87415 

15. Dovedi SJ, Adlard AL, Lipowska-Bhalla G, McKenna C, Jones S, Cheadle EJ,  
et  al. Acquired resistance to fractionated radiotherapy can be overcome by 

concurrent PD-L1 blockade. Cancer Res (2014) 74(19):5458–68. doi:10.1158/ 
0008-5472.CAN-14-1258 

16. Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal  
cells in the tumour microenvironment. Nat Rev Immunol (2015) 15(11): 
669–82. doi:10.1038/nri3902 

17. Golden EB, Pellicciotta I, Demaria S, Barcellos-Hoff MH, Formenti SC.  
The convergence of radiation and immunogenic cell death signaling path-
ways. Front Oncol (2012) 2:88. doi:10.3389/fonc.2012.00088 

18. Demaria S, Formenti SC. Radiation as an immunological adjuvant: current 
evidence on dose and fractionation. Front Oncol (2012) 2:153. doi:10.3389/
fonc.2012.00153 

19. Kang J, Demaria S, Formenti S. Current clinical trials testing the combination 
of immunotherapy with radiotherapy. J Immunother Cancer (2016) 4:51. 
doi:10.1186/s40425-016-0156-7 

20. Jain RK, Martin JD, Stylianopoulos T. The role of mechanical forces in tumor 
growth and therapy. Annu Rev Biomed Eng (2014) 16:321–46. doi:10.1146/
annurev-bioeng-071813-105259 

21. Salmon H, Franciszkiewicz K, Damotte D, Dieu-Nosjean MC, Validire P, 
Trautmann A, et al. Matrix architecture defines the preferential localization 
and migration of T cells into the stroma of human lung tumors. J Clin Invest 
(2012) 122(3):899–910. doi:10.1172/JCI45817 

22. Peranzoni E, Rivas-Caicedo A, Bougherara H, Salmon H, Donnadieu E. 
Positive and negative influence of the matrix architecture on antitumor 
immune surveillance. Cell Mol Life Sci (2013) 70(23):4431–48. doi:10.1007/
s00018-013-1339-8 

23. Epenetos AA, Snook D, Durbin H, Johnson PM, Taylor-Papadimitriou J.  
Limitations of radiolabeled monoclonal antibodies for localization of human 
neoplasms. Cancer Res (1986) 46(6):3183–91. 

24. Zhang B, Jin K, Jiang T, Wang L, Shen S, Luo Z, et al. Celecoxib normalizes 
the tumor microenvironment and enhances small nanotherapeutics delivery 
to A549 tumors in nude mice. Sci Rep (2017) 7(1):10071. doi:10.1038/s41598- 
017-09520-7 

25. Liu J, Liao S, Diop-Frimpong B, Chen W, Goel S, Naxerova K, et al. TGF-beta 
blockade improves the distribution and efficacy of therapeutics in breast 
carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci U S A (2012) 
109(41):16618–23. doi:10.1073/pnas.1117610109 

26. Diop-Frimpong B, Chauhan VP, Krane S, Boucher Y, Jain RK. Losartan 
inhibits collagen I synthesis and improves the distribution and efficacy of 
nanotherapeutics in tumors. Proc Natl Acad Sci U S A (2011) 108(7):2909–14. 
doi:10.1073/pnas.1018892108 

27. Eikenes L, Bruland ØS, Brekken C, Davies Cde L. Collagenase increases the 
transcapillary pressure gradient and improves the uptake and distribution 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://doi.org/10.1200/JCO.2014.55.4675
https://doi.org/10.3389/fonc.2014.00001
https://doi.org/10.3389/fonc.2014.00001
https://doi.org/10.1038/nrc3993
https://doi.org/10.1038/nature10673
https://doi.org/10.1126/science.342.6165.1432
https://doi.org/10.1002/path.4287
https://doi.org/10.1016/S1470-2045(09)70082-8
https://doi.org/10.1016/j.trecan.
2016.05.002
https://doi.org/10.1016/j.trecan.
2016.05.002
https://doi.org/10.1158/2326-6066.CIR-16-0197
https://doi.org/10.4161/onci.26536
https://doi.org/10.1016/j.semradonc.2014.07.005
https://doi.org/10.1172/jci.insight.87415
https://doi.org/10.1158/
0008-5472.CAN-14-1258
https://doi.org/10.1158/
0008-5472.CAN-14-1258
https://doi.org/10.1038/nri3902
https://doi.org/10.3389/fonc.2012.00088
https://doi.org/10.3389/fonc.2012.00153
https://doi.org/10.3389/fonc.2012.00153
https://doi.org/10.1186/s40425-016-0156-7
https://doi.org/10.1146/annurev-bioeng-071813-105259
https://doi.org/10.1146/annurev-bioeng-071813-105259
https://doi.org/10.1172/JCI45817
https://doi.org/10.1007/s00018-013-1339-8
https://doi.org/10.1007/s00018-013-1339-8
https://doi.org/10.1038/s41598-
017-09520-7
https://doi.org/10.1038/s41598-
017-09520-7
https://doi.org/10.1073/pnas.1117610109
https://doi.org/10.1073/pnas.1018892108


13

Martinez-Zubiaurre et al. Immunoregulatory Networks of Irradiated Stroma

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1679

of monoclonal antibodies in human osteosarcoma xenografts. Cancer Res 
(2004) 64(14):4768–73. doi:10.1158/0008-5472.CAN-03-1472 

28. Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A per-
petual cascade of cytokines postirradiation leads to pulmonary fibrosis. 
Int J Radiat Oncol Biol Phys (1995) 33(1):99–109. doi:10.1016/0360-3016 
(95)00095-G 

29. Znati CA, Rosenstein M, McKee TD, Brown E, Turner D, Bloomer WD, et al. 
Irradiation reduces interstitial fluid transport and increases the collagen 
content in tumors. Clin Cancer Res (2003) 9(15):5508–13. 

30. Remy J, Wegrowski J, Crechet F, Martin M, Daburon F. Long-term over-
production of collagen in radiation-induced fibrosis. Radiat Res (1991) 
125(1):14–9. doi:10.2307/3577976 

31. Riekki R, Parikka M, Jukkola A, Salo T, Risteli J, Oikarinen A. Increased 
expression of collagen types I and III in human skin as a consequence of 
radiotherapy. Arch Dermatol Res (2002) 294(4):178–84. doi:10.1007/s00403- 
002-0306-2 

32. Hallahan DE, Qu S, Geng L, Cmelak A, Chakravarthy A, Martin W, et al. 
Radiation-mediated control of drug delivery. Am J Clin Oncol (2001) 
24(5):473–80. doi:10.1097/00000421-200110000-00012 

33. Msirikale JS, Klein JL, Schroeder J, Order SE. Radiation enhancement of 
radiolabelled antibody deposition in tumors. Int J Radiat Oncol Biol Phys 
(1987) 13(12):1839–44. doi:10.1016/0360-3016(87)90349-X 

34. Kalofonos H, Rowlinson G, Epenetos AA. Enhancement of monoclonal 
antibody uptake in human colon tumor xenografts following irradiation. 
Cancer Res (1990) 50(1):159–63. 

