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Complement is activated as part of the innate immune defense against invading 
pathogens. Also, it helps to remove apoptotic debris and immune complexes from the 
circulation. Impaired complement function due to aberrant plasma levels of complement 
proteins may be indicative for complement-mediated diseases or can be involved in 
susceptibility for infections. To determine whether plasma levels are abnormal, reference 
intervals (RIs) are used from adult healthy donors. Since many complement-mediated 
diseases have an onset during childhood, it is important to know whether these RIs can 
be extrapolated to children. RIs of Factor H (FH), the crucial fluid-phase regulator, and 
the FH-related proteins (FHRs), its homologous counterparts, are unknown in healthy 
children. While FH is measured to diagnose and monitor therapy of patients with atypical 
hemolytic uremic syndrome, recent studies also implicated increased plasma levels of 
FHRs in disease. Here, we investigated the levels of FH and FHRs in healthy children 
using recently developed specific ELISAs. We found that levels of FH, FHR-2, and FHR-3 
were equal to those found in healthy adults. Levels of FHR-4A and FHR-5 were lower 
in children than in adults. However, only the FHR-5 levels associated with age. The RIs 
of these FH family proteins now serve to support the interpretation of plasma levels 
in prospective and retrospective studies that can be used for routine diagnostic and 
monitoring purposes including pediatric patient samples.

Keywords: normal ranges, complement, complement factor h, factor h-related proteins, pediatrics, diagnostics, 
reference intervals

inTrODUcTiOn

Complement is part of innate immunity, comprising a powerful cascade of proteins able to eradi-
cate invading pathogens and is important for removal of apoptotic debris and immune complexes 
from the circulation. Complement activation is tightly controlled and regulator proteins make sure 
that bystander damage to healthy host cells is kept to a minimum. Within the population, there 
is variation in the expression levels of these proteins and other complement components, leading 
to different steady-state complement activities in healthy individuals (1). Assessment of abnormal 
circulating levels can help to diagnose complement-mediated diseases such as atypical hemolytic 

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.01727&domain=pdf&date_stamp=2018-08-02
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.01727
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:k.gelderman@sanquin.nl
https://doi.org/10.3389/fimmu.2018.01727
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01727/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01727/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01727/full
https://loop.frontiersin.org/people/472032
https://loop.frontiersin.org/people/364299
https://loop.frontiersin.org/people/188621
https://loop.frontiersin.org/people/373644


2

van Beek et al. RIs of FH Family Proteins in Children

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1727

uremic syndrome (aHUS) and differences in expression levels can 
help in understanding the susceptibility for infectious diseases as 
described in retrospective studies (2).

To discriminate between normal and abnormal levels, and 
to interpret retrospective studies, clinical laboratory reference 
intervals (RIs) are needed. As many complement-mediated dis-
eases can have their onset during childhood, it is important to 
know whether adult levels can be extrapolated toward pediatric 
patients. For proteins such as C3 and C4, it has been determined 
that the normal ranges can be different in childhood compared 
to adults and between different ethnicities, and as such, adjusted 
RIs may be used (3–6). No pediatric RIs are known of Factor H 
(FH) and the FH-related proteins (FHRs), of which their plasma 
levels associate with various diseases.

Factor H is a crucial regulator of the alternative complement 
pathway and protects human host cells from unwanted comple-
ment activation. Genetic variants in complement regulator FH  
are associated with multiple diseases. Such variants can either alter 
protein functionality or induce variation in levels of expres sion. 
Many have been described to associate with aHUS or age-related 
macular degeneration, affecting the regulating fun ction of FH  
(7, 8). However, some genetic variants result in lower (insuffi-
cient) circulating levels of FH (9–11). Differences in steady-state 
FH protein levels are associated with susceptibility for meningo-
coccal disease and have recently been implicated as a marker of 
cardiovascular risk in chronic Chagas disease (12, 13). In general, 
low expression of complement regulators, such as FH, would 
make an individual more prone for chronic inflammation but 
more protected against infectious diseases, while high expression 
rather associates with risk of infectious diseases but less chronic 
inflammation (14).

