
July 2018 | Volume 9 | Article 16981

Original research
published: 23 July 2018

doi: 10.3389/fimmu.2018.01698

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Harry W. Schroeder,  

University of Alabama at Birmingham, 
United States

Reviewed by: 
Michael Zemlin,  

Universitätsklinikum  
des Saarlandes, Germany  

Christopher Sundling,  
Karolinska Institutet (KI), Sweden

*Correspondence:
Charlotte M. Deane 

deane@stats.ox.ac.uk

Specialty section: 
This article was submitted  

to B Cell Biology,  
a section of the journal  

Frontiers in Immunology

Received: 20 April 2018
Accepted: 10 July 2018
Published: 23 July 2018

Citation: 
Krawczyk K, Kelm S, Kovaltsuk A, 

Galson JD, Kelly D, Trück J, 
Regep C, Leem J, Wong WK, 

Nowak J, Snowden J, Wright M, 
Starkie L, Scott-Tucker A, Shi J and 

Deane CM (2018) Structurally 
Mapping Antibody Repertoires. 

Front. Immunol. 9:1698. 
doi: 10.3389/fimmu.2018.01698

structurally Mapping antibody 
repertoires
Konrad Krawczyk1, Sebastian Kelm2, Aleksandr Kovaltsuk1, Jacob D. Galson3,  
Dominic Kelly3, Johannes Trück3,4, Cristian Regep1, Jinwoo Leem1, Wing K. Wong1, 
Jaroslaw Nowak1, James Snowden2, Michael Wright 2, Laura Starkie 2,  
Anthony Scott-Tucker 2, Jiye Shi2 and Charlotte M. Deane1*

1 Department of Statistics, Oxford University, Oxford, United Kingdom, 2 UCB Pharma, Slough, United Kingdom, 3 Division  
of Immunology, Children’s Research Center, University Children’s Hospital, Zurich, Switzerland, 4 Oxford Vaccine Group, 
University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom

Every human possesses millions of distinct antibodies. It is now possible to analyze 
this diversity via next-generation sequencing of immunoglobulin genes (Ig-seq). This 
technique produces large volume sequence snapshots of B-cell receptors that are 
indicative of the antibody repertoire. In this paper, we enrich these large-scale sequence 
datasets with structural information. Enriching a sequence with its structural data allows 
better approximation of many vital features, such as its binding site and specificity. Here, 
we describe the structural annotation of antibodies pipeline that maps the outputs of 
large Ig-seq experiments to known antibody structures. We demonstrate the viability 
of our protocol on five separate Ig-seq datasets covering ca. 35 m unique amino acid 
sequences from ca. 600 individuals. Despite the great theoretical diversity of antibodies, 
we find that the majority of sequences coming from such studies can be reliably mapped 
to an existing structure.

Keywords: antibody specificity, B-cell receptor, next-generation sequencing, structural homology, protein, 
bioinformatics tools

inTrODUcTiOn

Antibodies are proteins that play a key role in recognizing potentially noxious molecules (antigens) 
in jawed vertebrates. They are produced by B-cells, where they can be secreted or act as a membrane-
bound B-cell receptor. In humans, they are composed of two polypeptide chains, referred to as heavy 
and light. Each of the chains has a variable region that is ca. 110 amino acids long, composed of 
the framework region and three hypervariable loops referred to as complementarity determining 
regions (CDRs). There is a limited set of known human germline framework sequences (~150), 
but CDRs, which dictate antigen recognition, show more variation (1). It is estimated that a typical 
human is capable of producing more than 1010 distinct antibody molecules (2–6). Thus, in a single 
individual, there is likely to exist an antibody capable of recognizing an arbitrary antigen, though 
perhaps not specifically. Such binding malleability of antibodies has long been a subject of intensive 
academic and industrial research.