35. Hallahan D, Geng L, Qu S, Scarfone C, Giorgio T, Donnelly E, et al. Integrin-
mediated targeting of drug delivery to irradiated tumor blood vessels. 
Cancer Cell (2003) 3(1):63–74. doi:10.1016/S1535-6108(02)00238-6 

36. Lammers T, Peschke P, Kühnlein R, Subr V, Ulbrich K, Debus J, et al. Effect  
of radiotherapy and hyperthermia on the tumor accumulation of HPMA 
copolymer-based drug delivery systems. J Control Release (2007) 117(3): 
333–41. doi:10.1016/j.jconrel.2006.10.032 

37. Giustini AJ, Petryk AA, Hoopes PJ. Ionizing radiation increases sys temic 
nanoparticle tumor accumulation. Nanomedicine (2012) 8(6):818–21. 
doi:10.1016/j.nano.2012.05.001 

38. Appelbe OK, Zhang Q, Pelizzari CA, Weichselbaum RR, Kron SJ. Image-
guided radiotherapy targets macromolecules through altering the tumor 
microenvironment. Mol Pharm (2016) 13(10):3457–67. doi:10.1021/acs.
molpharmaceut.6b00465 

39. Davies Cde L, Lundstrøm LM, Frengen J, Eikenes L, Bruland SØS, Kaalhus O,  
et  al. Radiation improves the distribution and uptake of liposomal doxo-
rubicin (caelyx) in human osteosarcoma xenografts. Cancer Res (2004) 
64(2):547–53. doi:10.1158/0008-5472.CAN-03-0576 

40. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug 
delivery to solid tumors: improvement of tumor uptake, lowering of systemic 
toxicity, and distinct tumor imaging in  vivo. Adv Drug Deliv Rev (2013) 
65(1):71–9. doi:10.1016/j.addr.2012.10.002 

41. Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman R,  
et  al. Investigating hypoxic tumor physiology through gene expression 
patterns. Oncogene (2003) 22(37):5907–14. doi:10.1038/sj.onc.1206703 

42. Bordeleau F, Mason BN, Lollis EM, Mazzola M, Zanotelli MR, Somasegar S, 
et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl 
Acad Sci U S A (2017) 114(3):492–7. doi:10.1073/pnas.1613855114 

43. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, et  al.  
Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell 
recruitment to form the premetastatic niche. Cancer Cell (2009) 15(1):35–44. 
doi:10.1016/j.ccr.2008.11.012 

44. Miller BW, Morton JP, Pinese M, Saturno G, Jamieson NB, McGhee E, 
et  al. Targeting the LOX/hypoxia axis reverses many of the features that 
make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and 
enhances drug efficacy. EMBO Mol Med (2015) 7(8):1063–76. doi:10.15252/
emmm.201404827 

45. Shen CJ, Sharma A, Vuong DV, Erler JT, Pruschy M, Broggini-Tenzer A. 
Ionizing radiation induces tumor cell lysyl oxidase secretion. BMC Cancer 
(2014) 14:532. doi:10.1186/1471-2407-14-532 

46. Chung EJ, Hudak K, Horton JA, White A, Scroggins BT, Vaswani S, et al. 
Transforming growth factor alpha is a critical mediator of radiation lung 
injury. Radiat Res (2014) 182(3):350–62. doi:10.1667/RR13625.1 

47. Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: a master 
switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys (2000) 
47(2):277–90. doi:10.1016/S0360-3016(00)00435-1 

48. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, et  al. 
Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling 
drives the evolution of tumor-promoting mammary stromal myofibroblasts. 
Proc Natl Acad Sci U S A (2010) 107(46):20009–14. doi:10.1073/pnas. 
1013805107 

49. Rube CE, Uthe D, Schmid KW, Richter KD, Wessel J, Schuck A, et  al.  
Dose-dependent induction of transforming growth factor beta (TGF-beta) 
in the lung tissue of fibrosis-prone mice after thoracic irradiation. Int 
J Radiat Oncol Biol Phys (2000) 47(4):1033–42. doi:10.1016/S0360-3016 
(00)00482-X 

50. Finkelstein JN, Johnston CJ, Baggs R, Rubin P. Early alterations in extra-
cellular matrix and transforming growth factor beta gene expression in 
mouse lung indicative of late radiation fibrosis. Int J Radiat Oncol Biol Phys 
(1994) 28(3):621–31. doi:10.1016/0360-3016(94)90187-2 

51. Anscher MS, Thrasher B, Rabbani Z, Teicher B, Vujaskovic Z. Anti-
transforming growth factor-beta antibody 1D11 ameliorates normal tissue 
damage caused by high-dose radiation. Int J Radiat Oncol Biol Phys (2006) 
65(3):876–81. doi:10.1016/j.ijrobp.2006.02.051 

52. Puthawala K, Hadjiangelis N, Jacoby SC, Bayongan E, Zhao Z, Yang Z, et al. 
Inhibition of integrin alpha(v)beta6, an activator of latent transforming 
growth factor-beta, prevents radiation-induced lung fibrosis. Am J Respir Crit 
Care Med (2008) 177(1):82–90. doi:10.1164/rccm.200706-806OC 

53. Vanpouille-Box C, Diamond JM, Pilones KA, Zavadil J, Babb JS, Formenti SC,  
et al. TGFbeta is a master regulator of radiation therapy-induced antitumor 
immunity. Cancer Res (2015) 75(11):2232–42. doi:10.1158/0008-5472.CAN- 
14-3511 

54. Qian LW, Mizumoto K, Urashima T, Nagai E, Maehara N, Sato N, et  al. 
Radiation-induced increase in invasive potential of human pancreatic cancer 
cells and its blockade by a matrix metalloproteinase inhibitor, CGS27023. 
Clin Cancer Res (2002) 8(4):1223–7. 

55. Speake WJ, Dean RA, Kumar A, Morris TM, Scholefield JH, Watson SA. 
Radiation induced MMP expression from rectal cancer is short lived but 
contributes to in  vitro invasion. Eur J Surg Oncol (2005) 31(8):869–74. 
doi:10.1016/j.ejso.2005.05.016 

56. Pei J, Park IH, Ryu HH, Li SY, Li CH, Lim SH, et  al. Sublethal dose of  
irradiation enhances invasion of malignant glioma cells through p53-MMP 2 
pathway in U87MG mouse brain tumor model. Radiat Oncol (2015) 10:164. 
doi:10.1186/s13014-015-0475-8 

57. Zhuang X, Qiao T, Xu G, Yuan S, Zhang Q, Chen X. Combination of nadropa-
rin with radiotherapy results in powerful synergistic antitumor effects in lung 
adenocarcinoma A549 cells. Oncol Rep (2016) 36(4):2200–6. doi:10.3892/
or.2016.4990 