Apart from FH, the FH protein family also includes the short 
splice variant of FH, FH-like-1 (FHL-1), and the FH-related 
(FHR) proteins, named FHR-1, FHR-2, FHR-3, FHR-4, and 
FHR-5, all of which are encoded by their own gene. FHR-4A and 
FHR-4B are the two splice variants of CFHR4, but FHR-4A is the 
only circulating variant found in human serum (15). While FHRs 
share homology with FH in its surface binding domains, they 
lack domains similar to SCR1-4 in FH and FHL-1, and for that 
reason are believed to have no complement-regulatory activity 
(16). Although limited data are available on the in vivo function 
of FHRs, many have shown associations of complement-mediated 
diseases with these FHR genes due to their copy number variations 
(17, 18), internal duplications (19–21), fusion proteins (22–26), 
or polymorphisms (27–30).

In addition, recent developments in the determination of 
circulating FHR levels in adults have led to the discovery of 
new associations with disease. FHR-1 levels were shown to be 
increased during IgA nephropathy (31, 32), although the authors 
report much higher levels than we and others have published 
(33, 34). FHR-3 levels were shown to be elevated during sepsis 
(35) and in systemic lupus erythematosus, rheumatoid arthritis, 
and polymyalgia rheumatica (36). Although Schäfer et  al. did 
not find increased FHR-3 levels in aHUS patients, a recent study 
demonstrated increased levels in a larger, well-characterized 
cohort (36, 37). FHR-2 and FHR-4A levels have, so far, not been 
studied except in healthy donors, although FHR-2 and FHR-4A 

are implicated in the acute phase of bacterial infections (van Beek 
et al., manuscript in preparation) (15, 33, 38). FHR-5 levels were 
shown to be decreased in patients with C3 glomerulonephropathy 
(C3G) (39) and was recently identified as an independent risk fac-
tor for IgA nephropathy (32, 40). In summary, assessment of FHR 
protein levels contributes to the understanding of various diseases.

To investigate whether different RIs should be used for FH 
and the FHRs in children, we assessed the circulating levels in a 
cohort of healthy Dutch children and adolescents (all referred to as 
children), covering various age categories. These RIs now serve to 
support the interpretation of plasma levels in retrospective stud-
ies that include children. Moreover, they can be used for routine 
diagnostic and monitoring purposes in pediatric patient samples.

MaTerials anD MeThODs

samples
Serum samples were obtained from anonymous, healthy children 
from a previous study, in accordance with Dutch regulations and 
approved by the Sanquin Ethical Advisory Board in accordance 
with the Declaration of Helsinki (41). Samples from adult healthy 
donors (n = 124 for FH and FHR-3, n = 120 for FHR-1, 2, 4A, 
and 5) were collected and measured during previous studies  
(15, 33, 35).

elisas
All ELISAs were performed as previously described for an adult 
healthy donor cohort (15, 33, 35). Briefly, the FH ELISA uses 
anti-FH.16, a monospecific mAb directed against SCR16-17, as 
a coat and goat anti-human-FH antiserum as detection. FHR-1/1 
homodimers were measured using anti-FH.02 (directed against 
SCR20 of FH and cross-reactive to SCR5 of FHR-1) both as 
catching and detecting mAb. FHR-1/2 homodimers were also 
caught by anti-FH.02, but detected with a commercially available 
anti-FHR-2 (R&D Systems). FHR-2/2 homodimer levels, as well 
as total levels of FHR-1 and FHR-2 were calculated based on the 
observed levels of FHR-1/1 and FHR-1/2 dimers. The FHR-3 
ELISA uses anti-FHR-3.1 (cross-reactive to FHR-4A) as a coating 
mAb and anti-FHR-3.4 (cross-reactive to FH) as a detecting mAb. 
FHR-4A was measured by catching with the monospecific mAb 
anti-FHR-4A.04 and detecting with rabbit anti-FHR-3 antiserum. 
FHR-5 homodimers were measured using two monospecific 
mAbs, anti-FHR-5.1 and anti-FHR-5.4. Two control sera were 
included in each plate to ensure limited inter assay variation.

statistics
GraphPad Prism software v7 was used to analyze data and perform 
statistics (GraphPad Software, La Jolla, CA, USA). Significant 
differences were assessed by unpaired t-test. Correlations were 
assessed with a parametric Pearson’s correlation test.