Discerning human antibody diversity will help us to understand how our immune system is 
capable of recognizing such a myriad set of antigens and underpins our ability to exploit them 
therapeutically (7–10). Next-generation sequencing of immunoglobulin genes (Ig-seq) facilitates 
this task as it allows us to obtain a snapshot of the B-cell receptor (antibody) repertoire across differ-
ent individuals and immune states (11–16). The outputs from these Ig-seq experiments have been 
characterized by their germline biases and sequence analysis methods (2, 10, 14, 17, 18). These studies 
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do not consider the three-dimensional structure of the antibody, 
but it is this structure that dictates antigen recognition (19, 20). In 
one study, the authors structurally characterized a small portion 
of their Ig-seq data (ca. 2,000 structural models from ca. 175,000 
sequences) but they did not produce a structural annotation 
protocol (21). In this paper, we show it is possible to characterize 
structurally large percentages of the data and describe a pipeline 
for automating the task.

As described by Kovaltsuk et al. (20), structural information 
can give both an overall predicted shape and detail of the binding 
site (CDRs). Predicting the shape of a sequence can offer suf-
ficient information to link it to an antibody with similar shape 
and defined antigen specificity (22, 23). Enriching Ig-seq datasets 
with structural information should improve analyses and insights 
that can be derived from antibody repertoire snapshots.

Here, we describe the structural annotation of antibodies 
(SAAB) algorithm to bridge the sequence-structure gap in antibody 
repertoire analysis. This protocol, given a FASTA file with poten-
tially millions of antibody sequences, maps the full sequences, 
frameworks, and CDRs to the high quality antibody structures 
currently available in the Protein Data Bank (PDB) (24, 25). We 
demonstrate the validity of this approach by testing the protocol 
on five separate Ig-seq datasets encompassing ca 35 m sequences 
from ca. 600 individuals. For each dataset, we can associate a 
majority of frameworks and CDR sequences to an existing anti-
body structure. This finding recapitulates on a large scale both the 
structural conservation of the framework and the canonical CDR 
paradigm (26, 27). More generally, however, we demonstrate that 
it is currently possible to approximate the structures of entire 
variable region sequences for most of the data. Therefore, despite 
the theoretically allowed repertoire diversity, currently observed 
antibody sequence space appears to employ only a conservative 
set of structural shapes.

MaTerials anD MeThODs

structural annotation of antibodies
Our SAAB algorithm accepts amino acid sequences in FASTA-
formatted input. The algorithm first Chothia-numbers the 
sequences (28) and then maps (if possible) the sequences to 
known antibody structures in the PDB (25). These structures are 
identified for entire variable region as well as for frameworks and 
CDRs separately. Details of the steps of the protocol are given 
below.

Chothia-Number Sequences
Each of the supplied Ig-seq amino acid sequences are Chothia-
numbered (28) using ANARCI (29). The numbering provides a 
consistent frame of reference for antibody sequences. This allows 
for sequence identity calculation of the entire sequence as well as 
regions of the antibody separately (frameworks and CDRs).

Antibody Structural Reference
The set of antibody structures accompanying our software and 
used in this analysis was downloaded from the structural anti-
body database (SAbDab) on 31st October 2017 (25). Only X-ray 

structures with resolution better than 3.0  Å were used. VHH 
structures were excluded. If both heavy and light sequences were 
identical across two or more molecules, only the structure with 
the best resolution was retained. This procedure resulted in 2,100 
antibody structures. Each of the antibody chains is Chothia-
numbered using ANARCI. We used these numbered structures 
to calculate the expected structural difference between two anti-
bodies at a given sequence identity. We describe this structural 
difference using root mean square deviation (RMSD). RMSD 
estimates for values below 90% Chothia sequence identity were 
calculated using the subset of 711 non-redundant structures (less 
than 90% sequence identity) of the original 2,100 structures. The 
RMSD estimates above 90% sequence identity in Figure 2 were 
calculated using the entire set of 2,100 sequences. The RMSD 
calculation was done using TM-align (30).