58. Chetty C, Bhoopathi P, Rao JS, Lakka SS. Inhibition of matrix metallo-
proteinase-2 enhances radiosensitivity by abrogating radiation-induced 
FoxM1-mediated G2/M arrest in A549 lung cancer cells. Int J Cancer (2009) 
124(10):2468–77. doi:10.1002/ijc.24209 

59. Kaliski A, Maggiorella L, Cengel KA, Mathe D, Rouffiac V, Opolon P, et al. 
Angiogenesis and tumor growth inhibition by a matrix metalloproteinase 
inhibitor targeting radiation-induced invasion. Mol Cancer Ther (2005) 
4(11):1717–28. doi:10.1158/1535-7163.MCT-05-0179 

60. Cheng JC, Chou CH, Kuo ML, Hsieh CY. Radiation-enhanced hepatocel-
lular carcinoma cell invasion with MMP-9 expression through PI3K/Akt/
NF-kappaB signal transduction pathway. Oncogene (2006) 25(53):7009–18. 
doi:10.1038/sj.onc.1209706 

61. Nirmala C, Jasti SL, Sawaya R, Kyritsis AP, Konduri SD, Ali-Osman F, et al. 
Effects of radiation on the levels of MMP-2, MMP-9 and TIMP-1 during mor-
phogenic glial-endothelial cell interactions. Int J Cancer (2000) 88(5):766–71. 
doi:10.1002/1097-0215(20001201)88:5<766::AID-IJC13>3.0.CO;2-Y 

62. Hellevik T, Pettersen I, Berg V, Winberg JO, Moe BT, Bartnes K, et  al. 
Cancer-associated fibroblasts from human NSCLC survive ablative doses of 
radiation but their invasive capacity is reduced. Radiat Oncol (2012) 7:59. 
doi:10.1186/1748-717X-7-59 

63. Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O’Reilly MS.  
Radiation therapy to a primary tumor accelerates metastatic growth in mice. 
Cancer Res (2001) 61(5):2207–11. 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://doi.org/10.1158/0008-5472.CAN-03-1472
https://doi.org/10.1016/0360-3016
(95)00095-G
https://doi.org/10.1016/0360-3016
(95)00095-G
https://doi.org/10.2307/3577976
https://doi.org/10.1007/s00403-
002-0306-2
https://doi.org/10.1007/s00403-
002-0306-2
https://doi.org/10.1097/00000421-200110000-00012
https://doi.org/10.1016/0360-3016(87)90349-X
https://doi.org/10.1016/S1535-6108(02)00238-6
https://doi.org/10.1016/j.jconrel.2006.10.032
https://doi.org/10.1016/j.nano.2012.05.001
https://doi.org/10.1021/acs.molpharmaceut.6b00465
https://doi.org/10.1021/acs.molpharmaceut.6b00465
https://doi.org/10.1158/0008-5472.CAN-03-0576
https://doi.org/10.1016/j.addr.2012.10.002
https://doi.org/10.1038/sj.onc.1206703
https://doi.org/10.1073/pnas.1613855114
https://doi.org/10.1016/j.ccr.2008.11.012
https://doi.org/10.15252/emmm.201404827
https://doi.org/10.15252/emmm.201404827
https://doi.org/10.1186/1471-2407-14-532
https://doi.org/10.1667/RR13625.1
https://doi.org/10.1016/S0360-3016(00)00435-1
https://doi.org/10.1073/pnas.
1013805107
https://doi.org/10.1073/pnas.
1013805107
https://doi.org/10.1016/S0360-3016
(00)00482-X
https://doi.org/10.1016/S0360-3016
(00)00482-X
https://doi.org/10.1016/0360-3016(94)90187-2
https://doi.org/10.1016/j.ijrobp.2006.02.051
https://doi.org/10.1164/rccm.200706-806OC
https://doi.org/10.1158/0008-5472.CAN-
14-3511
https://doi.org/10.1158/0008-5472.CAN-
14-3511
https://doi.org/10.1016/j.ejso.2005.05.016
https://doi.org/10.1186/s13014-015-0475-8
https://doi.org/10.3892/or.2016.4990
https://doi.org/10.3892/or.2016.4990
https://doi.org/10.1002/ijc.24209
https://doi.org/10.1158/1535-7163.MCT-05-0179
https://doi.org/10.1038/sj.onc.1209706
https://doi.org/10.1002/1097-0215(20001201)88:5<766::AID-IJC13>3.0.CO;2-Y
https://doi.org/10.1186/1748-717X-7-59


14

Martinez-Zubiaurre et al. Immunoregulatory Networks of Irradiated Stroma

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1679

64. Susskind H, Hymowitz MH, Lau YH, Atkins HL, Hurewitz AN, Valentine ES,  
et al. Increased plasma levels of matrix metalloproteinase-9 and tissue inhi-
bitor of metalloproteinase-1 in lung and breast cancer are altered during 
chest radiotherapy. Int J Radiat Oncol Biol Phys (2003) 56(4):1161–9. 
doi:10.1016/S0360-3016(03)00161-5 

65. McRobb LS, McKay MJ, Gamble JR, Grace M, Moutrie V, Santos ED, et al. 
Ionizing radiation reduces ADAM10 expression in brain microvascular 
endothelial cells undergoing stress-induced senescence. Aging (Albany NY) 
(2017) 9(4):1248–68. doi:10.18632/aging.101225 

66. Sharma A, Bender S, Zimmermann M, Riesterer O, Broggini-Tenzer A, 
Pruschy MN. Secretome signature identifies ADAM17 as novel target for 
radiosensitization of non-small cell lung cancer. Clin Cancer Res (2016) 
22(17):4428–39. doi:10.1158/1078-0432.CCR-15-2449 

67. Oh CW, Bump EA, Kim JS, Janigro D, Mayberg MR. Induction of a  
senescence-like phenotype in bovine aortic endothelial cells by ionizing 
radiation. Radiat Res (2001) 156(3):232–40. doi:10.1667/0033-7587(2001) 
156[0232:IOASLP]2.0.CO;2 

68. Park HJ, Griffin RJ, Hui S, Levitt SH, Song CW. Radiation-induced vascular 
damage in tumors: implications of vascular damage in ablative hypofrac-
tionated radiotherapy (SBRT and SRS). Radiat Res (2012) 177(3):311–27. 
doi:10.1667/RR2773.1 

69. Song CW, Lee YJ, Griffin RJ, Park I, Koonce NA, Hui S, et  al. Indirect 
tumor cell death after high-dose hypofractionated irradiation: implications 
for stereotactic body radiation therapy and stereotactic radiation surgery. 
Int J Radiat Oncol Biol Phys (2015) 93(1):166–72. doi:10.1016/j.ijrobp. 
2015.05.016 

70. Wagner-Ecker M, Schwager C, Wirkner U, Abdollahi A, Huber PE. Micro-
RNA expression after ionizing radiation in human endothelial cells. Radiat 
Oncol (2010) 5:25. doi:10.1186/1748-717X-5-25 

71. Sofia Vala I, Martins LR, Imaizumi N, Nunes RJ, Rino J, Kuonen F, et  al. 
Low doses of ionizing radiation promote tumor growth and metastasis by 
enhancing angiogenesis. PLoS One (2010) 5(6):e11222. doi:10.1371/journal.
pone.0011222 

72. Sonveaux P, Brouet A, Havaux X, Grégoire V, Dessy C, Balligand JL, et al. 
Irradiation-induced angiogenesis through the up-regulation of the nitric 
oxide pathway: implications for tumor radiotherapy. Cancer Res (2003) 63(5): 
1012–9. 