resUlTs

With this study, we obtained more insight in the normal ranges of FH 
and the FHRs in children. For this, we used a cohort of 110 healthy 
children, of which 53% were females (Table 1). The subjects were 
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Table 1 | General cohort characteristics.

cohort n Mean age (years)

Total children 110 10.3
Males 52 (47%) 9.2
Females 58 (53%) 11.2

age group (years) Males (n) Females (n)

0–3 8 1
3–6 13 13
6–9 8 8
9–12 3 9
12–15 8 7
15–18 5 17
18–21 7 3

FigUre 1 | Factor H (FH) family proteins in healthy children. (a–c,g–i) Show FH and FHRs as assessed by in-house ELISA. (D–F) Indicate calculated FHR-1 and 
FHR-2 levels. (D,F) Samples lacking FHR-1 (likely CFHR1 deficient) were excluded. Females are indicated by red circles, males by blue squares. Data were analyzed 
using Pearson’s correlation and unpaired t-tests (Table 2).
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evenly distributed across the age categories, aged 7 months up to 
251 months (20.9 years) (41). We compared the levels in children 
to the levels that we previously found in adult healthy Dutch donors 
(15, 33, 35).

We investigated the plasma levels of FH and the FHRs in 
these healthy children (Figure 1). We observed that the levels 
of FH and FHR-3 were similar between the two genders and 
independent of age (Figures  1A,G). Indeed, the levels are 
equal to those previously found in adult healthy Dutch donors 
(Table 2) (35).

Next, FHR-1 and FHR-2 were assessed using dimer-speci fic 
ELISAs (Figures 1B,C). The levels of FHR-1/1 homodimers were 
independent of age and gender, although we did find a minor, 
but significant, difference when comparing the FHR-1/1 levels 
to adults (Table 2, difference between means = 1.2 µg/mL) (33). 
FHR-1/2 heterodimers and FHR-2/2 homodimers were also 
found to be independent of age and gender but were similar to 
the adult healthy donors (Figure 1D; Table 2). This implied that 
only the FHR-1 plasma levels differed from the adults. Indeed, 
when we calculated the concentrations of total FHR-1 and FHR-2 
monomers, only FHR-1 levels were significantly lower [difference 
between means =  1.3 µg/mL (33 nM)] than the healthy adults 
(Figures 1E,F; Table 2).

https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://www.frontiersin.org/Immunology/archive


4

van Beek et al. RIs of FH Family Proteins in Children

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1727

We recently demonstrated that FHR-4A is the only circulat-
ing form of FHR-4 and that no FHR-4B could be observed in 
serum (15). Therefore, we measured only FHR-4A in the children 
and found that FHR-4A levels were lower than expected based 
on levels found in adult healthy donors (Figure 1H; Table 2). It 
would, therefore, be expected that the levels showed an associa-
tion with age. Surprisingly, the FHR-4A levels did neither show an 
association with age, nor with gender, in the children.

Last, we assessed the levels of FHR-5/5 homodimers. Similar to 
the other FHR proteins, FHR-5 levels were independent of gender. 
However, the levels did increase with age (Figure 1I, Table 2), 
being approximately 0.5  µg/mL lower in the youngest children 
than in the oldest children. While the younger children indeed 
showed significantly lower levels, the older children presented 
with levels equal to the adult healthy donors.

As the CFHR genes originated as part of segmental duplica-
tions of the CFH gene, it would be possible that protein expression 
is similarly regulated (42). Therefore, we investigated whether 
FH plasma levels associated with plasma levels of the FHRs. 
We saw an association between FH and FHR-1/1 homodimer 
levels in adult donors, when they carry two copies of CFHR1 
(r  =  0.62, P  <  0.0001), in contrast to those who carry only 1 
copy of CFHR1 (r  =  0.09, P  =  0.67) (33, 35). Children who 
most likely carry two copies of CFHR1 [expressing > 10.1 µg/
mL FHR-1/1 homodimers, as determined by ROC analysis (area 
under the curve = 0.97)] showed a similar association (r = 0.49, 
P < 0.0001) (33). No association between FH and other FHR 
levels was noted. As a general conclusion, we observed no remark-
able differences compared to adult circulating levels of FH family  
proteins.