Chothia-Aligning Full Sequences and Frameworks
Each amino acid sequence from an input Ig-seq dataset is 
Chothia-aligned to each of the 2,100 antibody structures. The 
sequence identity is normalized by the length of the query 
sequence. Chothia positions from the query sequence which can-
not be found in the template are treated as mismatches. Sequence 
identity is calculated for the entire variable region and for the 
framework region separately. For framework alignments, we 
employ Chothia definitions of the CDR boundaries. Following 
this procedure, the PDB codes and chains of best full variable 
region and framework matches and the corresponding sequence 
identities are saved for each Ig-seq query sequence.

CDR Annotations
The original FREAD algorithm (31, 32) requires a database of 
fragments from which to select its predictions. In this case, for 
each CDR a separate database containing only CDRs of that type 
is used. FREAD also requires as minimal inputs the sequence of 
the loop to be modeled and the atomic coordinates of the two 
residues from the framework either side of the loop to be predicted 
(the anchor residues). Sequence identity of 50% or better between 
two antibody variable domains gives an anchor RMSD of around 
0.4 Å or better. Thus, for a given CDR in a query sequence, we 
use the best full-sequence match to an existing antibody structure 
from step 2.1.3 as the anchor reference. From that point, the algo-
rithm runs as described in the original papers [see Ref. (31, 32) for 
details] but with a length-dependent cutoff for the ESS score. This 
change was needed as FREAD had originally been benchmarked 
primarily on loops less than 13 residues long. For loop lengths 
below 13 the ESS cutoff is maintained at 25, between 13 and 16 
the cutoff is set at 40, and for lengths greater than 16 the cutoff 
becomes 55. These thresholds were established by doing a one 
versus all cross-validation on a non-redundant set of antibodies 
in SAbDab at a 20% false positive rate (model has RMSD better 
than 1.5 Å with respect to the native structure). The anchor coor-
dinates of the reference structure are used to perform a standard 
loop-template search for the query CDR sequence, using FREAD. 
If FREAD finds loops with closely matching anchors and an ESS 
score above the length-dependent cutoff, the best-scoring loop 
template’s PDB code and chain identifier are saved.

https://www.frontiersin.org/Immunology/
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FigUre 1 | The structural annotation of antibodies algorithm. The input consists of amino acid sequences in FASTA format. These sequences are Chothia-
numbered using ANARCI (29). Chothia-numbered sequences are then aligned to known structures of antibodies as defined by the structural antibody database (25). 
Best templates are identified for the entire variable region as well as for Chothia-delimited framework only. The full variable region templates are employed to define 
complementarity determining region (CDR) anchoring residues that are used as input to FREAD which determines if we can identify a suitable template for each of 
the CDRs.
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Output
For each query sequence, we output (if any) the PDB codes of 
the best full sequence matches, best framework matches, and 
best CDR matches. We also output the PDB codes that the largest 
number of query sequences were mapped to, allowing for large-
scale structural characterization of the dataset. If an antibody 
structure (PDB code) has a bound antigen, these data are also 
retained to facilitate putative specificity annotation by rationale 
of sharing similar binding site.

Data
Four of the datasets (HBP, HBB, MEN, and FLU) were designed 
to study the immunization effects of vaccines targeting hepatitis 
B virus (primary and booster vaccination), meningococcus, 
and influenza virus, respectively. Nucleotide-deposited data for 
each of the datasets was downloaded from the NCBI website 
and translated to amino acid sequences. The original dataset 
sequences were separated by individuals, immunization visits 
(pre-vaccination or days post-vaccination), and isotype (IgG or 
IgM). For the purposes of this study, all the sequences from a 
given dataset were pooled together. These datasets are comprised 
exclusively of heavy chains. The UCB dataset was designed by 
UCB Pharma to be a comprehensive snapshot of baseline/naive 
human antibody diversity. This dataset consists of unpaired heavy 
and light IgM chains sourced from 494 individuals sampled from 
various immune organs. Sequences were not separated by indi-
viduals. Further details of generation of the datasets can be found 
in the Section Materials and Methods in Supplementary Material.

