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T follicular helper (TFH) cells are an integral part of humoral immunity by providing help to 
B cells to produce high-affinity antibodies. The TFH precursor compartment circulates in 
the blood and TFH cell dysregulation is implied in various autoimmune diseases including 
type 1 diabetes (T1D). Symptomatic T1D is preceded by a preclinical phase (indicated 
by the presence of islet autoantibodies) with a highly variable progression time to the 
symptomatic disease. This heterogeneity points toward differences in immune activation 
in children with a fast versus slow progressor phenotype. In the context of T1D, previous 
studies on TFH cells have mainly focused on the clinically active state of the disease. In 
this review article, we aim to specifically discuss recent insights on TFH cells in human 
islet autoimmunity before the onset of symptomatic T1D. Furthermore, we will highlight 
advances in the field of TFH differentiation and function during human islet autoimmunity. 
Specifically, we will focus on the regulation of TFH cells by microRNAs (miRNAs), as well 
as on the potential use of miRNAs as biomarkers to predict disease progression time 
and as future drug targets to interfere with autoimmune activation.
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inTRODUCTiOn

T follicular helper (TFH) cells are a subset of CD4+ T cells characterized by the expression of the 
C-X-C chemokine receptor type 5 (CXCR5) (1–3) and their master transcription factor B-cell 
lymphoma 6 (BCL6) (4–6) as well as secretion of the cytokine interleukin-21 (IL-21) (7–9). The 
expression of CXCR5 together with a low expression of C-C chemokine receptor 7 (CCR7) allows 
these T cells to enter the B cell follicle in the secondary lymphoid organs (10, 11), where they take 
part in the germinal center reaction. Specifically, TFH cells interact with germinal center B cells to 
induce maturation, class switching, and the production of high-affinity antibodies and are therefore 
an integral part of humoral immunity (1–3).

Although their primary point of action is in the lymph nodes, studies have demonstrated that 
TFH cell precursors can be found in the blood circulation. These circulating TFH precursors are 
characterized by the expression of CXCR5, high expression of programmed cell death 1 and low 
expression of CCR7. Furthermore, circulating TFH precursors are clonally related and pheno-
typically similar to germinal center TFH cells and comprise a memory compartment that can be 
reactivated and expanded in response to immunization (12). Therefore, changes in the frequency 
and phenotype of circulating TFH precursors correlate with those of active TFH cells in the lymph 
nodes during infections (13). Since continuous stimulation of TFH cells with antigen, in the follicles 
provided by germinal center B cells, is important to maintain high levels of BCL6 (14), circulating 
TFH precursors display low or intermediate levels of BCL6 (13).
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T follicular helper precursor cells can be subdivided into dif-
ferent subsets according to the effector cytokines they express in 
parallel to IL-21. Three TFH subsets can be distinguished based 
on their surface expression of CXCR3 and CCR6. Th1-like TFH 
cells are CXCR3+CCR6− and produce IFNγ, Th2-like TFH cells 
are CXCR3−CCR6− and produce IL-4, IL-5, and IL-13, and Th17-
like TFH cells are CXCR3−CCR6+ and secrete IL-17A and IL-22 
(15). Whereas Th2- and Th17-like TFH cells can induce naïve 
B cells to become plasma cells and produce antibodies, Th1-like 
TFH cells are suggested to lack this ability (15, 16). CXCR3+ 
TFH precursors were shown to correlate with effective vaccina-
tion responses by inducing antibody release from pre-existing 
memory B cells (16). However, also the memory B cell help by 
CXCR3+ TFH precursors is less efficient compared to that of their 
CXCR3− counterparts (13, 17). Th2- and Th17-like TFH cells do, 
however, impact differentially on the class switching of B cells, 
with Th2-like TFH cells promoting rather IgG and IgE responses 
and Th17-like TFH cells promoting IgG and IgA responses (15). 
A recent study on prostate cancer suggests that Th2- and Th17-
like TFH cells also impact differentially on the subtype of IgG 
antibodies produced (18).

Because of their integral role in humoral immunity, TFH 
cells have been studied in depth in the context of vaccination. 
Their function of inducing high-affinity antibody responses 
additionally implies a role of TFH cells in the development and 
progression of autoimmune diseases that are characterized by the 
presence of autoantibodies.

One such autoimmune disease is type 1 diabetes (T1D). T1D is 
the most common metabolic disorder in children and its incidence 
is rising steadily, especially in young children (19). Impairments 
in immune tolerance mechanisms can lead to the destruction 
of the pancreatic insulin-producing β-cells and consequently a 
failure of blood glucose control, making life-long insulin replace-
ment therapy necessary for patients with symptomatic T1D.