DiscUssiOn

We have determined RIs for FH and FHR-1 to 5 in Dutch healthy 
children. We were able to interpret the circulating levels of these 

FH family proteins in relation to adult healthy donors, which we 
have previously assessed (15, 33, 35). We found differences in 
some but not all of these proteins in the healthy children when 
compared with adults.

In contrast to FHR-1, FHR-4A, and FHR-5, no remarkable 
observations were made when analyzing the circulating levels of 
FH, FHR-2, and FHR-3. The three proteins were independent of 
age and gender, confirming a previous study on FH in Brazilian 
children (43). FH levels were previously found to be low in neo-
nates, suggesting that plasma levels reach adult ranges within the 
first 6 months after birth (44, 45). Unfortunately, no sera were 
available from children below the age of 6 months. Future studies 
should test cord blood and plasma of neonates for the presence of 
FHRs at birth and early infancy to investigate these protein levels 
in more detail.

FHR-1 levels were independent of age and gender. We did 
observe lower FHR-1 levels than previously seen in adults, 
although the biological relevance may be disputed. FHR-3 
levels were also trending toward significance, indicating that 
a minor difference in the copy number variation in CFHR3/
CFHR1 between the two cohorts might be affecting the results 
(33, 35).

We found lower FHR-4A levels in children than in adults, 
even though FHR-4A did not associate with age of the children. 
Our group demonstrated previously that FHR-4A is stable up to 
at least 10 freeze-thaw cycles (15). However, we cannot exclude 
the possibility that long-term storage of these samples may have 
suffered from breakdown of FHR-4A when kept at −30°C (15). 
New studies on more recent samples are needed to confirm or 
disprove this possible explanation.

For FHR-5, we observed an increase with age, indicating 
that normal ranges for FHR-5 are low in the youngest children 
and that RIs may need to be adjusted accordingly. As FHR-5 
levels positively associated with severity of IgA nephropathy in 
adults (32), and as IgA nephropathy is the main nephropathy in 

Table 2 | Factor H (FH) family normal ranges characteristics.

Fh  
(μg/ml)

Fhr-1/1  
(μg/ml)b

Fhr-1/2  
(μg/ml)b

Fhr-2/2  
(μg/ml)a,b

Fhr-1  
(nM)a,b

Fhr-2  
(nM)a,b

Fhr-3  
(μg/ml)b

Fhr-4a  
(μg/ml)

Fhr-5  
(μg/ml)

Median Male 286 11.2 5.1 0.6 351 96 0.58 0.92 1.2
Female 279 11.5 5.4 0.6 362 105 0.54 0.91 1.2

IQR (25%) Male 237.5 7.0 3.7 0.39 243 73 0.36 0.54 0.93
Female 237.3 7.2 3.6 0.34 245 65 0.34 0.46 0.92

IQR (75%) Male 426.5 13.5 6.7 1.1 439 150 0.81 1.6 1.48
Female 459.5 14.4 7.0 1.1 469 223 0.74 1.3 1.47

95% range Male 150–420 0–20 0–11 0–1.8 0–637 0–219 0–2.3 0.1–4.0 0.5–2.8
Female 157–445 0–20 0–11 0–1.6 0–669 0–209 0–1.5 0.1–3.6 0.6–2.7

Gender difference Unpaired t-test (P value) 0.84 0.28 0.75 0.87 0.51 1.00 0.42 0.26 0.99

Children vs age Pearson r 0.00 0.13 0.07 0.03 0.12 0.06 −0.14 −0.03 0.29
R squared 0.00 0.02 0.00 0.00 0.01 0.00 0.02 0.00 0.09
P value 0.97 0.20 0.48 0.73 0.22 0.54 0.15 0.76 0.002

Children vs adults Unpaired t-test (P value) 0.655 0.030 0.444 0.870 0.0498 0.873 0.100 <0.0001 <0.0001
Difference between means (μg/mL) 4.114 1.219 0.2173 −0.0095 32.66 nM 0.9862 nM 0.0952 1.438 0.3863

aValues of FHR-2/2 homodimers, and total levels of FHR-1 and FHR-2 monomers are calculated based on measured levels of FHR-1/1 homodimers and FHR-1/2 heterodimers.
bDonors lacking FHR-1, FHR-2 (in the adult donor cohort) or FHR-3 were excluded from correlations and unpaired t-tests
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