73. Crokart N, Jordan BF, Baudelet C, Ansiaux R, Sonveaux P, Grégoire V,  
et  al. Early reoxygenation in tumors after irradiation: determining factors 
and consequences for radiotherapy regimens using daily multiple fractions. 
Int J Radiat Oncol Biol Phys (2005) 63(3):901–10. doi:10.1016/j.ijrobp. 
2005.02.038 

74. Kabacik S, Raj K. Ionising radiation increases permeability of endothelium 
through ADAM10-mediated cleavage of VE-cadherin. Oncotarget (2017) 
8(47):82049–63. doi:10.18632/oncotarget.18282 

75. Park KR, Monsky WL, Lee CG, Song CH, Kim DH, Jain RK, et  al.  
Mast cells contribute to radiation-induced vascular hyperpermeability. 
Radiat Res (2016) 185(2):182–9. doi:10.1667/RR14190.1 

76. Lerman OZ, Greives MR, Singh SP, Thanik VD, Chang CC, Seiser N, et al. 
Low-dose radiation augments vasculogenesis signaling through HIF-
1-dependent and -independent SDF-1 induction. Blood (2010) 116(18): 
3669–76. doi:10.1182/blood-2009-03-213629 

77. Hallahan DE, Geng L, Cmelak AJ, Chakravarthy AB, Martin W, Scarfone C,  
et  al. Targeting drug delivery to radiation-induced neoantigens in tumor 
microvasculature. J Control Release (2001) 74(1–3):183–91. doi:10.1016/
S0168-3659(01)00335-2 

78. Siemionow M, Mee J, Porvasnik S, Krapohl BD, Ozer K, Piza P, et al. Effects  
of 8-Gy radiation on the microcirculation of muscle flaps in the rat. Plast 
Reconstr Surg (1999) 104(5):1372–8. doi:10.1097/00006534-199910000-00020 

79. Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-
Friedman A, et al. Tumor response to radiotherapy regulated by endothe lial 
cell apoptosis. Science (2003) 300(5622):1155–9. doi:10.1126/science.1082504 

80. Wang Y, Boerma M, Zhou D. Ionizing radiation-induced endothelial cell 
senescence and cardiovascular diseases. Radiat Res (2016) 186(2):153–61. 
doi:10.1667/RR14445.1 

81. Panganiban RA, Mungunsukh O, Day RM. X-irradiation induces ER stress, 
apoptosis, and senescence in pulmonary artery endothelial cells. Int J Radiat 
Biol (2013) 89(8):656–67. doi:10.3109/09553002.2012.711502 

82. Lafargue A, Degorre C, Corre I, Alves-Guerra MC, Gaugler MH, Vallette F,  
et  al. Ionizing radiation induces long-term senescence in endothelial cells 
through mitochondrial respiratory complex II dysfunction and superoxide gen-
eration. Free Radic Biol Med (2017) 108:750–9. doi:10.1016/j.freeradbiomed. 
2017.04.019 

83. Ungvari Z, Podlutsky A, Sosnowska D, Tucsek Z, Toth P, Deak F, et  al. 
Ionizing radiation promotes the acquisition of a senescence-associated 
secretory phenotype and impairs angiogenic capacity in cerebromicrovas-
cular endothelial cells: role of increased DNA damage and decreased DNA 
repair capacity in microvascular radiosensitivity. J Gerontol A Biol Sci Med  
Sci (2013) 68(12):1443–57. doi:10.1093/gerona/glt057 

84. Igarashi K, Sakimoto I, Kataoka K, Ohta K, Miura M. Radiation-induced 
senescence-like phenotype in proliferating and plateau-phase vascular 
endothelial cells. Exp Cell Res (2007) 313(15):3326–36. doi:10.1016/j.yexcr. 
2007.06.001 

85. Avraham T, Yan A, Zampell JC, Daluvoy SV, Haimovitz-Friedman A, 
Cordeiro AP, et al. Radiation therapy causes loss of dermal lymphatic vessels 
and interferes with lymphatic function by TGF-beta1-mediated tissue fibrosis. 
Am J Physiol Cell Physiol (2010) 299(3):C589–605. doi:10.1152/ajpcell. 
00535.2009 

86. Hallahan D, Kuchibhotla J, Wyble C. Cell adhesion molecules mediate 
radiation-induced leukocyte adhesion to the vascular endothelium. Cancer 
Res (1996) 56(22):5150–5. 

87. Gaugler MH, Squiban C, van der Meeren A, Bertho JM, Vandamme M, 
Mouthon MA. Late and persistent up-regulation of intercellular adhesion 
molecule-1 (ICAM-1) expression by ionizing radiation in human endo-
thelial cells in  vitro. Int J Radiat Biol (1997) 72(2):201–9. doi:10.1080/ 
095530097143428 

88. Behrends U, Peter RU, Hintermeier-Knabe R, Eissner G, Holler E,  
Bornkamm GW, et  al. Ionizing radiation induces human intercellular 
adhesion molecule-1 in  vitro. J Invest Dermatol (1994) 103(5):726–30. 
doi:10.1111/1523-1747.ep12398607 

89. Brown JM. Vasculogenesis: a crucial player in the resistance of solid tumours 
to radiotherapy. Br J Radiol (2014) 87(1035):20130686. doi:10.1259/bjr. 
20130686 

90. Kioi M, Vogel H, Schultz G, Hoffman RM, Harsh GR, Brown JM. Inhibition 
of vasculogenesis, but not angiogenesis, prevents the recurrence of glio-
blastoma after irradiation in mice. J Clin Invest (2010) 120(3):694–705. 
doi:10.1172/JCI40283 

91. Kozin SV, Kamoun WS, Huang Y, Dawson MR, Jain RK, Duda DG. Recruit-
ment of myeloid but not endothelial precursor cells facilitates tumor regrowth 
after local irradiation. Cancer Res (2010) 70(14):5679–85. doi:10.1158/ 
0008-5472.CAN-09-4446 

92. Kozin SV, Duda DG, Munn LL, Jain RK. Neovascularization after irra-
diation: what is the source of newly formed vessels in recurring tumors? 
J Natl Cancer Inst (2012) 104(12):899–905. doi:10.1093/jnci/djs239 

93. Ichikawa S, Mucida D, Tyznik AJ, Kronenberg M, Cheroutre H. Hepatic stellate 
cells function as regulatory bystanders. J Immunol (2011) 186(10):5549–55. 
doi:10.4049/jimmunol.1003917 

94. Ochs K, Sahm F, Opitz CA, Lanz TV, Oezen I, Couraud PO, et al. Immature 
mesenchymal stem cell-like pericytes as mediators of immunosuppression 
in human malignant glioma. J Neuroimmunol (2013) 265(1–2):106–16. 
doi:10.1016/j.jneuroim.2013.09.011 