availability
The SAAB protocol is available as a webserver which performs 
rapid structural mapping of individual sequences and indicates 
antigen targets of antibodies with similar binding sites. We also 
make the code available to perform bulk structural characteriza-
tions of large volumes of Ig-seq datasets locally. The amino acid 
sequences for datasets HPB, HBB, MEN, and FLU are freely avail-
able through our site. For the proprietary UCB_H and UCB_L 

datasets, a sequence-representative dataset, separate frameworks, 
and CDRs are made available. All the materials are available via 
http://antibodymap.org.

resUlTs

The saaB algorithm
The three-dimensional structures of antibodies define their bind-
ing properties and allow a more insightful analysis of these mol-
ecules (20). Currently, such structural information is missing from 
analyses of Ig-seq repertoires (20). In order to structurally enrich 
outputs of Ig-seq experiments, we have developed an algorithm 
for the SAAB, see Figure 1. The method is based on previously 
published ABodyBuilder and FREAD protocols that produce full 
models of the variable regions and protein loops, respectively (32, 
33). These methods were validated by blind prediction of large 
structural datasets.

The algorithm input consists of FASTA-formatted, amino acid 
antibody sequences. The input sequences are Chothia-numbered 
using ANARCI (29). The numbered sequences are Chothia-
aligned to 2,100 high quality antibodies with known structure 
from the SAbDab (25). For each sequence from an Ig-seq dataset, 
the alignment identifies the best structural templates for the full 
variable region and framework separately. FREAD then identi-
fies, if any, the most suitable template structures for the CDRs 
(31, 32).

To demonstrate the efficacy of our protocol, we applied SAAB 
to five diverse Ig-seq datasets: one comprehensive dataset from ca. 
500 people as well as four immunization datasets, each containing 
~5 m unique amino acid sequences (Table 1).

The Majority of Full Variable regions and 
Frameworks From ig-seq Outputs can be 
reliably Matched to available structures
We quantified the proportion of sequences in each of our Ig-seq 
datasets for which it is possible to find a suitable structural 
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FigUre 2 | Chothia-aligning the 13.5 m unique baseline antibody variable sequences in datasets UCB_H and UCB_L to antibodies with known structures. (a) Full 
variable region sequence of the heavy chain. (B) Framework of the heavy chain. (c) Full variable region of the light chain. (D) Framework of the light chain. The pink 
bars indicate the number of sequences (right-hand y-axis) whose highest sequence identity structure match has the sequence identity given on the x-axis. The blue 
line (left-hand y-axis) indicates the expected root mean square deviation (RMSD) of a model built using a sequence identity match of that quality (with vertical SD 
error bars). For example, 80% sequence identity for the framework of the heavy chain translates to a 0.8 Å expected model RMSD.

TaBle 1 | Sequence datasets.

Dataset 
name

non-redundant 
sequences 

(h = heavy chain, 
l = light chain)

individuals Description

UCB_H H: 4,925,532 494 (pooled) Proprietary, non-immunized 
comprehensive diversity library

UCB_L L: 8,380,540
HBP H: 7,685,149 15 Hep B Primary vaccination (34)
HBB H: 4,718,120 10 Hep B Booster (12)
MEN H: 6,036,457 10 Meningococcal vaccination (35)
FLU H: 3,409,916 58 Influenza vaccination (36)

We have employed one dataset of baseline antibody human diversity (UCB_L and 
UCB_H) and four immunized datasets (HBP, HBB, MEN, and FLU). In total, the 
datasets comprised ca. 600 individuals and ca. 36 m sequences.
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template. These closest structural matches tell us how well 
we can model each of the V-regions. Given the size of our Ig- 
seq datasets, the results indicate how well currently available 

structures potentially represent the general shape adopted by 
immunoglobulins.