95. Jani A, Shaikh F, Barton S, Willis C, Banerjee D, Mitchell J, et  al. High- 
dose, single-fraction irradiation rapidly reduces tumor vasculature and 
perfusion in a xenograft model of neuroblastoma. Int J Radiat Oncol Biol Phys 
(2016) 94(5):1173–80. doi:10.1016/j.ijrobp.2015.12.367 

96. Wang HH, Cui YL, Zaorsky NG, Lan J, Deng L, Zeng XL, et  al. Mesen-
chymal stem cells generate pericytes to promote tumor recurrence via 
vasculogenesis after stereotactic body radiation therapy. Cancer Lett (2016) 
375(2):349–59. doi:10.1016/j.canlet.2016.02.033 

97. Chen FH, Fu SY, Yang YC, Wang CC, Chiang CS, Hong JH. Combination 
of vessel-targeting agents and fractionated radiation therapy: the role of the 
SDF-1/CXCR4 pathway. Int J Radiat Oncol Biol Phys (2013) 86(4):777–84. 
doi:10.1016/j.ijrobp.2013.02.036 

98. Lan J, Wan XL, Deng L, Xue JX, Wang LS, Meng MB, et al. Ablative hypo-
fractionated radiotherapy normalizes tumor vasculature in lewis lung carci-
noma mice model. Radiat Res (2013) 179(4):458–64. doi:10.1667/RR3116.1 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://doi.org/10.1016/S0360-3016(03)00161-5
https://doi.org/10.18632/aging.101225
https://doi.org/10.1158/1078-0432.CCR-15-2449
https://doi.org/10.1667/0033-7587(2001)156[0232:IOASLP]2.0.CO;2
https://doi.org/10.1667/0033-7587(2001)156[0232:IOASLP]2.0.CO;2
https://doi.org/10.1667/RR2773.1
https://doi.org/10.1016/j.ijrobp.
2015.05.016
https://doi.org/10.1016/j.ijrobp.
2015.05.016
https://doi.org/10.1186/1748-717X-5-25
https://doi.org/10.1371/journal.pone.0011222
https://doi.org/10.1371/journal.pone.0011222
https://doi.org/10.1016/j.ijrobp.
2005.02.038
https://doi.org/10.1016/j.ijrobp.
2005.02.038
https://doi.org/10.18632/oncotarget.18282
https://doi.org/10.1667/RR14190.1
https://doi.org/10.1182/blood-2009-03-213629
https://doi.org/10.1016/S0168-3659(01)00335-2
https://doi.org/10.1016/S0168-3659(01)00335-2
https://doi.org/10.1097/00006534-199910000-00020
https://doi.org/10.1126/science.1082504
https://doi.org/10.1667/RR14445.1
https://doi.org/10.3109/09553002.2012.711502
https://doi.org/10.1016/j.freeradbiomed.
2017.04.019
https://doi.org/10.1016/j.freeradbiomed.
2017.04.019
https://doi.org/10.1093/gerona/glt057
https://doi.org/10.1016/j.yexcr.
2007.06.001
https://doi.org/10.1016/j.yexcr.
2007.06.001
https://doi.org/10.1152/ajpcell.
00535.2009
https://doi.org/10.1152/ajpcell.
00535.2009
https://doi.org/10.1080/
095530097143428
https://doi.org/10.1080/
095530097143428
https://doi.org/10.1111/1523-1747.ep12398607
https://doi.org/10.1259/bjr.
20130686
https://doi.org/10.1259/bjr.
20130686
https://doi.org/10.1172/JCI40283
https://doi.org/10.1158/
0008-5472.CAN-09-4446
https://doi.org/10.1158/
0008-5472.CAN-09-4446
https://doi.org/10.1093/jnci/djs239
https://doi.org/10.4049/jimmunol.1003917
https://doi.org/10.1016/j.jneuroim.2013.09.011
https://doi.org/10.1016/j.ijrobp.2015.12.367
https://doi.org/10.1016/j.canlet.2016.02.033
https://doi.org/10.1016/j.ijrobp.2013.02.036
https://doi.org/10.1667/RR3116.1


15

Martinez-Zubiaurre et al. Immunoregulatory Networks of Irradiated Stroma

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1679

99. Swartz MA, Lund AW. Lymphatic and interstitial flow in the tumour micro-
environment: linking mechanobiology with immunity. Nat Rev Cancer 
(2012) 12(3):210–9. doi:10.1038/nrc3186 

100. Lund AW, Duraes FV, Hirosue S, Raghavan VR, Nembrini C, Thomas SN,  
et  al. VEGF-C promotes immune tolerance in B16 melanomas and cross- 
presentation of tumor antigen by lymph node lymphatics. Cell Rep (2012) 
1(3):191–9. doi:10.1016/j.celrep.2012.01.005 

101. Pastouret F, Lievens P, Leduc O, Bourgeois P, Tournel K, Lamote J, et  al.  
Short time effects of radiotherapy on lymphatic vessels and restorative lym-
phatic pathways: experimental approaches in a mouse model. Lymphology 
(2014) 47(2):92–100. 

102. Sung HK, Morisada T, Cho CH, Oike Y, Lee J, Sung EK, et  al. Intesti nal 
and peri-tumoral lymphatic endothelial cells are resistant to radiation- 
induced apoptosis. Biochem Biophys Res Commun (2006) 345(2):545–51. 
doi:10.1016/j.bbrc.2006.04.121 

103. Russell NS, Floot B, van Werkhoven E, Schriemer M, de Jong-Korlaar R, 
Woerdeman LA, et al. Blood and lymphatic microvessel damage in irradiated 
human skin: the role of TGF-beta, endoglin and macrophages. Radiother 
Oncol (2015) 116(3):455–61. doi:10.1016/j.radonc.2015.08.024 

104. Rodriguez-Ruiz ME, Garasa S, Rodriguez I, Solorzano JL, Barbes B, Yanguas A,  
et al. Intercellular adhesion molecule-1 and vascular cell adhesion molecule 
are induced by ionizing radiation on lymphatic endothelium. Int J Radiat 
Oncol Biol Phys (2017) 97(2):389–400. doi:10.1016/j.ijrobp.2016.10.043 

105. Cui Y, Wilder J, Rietz C, Gigliotti A, Tang X, Shi Y, et al. Radiation-induced 
impairment in lung lymphatic vasculature. Lymphat Res Biol (2014) 
12(4):238–50. doi:10.1089/lrb.2014.0012 

106. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR,  
et  al. Depletion of carcinoma-associated fibroblasts and fibrosis induces 
immunosuppression and accelerates pancreas cancer with reduced survival. 
Cancer Cell (2014) 25(6):719–34. doi:10.1016/j.ccr.2014.04.005 

107. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. 
Stromal elements act to restrain, rather than support, pancreatic ductal ade-
nocarcinoma. Cancer Cell (2014) 25(6):735–47. doi:10.1016/j.ccr.2014.04.021 