The results of applying SAAB to the UCB_L and UCB_H 
datasets are shown in Figure  2. The blue lines indicate the 
RMSD that can be expected if a structural model was produced 
from a template with the sequence identity given on the x-axis 
[structures of 1.5 A° RMSD or better can be considered close 
to identical (1)]. The bars indicate the numbers of sequences in 
the Ig-seq dataset whose best structural template identified is of 
the corresponding sequence identity. These results suggest that 
there are few if any antibody framework structures unaccounted 
for as 97% of heavy chain and 94% of light chain frameworks 
in our dataset align to a PDB structure with over 80% sequence 
identity (thus expected model RMSD of 0.9 A° or better). The 
coverage is also similar for the entire variable region, suggest-
ing that for the vast majority of sequences in the naïve human 
antibody repertoire sampled by datasets UCB_H and UCB_L 
we would be able to produce a structural model closely resem-
bling the native structure. The blue line shows that even with 
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TaBle 2 | Structural mapping of the complementarity determining regions (CDRs) in the UCB_H and UCB_L datasets.

Dataset and cDr 
subset

Total: redundant  
(non-redundant)

in the Protein Data Bank (PDB): 
redundant (non-redundant)

can model: redundant 
(non-redundant)

cannot model: redundant 
(non-redundant)

UcB_h

H1 4,718,716 (110,495) 2,238,760 (159) 2,479,674 (110,245) 282 (91)
H2 4,718,717 (159,222) 1,568,190 (305) 3,150,527 (158,917) 0 (0)
H3 4,714,545 (1,623,070) 61 (25) 3,614,289 (1,088,900) 1,100,195 (534,145)

UcB_l
L1 8,127,157 (1,020,446) 889,922 (135) 7,206,821 (1,005,664) 30,414 (14,647)
L2 8,127,157 (159,646) 2,942,147 (189) 5,137,392 (151,627) 47,618 (7,830)
L3 8,120,282 (1,080,668) 135,548 (130) 7,876,402 (1,060,293) 109,332 (20,245)

Chothia-defined CDRs in each dataset were extracted from the full variable region. CDRs, which had length less than three, were discarded. The redundant datasets were 
constrained to unique sequences only, which we denote as “non-redundant,” and the resulting numbers of loops are given in the “Total” column. “In the PDB” indicates number 
of loops we could find direct sequences matches for in the PDB. Of the loops, which were not found directly in the PDB, the “Can model” column indicates the number of loops 
FREAD found suitable templates for. The “Cannot model” column shows the numbers of loops which were not in the PDB and FREAD could not find templates for. In each case,  
the numbers of redundant loops are given without parentheses whereas non-redundant loops are given in parentheses.
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only 50% sequence identity an antibody framework would be 
predicted accurately. This shows the close structural homology 
of the framework sequences across V gene families (see Section 
1 in Supplementary Material).

The other four datasets show a similar pattern (see Section 2 in 
Supplementary Material), which suggests that there are very few, 
if any “blind spots” in our knowledge of antibody domain struc-
ture. The antibody repertoire, as represented by the five datasets, 
appears to consist of a reasonably conservative set of scaffolds.

Therefore, using only 2,100 high quality antibody struc-
tures, it is possible to group Ig-seq space into general struc-
tural groups. Such broad-brush characterization can offer 
valuable information for structurally informed comparisons 
of sequences, but fails to address antibody specificity. In order 
to be able to draw conclusions about antibody specificity, it 
is necessary to map structurally the antibody binding site as 
defined by the CDRs.

Majority of cDr sequences From ig-seq 
Datasets can be Matched to an existing 
structural Template
We calculated the number of CDR sequences in our Ig-seq data-
sets for which we could find structural templates. The existence 
of a suitable structural template indicates that it is possible to 
produce a structural model of the loop. This, in turn, allows 
an approximation of the antibody binding site shape providing 
insight into its specificity.

For each Ig-seq dataset, we extracted the Chothia-defined 
CDR loops and grouped them by CDR type (H1, L2, etc.). Loops 
which were shorter than three amino acids long were discarded. 
We created redundant and non-redundant sets for each loop (see 
Table 2). We find that large proportions of the redundant non-H3 
CDRs can be found directly in the PDB (Table 2). For instance, of 
the 4,718,716 H1 redundant loops in the UCB dataset, 2,238,760 
(47%) are identical in sequence to a known H1 CDR antibody 
structure. By contrast, of the 110,495 non-redundant H1 loops 
in the UCB dataset, only 156 have identical sequence matches in 
the PDB. Non-H3 CDRs are known to adopt a limited number of 