108. Silzle T, Randolph GJ, Kreutz M, Kunz-Schughart LA. The fibroblast: sen-
tinel cell and local immune modulator in tumor tissue. Int J Cancer (2004) 
108(2):173–80. doi:10.1002/ijc.11542 

109. Servais C, Erez N. From sentinel cells to inflammatory culprits: cancer- 
associated fibroblasts in tumour-related inflammation. J Pathol (2013) 229(2): 
198–207. doi:10.1002/path.4103 

110. Martinez-Zubiaurre I, Fenton CG, Taman H, Pettersen I, Hellevik T, Paulssen 
RH, et al. Tumorigenic responses of cancer-associated stromal fibrioblasts 
after ablative radiotherapy: a transcriptome-profiling study. J Cancer Ther 
(2013) 4(1):208–50. doi:10.4236/jct.2013.41031 

111. Tachiiri S, Katagiri T, Tsunoda T, Oya N, Hiraoka M, Nakamura Y. Analysis 
of gene-expression profiles after gamma irradiation of normal human 
fibroblasts. Int J Radiat Oncol Biol Phys (2006) 64(1):272–9. doi:10.1016/j.
ijrobp.2005.08.030 

112. Papadopoulou A, Kletsas D. Human lung fibroblasts prematurely senescent 
after exposure to ionizing radiation enhance the growth of malignant 
lung epithelial cells in  vitro and in  vivo. Int J Oncol (2011) 39(4):989–99. 
doi:10.3892/ijo.2011.1132 

113. Li D, Qu C, Ning Z, Wang H, Zang K, Zhuang L, et al. Radiation promotes 
epithelial-to-mesenchymal transition and invasion of pancreatic cancer 
cell by activating carcinoma-associated fibroblasts. Am J Cancer Res (2016) 
6(10):2192–206. 

114. Arshad A, Deutsch E, Vozenin MC. Simultaneous irradiation of fibroblasts 
and carcinoma cells repress the secretion of soluble factors able to stimulate 
carcinoma cell migration. PLoS One (2015) 10(1):e0115447. doi:10.1371/
journal.pone.0115447 

115. Liu D, Hornsby PJ. Fibroblast stimulation of blood vessel development and 
cancer cell invasion in a subrenal capsule xenograft model: stress-induced 
premature senescence does not increase effect. Neoplasia (2007) 9(5):418–26. 
doi:10.1593/neo.07205 

116. Grinde MT, Vik J, Camilio KA, Martinez-Zubiaurre I, Hellevik T. Ionizing 
radiation abrogates the pro-tumorigenic capacity of cancer-associated 
fibroblasts co-implanted in xenografts. Sci Rep (2017) 7:46714. doi:10.1038/
srep46714 

117. Gorchs L, Hellevik T, Bruun JA, Camilio KA, Al-Saad S, Stuge TB, et al. Cancer-
associated fibroblasts from lung tumors maintain their immunosuppressive 

abilities after high-dose irradiation. Front Oncol (2015) 5:87. doi:10.3389/
fonc.2015.00087 

118. Hellevik T, Pettersen I, Berg V, Bruun J, Bartnes K, Busund LT, et  al.  
Changes in the secretory profile of NSCLC-associated fibroblasts after 
ablative radiotherapy: potential impact on angiogenesis and tumor growth. 
Transl Oncol (2013) 6(1):66–74. doi:10.1593/tlo.12349 

119. Verset L, Tommelein J, Moles Lopez X, Decaestecker C, Boterberg T,  
De Vlieghere E, et  al. Impact of neoadjuvant therapy on cancer-associated  
fibroblasts in rectal cancer. Radiother Oncol (2015) 116(3):449–54. 
doi:10.1016/j.radonc.2015.05.007 

120. Feng H, Zhao JK, Schiergens TS, Wang PX, Ou BC, Al-Sayegh R, et  al.  
Bone marrow-derived mesenchymal stromal cells promote colorectal cancer 
cell death under low-dose irradiation. Br J Cancer (2018) 118(3):353–65. 
doi:10.1038/bjc.2017.415 

121. de Araújo Farias V, O’Valle F, Lerma BA, Ruiz de Almodóvar C, López-
Peñalver JJ, Nieto A, et al. Human mesenchymal stem cells enhance the 
systemic effects of radiotherapy. Oncotarget (2015) 6(31):31164–80. 
doi:10.18632/oncotarget.5216 

122. Kim SM, Oh JH, Park SA, Ryu CH, Lim JY, Kim DS, et  al. Irradiation 
enhances the tumor tropism and therapeutic potential of tumor necrosis 
factor-related apoptosis-inducing ligand-secreting human umbilical cord 
blood-derived mesenchymal stem cells in glioma therapy. Stem Cells (2010) 
28(12):2217–28. doi:10.1002/stem.543 

123. Lo WJ, Lin CL, Chang YC, Bai LY, Lin CY, Liang JA, et  al. Total body 
irradiation tremendously impair the proliferation, differentiation and 
chromosomal integrity of bone marrow-derived mesenchymal stromal stem 
cells. Ann Hematol (2018) 97(4):697–707. doi:10.1007/s00277-018-3231-y 

124. Alessio N, Esposito G, Galano G, De Rosa R, Anello P, Peluso G, et  al. 
Irradiation of mesenchymal stromal cells with low and high doses of 
alpha particles induces senescence and/or apoptosis. J Cell Biochem (2017) 
118(9):2993–3002. doi:10.1002/jcb.25961 

125. Vatner RE, Formenti SC. Myeloid-derived cells in tumors: effects of radi-
ation. Semin Radiat Oncol (2015) 25(1):18–27. doi:10.1016/j.semradonc. 
2014.07.008 

126. Tsai CS, Chen FH, Wang CC, Huang HL, Jung SM, Wu CJ, et al. Macrophages 
from irradiated tumors express higher levels of iNOS, arginase-I and 
COX-2, and promote tumor growth. Int J Radiat Oncol Biol Phys (2007) 
68(2):499–507. doi:10.1016/j.ijrobp.2007.01.041 

127. Crittenden MR, Savage T, Cottam B, Baird J, Rodriguez PC, Newell P, et al. 
Expression of arginase I in myeloid cells limits control of residual disease 
after radiation therapy of tumors in mice. Radiat Res (2014) 182(2):182–90. 
doi:10.1667/RR13493.1 

128. Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM. Inhi-
bition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by 
reducing myeloid cell recruitment. Proc Natl Acad Sci U S A (2010) 107 
(18):8363–8. doi:10.1073/pnas.0911378107 

129. Xu J, Escamilla J, Mok S, David J, Priceman S, West B, et al. CSF1R signaling 
blockade stanches tumor-infiltrating myeloid cells and improves the effi-
cacy of radiotherapy in prostate cancer. Cancer Res (2013) 73(9):2782–94. 
doi:10.1158/0008-5472.CAN-12-3981 