canonical shapes so the high coverage of the redundant sequences 
is expected (27). The large discrepancy between the number of 
direct PDB matches between redundant and non-redundant 
datasets may indicate the existence of common loop sequences 
which thus have higher probability of having being crystallized 
at some point. We have listed all H1 and H2 loops for which 
we found a direct PDB match in Section 3 in Supplementary 
Material. These data show that these CDRs are shared between 
the five studies. Many of these CDRs are germline. To obtain a 
more comprehensive structural interpretation of the Ig-seq CDRs 
for which we do not find direct matches in the PDB, we predicted 
the loop conformation from sequence.

The structural templates for each CDR are identified using an 
adapted version of the loop-modeling algorithm FREAD (32) 
which was benchmarked for this particular study (see Materials 
and Methods). Given a query sequence, the algorithm determines 
if there is a fragment or loop in a pre-compiled structural database 
(in this case antibodies in the PDB) that would serve as a reliable 
modeling template (<1.5  Å RMSD). FREAD gives no predic-
tion if it fails to find a close match. This allows us to produce an 
estimate for the percentage of CDR sequences we could reliably 
predict the structure of.

Using FREAD, we found that we could produce a reliable 
model for the majority of the CDR sequences in the UCB dataset 
(Table  2). Well over 50% of the unique sequences of non-H3 
CDRs can be accurately structurally predicted. This appears to 
recapitulate on a large scale the canonical shape phenomenon of 
non-H3 CDRs. In the case of H3, even though there were only a 
handful of direct PDB matches to UCB_H H3 sequences, accord-
ing to FREAD estimates, we would be able to produce structural 
models for 65% of all non-redundant and 75% of redundant H3 
loops. This is a surprisingly high coverage given its theoretical 
sequence diversity and lack of canonical rules.

Similar results are seen for CDRs in the other four datasets  
(see Section 1 in Supplementary Material). Given the theoreti-
cally allowed diversity of antibody binding sites, these results sug-
gest that the immune system is using only a limited set of CDR 
sequences and an even more limited set of CDR backbone shapes 
to generate diversity.

https://www.frontiersin.org/Immunology/
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FigUre 3 | Example of how structural mapping provides clues to 
antibody specificity. Structural annotation of antibodies (SAAB) outputs the 
Protein Data Bank (PDB) codes used to map frameworks, full variable 
sequence, and each of the complementarity determining regions for a 
sequence. The PDB codes are also mapped to the antigens recognized  
by the antibody structures (as stored in structural antibody database). If 
sequences match to similar PDB structures this could be indicative of 
similar binding sites and thus specificity. As an example, we examined the 
top 10 PDBs that were used to map H3 in the FLU dataset. A total of 
more than 7k H3 sequences were mapped to 4m5z, a complex of an 
antibody with influenza hemagglutinin (this is not among the top 10 
H3-mapped PDBs in our other datasets). We show several sequence-
diverse H3 loops on the left, which are unlikely to be grouped together by 
sequence-only methods. However, SAAB identifies that they are all likely 
to share a similar structure to the H3 loop of 4m5z (right, in blue) and, 
therefore, perhaps similar specificity.
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cOnclUsiOn

The diversity of the human antibody repertoire renders its chara-
cterization a challenging task. Newly available Ig-seq protocols 
allow us to take snapshots of this diversity across different indi-
viduals, isotypes, and immune states. Current Ig-seq analysis pipe-
lines rely on sequence-only methods to gain insight into antibody 
mechanics. However, it is the three-dimensional structure of the 
antibody that defines the specific physicochemical configuration 
which modulates the molecule’s specificity and affinity. Enriching 
Ig-seq datasets with structural information would greatly help in 
drawing biological or therapeutic conclusions about sequencing 
data (20).

In order to bridge the gap between high-throughput antibody 
sequencing and three-dimensional structure we developed SAAB. 
Our algorithm identifies the most suitable (if any) structural 
templates for the entire variable region as well as the framework 
and CDR regions alone. We tested the method on five datasets 
containing over 36  m sequences and show that the 2,100 high 
quality antibody structures in the public domain are sufficient to 
structurally annotate the majority of sequences.

The ability to identify structural templates for the majority of 
frameworks is expected since these are drawn from a limited set of 
known germlines. Similarly, non-H3 CDRs are known to adopt a set 
of canonical shapes. Furthermore, there appears to be a large propor-
tion of non-H3 CDR shapes that are highly re-used in the datasets. 
Considering the diversity and volume of the datasets involved it 
may be the case that the majority of the human immune repertoire 
is composed of a limited, perhaps strategically preferred, set of 
sequences and an even more conservative set of backbone shapes.

Binding shape biases in antibody repertoires can offer insight 
into the strategies of the immune system for tackling arbitrary 
antigens. For instance, sequence similarities can be indicative 
of shared antigen specificity (16, 37). However, the particular 
three-dimensional configuration of the CDRs can help in 
identifying the physichochemical properties of the paratope, 
providing potentially clearer information on specificity (21).  
It was previously shown on a smaller scale that certain CDR 
length or canonical class combinations can be associated with 
different types of antigens (38, 39). Thus, sharing of a similar 
structural template could also be an indication of similar specific-
ity (Figure 3). However, this is only the first step in identifying 
potential antigen-specific antibodies within the totality of the 
repertoire. Such candidates would have to be carefully studied 
with respect to the physicochemical properties of their paratopes, 
as such non-covalent interactions are known to ultimately dictate 
antibody-antigen recognition (39, 40). Special focus should be 
placed on electrostatic interactions that are suggested to be of 
particular importance in antibody–antigen complexes (41, 42). 
Annotating sequences with such physicochemical information 
can only be done reliably given the structure of the antibody 
(43). Such structural annotations will become more pertinent 
and accurate as more paired Ig-seq datasets are released as these 
data allow the entire Fv to be modeled rather than separate heavy 
and light chains (21). Such disease-specific annotations could 
be employed in immunodiagnostics to find antibody-markers 
of known diseases. Therefore, employing structural information 
provides novel ways to study the diversity of the immune system.

Up until now, structural mapping of entire repertoires was 
hampered by the computational cost associated with variable 
region modeling. Nevertheless, just identifying templates without 
producing a detailed model is in most cases more feasible than 
producing an ideal structural model and is already representative 
of shape (1, 21). For instance, rapidly identifying structurally 
similar groups by shared templates or structural similarity among 
templates in immunized Ig-seq datasets could be indicative of 
antigenic specificity. Employing structural annotations in such 
a fashion could allow for the development of computationally 
rapid predictive methodology for selecting antibody sequences 
to experimentally test for binding to an antigen. The inability to 
better identify antigen-specific sequences from sequence alone 
has been long proposed as a roadblock to better vaccine develop-
ment (16).

Furthermore, it has been shown previously that certain antigen- 
specific sequences can be found across different individuals (44, 45).  
Such antibodies were proposed to constitute the so-called “public 
repertoire” indicating sequence convergences within the popula-
tion to combat certain groups of antigens (45, 46). SAAB annota-
tions will offer an opportunity for in-depth characterization of 
structural commonalities and divergences in the inter-individual 
repertoires (46). For instance, comparing the overlap of subsets 
of structural annotations between individuals of healthy and 
diseased states could shed light on preferred groups of antibodies 
used for antigen recognition. The large sequence redundancy we 
observe here offers further evidence that there are antibodies that 
might be preferentially used by an organism to carry out immune 
responses. The high level of structural coverage we observe here 
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suggests that repertoires in general and the public repertoire 
in particular is structurally conservative, perhaps indicating 
immune preferences beyond germline genes. Therefore, char-
acterization of antibody repertoires in terms of sequence and 
structural features will help us to understand the strategic choices 
made by organisms which can, in turn, improve our ability for 
therapeutic design of these molecules. SAAB allows researchers 
to enrich Ig-seq datasets with structural information empowering 
them to draw greater biologically and therapeutically relevant 
information from their data.
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