130. Crittenden MR, Cottam B, Savage T, Nguyen C, Newell P, Gough MJ.  
Expression of NF-kappaB p50 in tumor stroma limits the control of tumors 
by radiation therapy. PLoS One (2012) 7(6):e39295. doi:10.1371/journal.
pone.0039295 

131. Julow J, Szeifert GT, Bálint K, Nyáry I, Nemes Z. The role of microglia/
macrophage system in the tissue response to I-125 interstitial brachytherapy 
of cerebral gliomas. Neurol Res (2007) 29(3):233–8. doi:10.1179/0161641
07X158875 

132. Pinto AT, Pinto ML, Velho S, Pinto MT, Cardoso AP, Figueira R, et al. Intricate 
macrophage-colorectal cancer cell communication in response to radiation. 
PLoS One (2016) 11(8):e0160891. doi:10.1371/journal.pone.0160891 

133. Hildebrandt G, Radlingmayr A, Rosenthal S, Rothe R, Jahns J, Hindemith M,  
et al. Low-dose radiotherapy (LD-RT) and the modulation of iNOS expres-
sion in adjuvant-induced arthritis in rats. Int J Radiat Biol (2003) 79(12): 
993–1001. doi:10.1080/09553000310001636639 

134. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, et  al. Low-
dose irradiation programs macrophage differentiation to an iNOS(+)/M1 
phenotype that orchestrates effective T  cell immunotherapy. Cancer Cell 
(2013) 24(5):589–602. doi:10.1016/j.ccr.2013.09.014 

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://doi.org/10.1038/nrc3186
https://doi.org/10.1016/j.celrep.2012.01.005
https://doi.org/10.1016/j.bbrc.2006.04.121
https://doi.org/10.1016/j.radonc.2015.08.024
https://doi.org/10.1016/j.ijrobp.2016.10.043
https://doi.org/10.1089/lrb.2014.0012
https://doi.org/10.1016/j.ccr.2014.04.005
https://doi.org/10.1016/j.ccr.
2014.04.021
https://doi.org/10.1002/ijc.11542
https://doi.org/10.1002/path.4103
https://doi.org/10.4236/jct.2013.41031
https://doi.org/10.1016/j.ijrobp.2005.08.030
https://doi.org/10.1016/j.ijrobp.2005.08.030
https://doi.org/10.3892/ijo.2011.1132
https://doi.org/10.1371/journal.pone.0115447
https://doi.org/10.1371/journal.pone.0115447
https://doi.org/10.1593/neo.07205
https://doi.org/10.1038/srep46714
https://doi.org/10.1038/srep46714
https://doi.org/10.3389/fonc.2015.00087
https://doi.org/10.3389/fonc.2015.00087
https://doi.org/10.1593/tlo.12349
https://doi.org/10.1016/j.radonc.2015.05.007
https://doi.org/10.1038/bjc.2017.415
https://doi.org/10.18632/oncotarget.5216
https://doi.org/10.1002/stem.543
https://doi.org/10.1007/s00277-018-3231-y
https://doi.org/10.1002/jcb.25961
https://doi.org/10.1016/j.semradonc.
2014.07.008
https://doi.org/10.1016/j.semradonc.
2014.07.008
https://doi.org/10.1016/j.ijrobp.2007.01.041
https://doi.org/10.1667/RR13493.1
https://doi.org/10.1073/pnas.0911378107
https://doi.org/10.1158/0008-5472.CAN-12-3981
https://doi.org/10.1371/journal.pone.0039295
https://doi.org/10.1371/journal.pone.0039295
https://doi.org/10.1179/016164107X158875
https://doi.org/10.1179/016164107X158875
https://doi.org/10.1371/journal.pone.0160891
https://doi.org/10.1080/09553000310001636639
https://doi.org/10.1016/j.ccr.2013.09.014


16

Martinez-Zubiaurre et al. Immunoregulatory Networks of Irradiated Stroma

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1679

135. Lodermann B, Wunderlich R, Frey S, Schorn C, Stangl S, Rödel F, et  al. 
Low dose ionising radiation leads to a NF-kappaB dependent decreased 
secretion of active IL-1beta by activated macrophages with a discontinuous 
dose-dependency. Int J Radiat Biol (2012) 88(10):727–34. doi:10.3109/ 
09553002.2012.689464 

136. Wunderlich R, Ernst A, Rödel F, Fietkau R, Ott O, Lauber K, et al. Low and 
moderate doses of ionizing radiation up to 2 Gy modulate transmigration 
and chemotaxis of activated macrophages, provoke an anti-inflammatory 
cytokine milieu, but do not impact upon viability and phagocytic function. 
Clin Exp Immunol (2015) 179(1):50–61. doi:10.1111/cei.12344 

137. Frey B, Hehlgans S, Rödel F, Gaipl US. Modulation of inflammation by low 
and high doses of ionizing radiation: implications for benign and malign 
diseases. Cancer Lett (2015) 368(2):230–7. doi:10.1016/j.canlet.2015.04.010 

138. Leonard W, Dufait I, Schwarze JK, Law K, Engels B, Jiang H, et  al. 
Myeloid-derived suppressor cells reveal radioprotective properties through 
arginase-induced l-arginine depletion. Radiother Oncol (2016) 119(2):291–9. 
doi:10.1016/j.radonc.2016.01.014 

139. van Meir H, Nout RA, Welters MJ, Loof NM, de Kam ML, van Ham JJ, 
et  al. Impact of (chemo)radiotherapy on immune cell composition and 
function in cervical cancer patients. Oncoimmunology (2017) 6(2):e1267095.  
doi:10.1080/2162402X.2016.1267095 

140. Sridharan V, Margalit DN, Lynch SA, Severgnini M, Zhou J, Chau NG, et al. 
Definitive chemoradiation alters the immunologic landscape and immune 
checkpoints in head and neck cancer. Br J Cancer (2016) 115(2):252–60. 
doi:10.1038/bjc.2016.166 

141. Wang D, Jiao C, Zhu Y, Liang D, Zao M, Meng X, et al. Activation of CXCL12/
CXCR4 renders colorectal cancer cells less sensitive to radiotherapy via 
up-regulating the expression of survivin. Exp Biol Med (Maywood) (2017) 
242(4):429–35. doi:10.1177/1535370216675068 

142. Napolitano M, D’Alterio C, Cardone E, Trotta AM, Pecori B, Rega D, et al. 
Peripheral myeloid-derived suppressor and T regulatory PD-1 positive cells 
predict response to neoadjuvant short-course radiotherapy in rectal cancer 
patients. Oncotarget (2015) 6(10):8261–70. doi:10.18632/oncotarget.3014 

143. Teng F, Meng X, Kong L, Mu D, Zhu H, Liu S, et  al. Tumor-infiltrating 
lymphocytes, forkhead box P3, programmed death ligand-1, and cytotoxic 
T  lymphocyte-associated antigen-4 expressions before and after neoadju-
vant chemoradiation in rectal cancer. Transl Res (2015) 166(6):721–32.e1. 
doi:10.1016/j.trsl.2015.06.019 

144. Filatenkov A, Baker J, Strober S. Disruption of evasive immune cell micro-
environment in tumors reflects immunity induced by radiation therapy. 
Oncoimmunology (2016) 5(2):e1072673. doi:10.1080/2162402X.2015. 
1072673 

145. Merrick A, Errington F, Milward K, O’Donnell D, Harrington K, Bateman A,  
et  al. Immunosuppressive effects of radiation on human dendritic cells: 
reduced IL-12 production on activation and impairment of naive T-cell 
priming. Br J Cancer (2005) 92(8):1450–8. doi:10.1038/sj.bjc.6602518 

146. Reuben JM, Korbling M, Gao H, Lee BN. The effect of low dose gamma irra-
diation on the differentiation and maturation of monocyte derived dendritic 
cells. J Gravit Physiol (2004) 11(2):49–52. 

147. Teitz-Tennenbaum S, Li Q, Okuyama R, Davis MA, Sun R, Whitfield J, 
et  al. Mechanisms involved in radiation enhancement of intratumoral 

dendritic cell therapy. J Immunother (2008) 31(4):345–58. doi:10.1097/
CJI.0b013e318163628c 

148. Chen Z, Xia D, Bi X, Saxena A, Sidhu N, El-Gayed A, et  al. Combined 
radiation therapy and dendritic cell vaccine for treating solid tumors with 
liver micro-metastasis. J Gene Med (2005) 7(4):506–17. doi:10.1002/jgm.692 

149. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local 
radiation therapy of B16 melanoma tumors increases the generation of tumor 
antigen-specific effector cells that traffic to the tumor. J Immunol (2005) 
174(12):7516–23. doi:10.4049/jimmunol.174.12.7516 

150. Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, et  al. Therapeutic 
effects of ablative radiation on local tumor require CD8+ T cells: changing 
strategies for cancer treatment. Blood (2009) 114(3):589–95. doi:10.1182/
blood-2009-02-206870 

151. Chun SH, Park GY, Han YK, Kim SD, Kim JS, Lee CG, et al. Effect of low 
dose radiation on differentiation of bone marrow cells into dendritic cells. 
Dose Response (2012) 11(3):374–84. doi:10.2203/dose-response.12-041.Lee 

152. Jahns J, Anderegg U, Saalbach A, Rosin B, Patties I, Glasow A, et al. Influence 
of low dose irradiation on differentiation, maturation and T-cell activation 
of human dendritic cells. Mutat Res (2011) 70(9–710):32–9. doi:10.1016/j.
mrfmmm.2011.02.007 

153. Frey B, Rückert M, Weber J, Mayr X, Derer A, Lotter M, et al. Hypofrac-
tionated irradiation has immune stimulatory potential and induces a 
timely restricted infiltration of immune cells in colon cancer tumors. Front 
Immunol (2017) 8:231. doi:10.3389/fimmu.2017.00231 

154. Tabachnyk M, Distel LV, Büttner M, Grabenbauer GG, Nkenke E, Fietkau R, 
et al. Radiochemotherapy induces a favourable tumour infiltrating inflam-
matory cell profile in head and neck cancer. Oral Oncol (2012) 48(7):594–601. 
doi:10.1016/j.oraloncology.2012.01.024 

155. Liu H, Li B, Jia X, Ma Y, Gu Y, Zhang P, et al. Radiation-induced decrease 
of CD8+ dendritic cells contributes to Th1/Th2 shift. Int Immunopharmacol 
(2017) 46:178–85. doi:10.1016/j.intimp.2017.03.013 

156. Morisada M, Clavijo PE, Moore E, Sun L, Chamberlin M, Van Waes C,  
et  al. PD-1 blockade reverses adaptive immune resistance induced by 
high-dose hypofractionated but not low-dose daily fractionated radiation. 
Oncoimmunology (2018) 7(3):e1395996. doi:10.1080/2162402X.2017. 
1395996 

157. Song X, Shao Y, Jiang T, Ding Y, Xu B, Zheng X, et al. Radiotherapy upreg-
ulates programmed death ligand-1 through the pathways downstream of 
epidermal growth factor receptor in glioma. EBioMedicine (2018) 28:105–13. 
doi:10.1016/j.ebiom.2018.01.027 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2018 Martinez-Zubiaurre, Chalmers and Hellevik. This is an open- 
access article distributed under the terms of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction in other forums is permitted, provided 
the original author(s) and the copyright owner(s) are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive
https://doi.org/10.3109/
09553002.2012.689464
https://doi.org/10.3109/
09553002.2012.689464
https://doi.org/10.1111/cei.12344
https://doi.org/10.1016/j.canlet.2015.04.010
https://doi.org/10.1016/j.radonc.2016.01.014
https://doi.org/10.1080/2162402X.2016.1267095
https://doi.org/10.1038/bjc.2016.166
https://doi.org/10.1177/1535370216675068
https://doi.org/10.18632/oncotarget.3014
https://doi.org/10.1016/j.trsl.2015.06.019
https://doi.org/10.1080/2162402X.2015.
1072673
https://doi.org/10.1080/2162402X.2015.
1072673
https://doi.org/10.1038/sj.bjc.6602518
https://doi.org/10.1097/CJI.0b013e318163628c
https://doi.org/10.1097/CJI.0b013e318163628c
https://doi.org/10.1002/jgm.692
https://doi.org/10.4049/jimmunol.174.12.7516
https://doi.org/10.1182/blood-2009-02-206870
https://doi.org/10.1182/blood-2009-02-206870
https://doi.org/10.2203/dose-response.12-041.Lee
https://doi.org/10.1016/j.mrfmmm.2011.02.007
https://doi.org/10.1016/j.mrfmmm.2011.02.007
https://doi.org/10.3389/fimmu.2017.00231
https://doi.org/10.1016/j.oraloncology.2012.01.024
https://doi.org/10.1016/j.intimp.2017.03.013
https://doi.org/10.1080/2162402X.2017.
1395996
https://doi.org/10.1080/2162402X.2017.
1395996
https://doi.org/10.1016/j.ebiom.2018.01.027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Radiation-Induced Transformation of Immunoregulatory Networks in the Tumor Stroma
	Introduction
	Effects of RT on ECM Remodeling, Conductivity, and Tissue Stiffness
	Dynamic RT Effects on ECM Remodeling
	The Role of Transforming Growth Factor Beta (TGF-β)
	Dynamic Effects of RT on Proteases of the ECM

	Effects of RT on Tumor Vasculature and Lymphatic Vessels
	Dynamic RT Effects on Tumor Vessels
	RT Effects on Cell Adhesion Molecules in ECs
	Recruitment of Endothelial Progenitors Following RT
	RT Effects on Pericytes
	RT Effects on Lymphangiogenesis

	Mesenchymal Cells, Radiation, and Immunity
	RT Effects on CAFs
	Effects of RT on Mesenchymal Stromal Cells (MSCs)

	Effect of Local Radiation on Inflammatory Cells
	RT Effects on Macrophages
	RT Effects on MDSCs
	RT Effects on DCs

	Concluding Remarks
	Author Contributions
	Acknowledgments
	Funding
	References