Symptomatic T1D is preceded by a presymptomatic phase 
(termed islet autoimmunity), characterized by the presence of 
autoantibodies against islet autoantigens (insulin, insulinoma 
antigen 2, glutamic acid decarboxylase, zinc transporter 8). The 
presence of multiple islet autoantibodies increases the life-long 
risk to develop the symptomatic disease to approximately 100% 
(20). The time taken for the progression from the development of 
the first autoantibodies (seroconversion) to the development of 
the symptomatic disease is, however, very heterogeneous and can 
range from months (fast progressors) to decades (slow progres-
sors) (20). Accordingly, in our studies, we distinguish different 
stages of islet autoimmunity: recent onset of islet autoimmunity 
with islet autoantibodies for less than 5 years and long-term islet 
autoimmunity with islet autoantibodies for more than 10 years 
without progression to clinical overt T1D (21–23). However, 
the immunological mechanisms underlying these differences in 
disease progression remain poorly understood (24).

TFH CeLLS in PReSYMPTOMATiC T1D

Alterations in the frequency or function of TFH precursor popu-
lations in the peripheral blood have been implicated in various 
autoimmune disorders, including systemic lupus erythematosus 

and T1D (25–27). Regarding T1D, Kenefeck et al. have demon-
strated in a transgenic TCR model that the transfer of TFH cells 
can induce diabetes. Specifically, they transferred ovalbumin-
specific CXCR5+ or CXCR5−CD4+ T  cells into recipient mice 
expressing ovalbumin under the insulin promoter in the β-cells 
and observed a significant increase in diabetes incidence in mice 
receiving CXCR5+CD4+ T cells (28). Furthermore, Ferreira et al. 
observed increased IL-21 production by CD4+ T  cells in T1D 
patients (29). These previous studies on TFH cells in T1D have 
focused on symptomatic T1D, which excludes conclusions regard-
ing the involvement of TFH cells in the presymptomatic phase or 
the progression to clinical T1D. The development of multiple islet 
autoantibodies characterizes the onset of presymptomatic T1D. 
The important contribution of TFH cells to humoral immunity 
therefore implicates an involvement of these cells also in disease 
onset and progression. Accordingly, we found insulin-specific 
and polyclonal TFH precursor frequencies to be increased during 
recent onset of islet autoimmunity. This increase was, however, 
transient and in children with long-term islet autoimmunity 
without progression to symptomatic T1D, the TFH precursor 
frequency was similar to that observed in children without islet 
autoantibodies (22) (Figure 1A). This is in accordance with the 
observation that children with long-term islet autoimmunity 
tend to lose their first islet autoantibodies, most commonly insu-
lin autoantibodies (30). Data from birth cohort studies highlight 
that proinsulin-specific CD4+ T cells of children who developed 
islet autoantibodies show a gene expression signature resembling 
TFH/TH17 cell responses already very early on in infancy, well 
before the development of islet autoantibodies (31). In a recent 
Finnish study, no alterations in circulating TFH precursors were 
observed in normoglycemic children with multiple islet autoan-
tibodies (32) (Figure 1A). However, study participants were not 
discriminated according to the duration of islet autoantibody 
positivity. These seemingly divergent results highlight the het-
erogeneity of T1D and underline the necessity to more precisely 
discriminate the stages of islet autoimmunity and age of study 
participants.

Regarding the function of circulating TFH precursors, the 
analysis of Th1-, Th2-, and Th17-like TFH precursors is relevant, 
because of differences in their ability to provide B cell help and 
impact on antibody isotype production (15). Data regarding 
TFH precursor subsets in autoimmune diseases is limited; how-
ever, we reported an increase specifically in the Th2-like TFH 
subset in children with recent onset of islet autoimmunity and in 
children with newly diagnosed clinical T1D, whereas Th1- and 
Th17-like TFH cells were unaltered (22). Although Ig subtypes 
were not analyzed in our study, previous studies highlighted 
that Ig isotypes of islet autoantibodies and even IgG subtypes 
induced in the presymptomatic phase of the disease might 
influence the disease progression (34–36). Similarly, regarding 
autoimmune diseases other than T1D, a study by Le Coz et al. 
highlighted an increase of Th2-like TFH cells, accompanied by 
a decrease in Th1-like TFH cells in patients with systemic lupus 
erythematosus (37). In this study, Le Coz et al. demonstrate that 
IgE levels in the serum of lupus patients correlate with disease 
activity and are associated with high frequencies of Th2-like 
TFH cells (37).
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FigURe 1 | MicroRNA (miRNA)92a expression links alterations in T follicular helper (TFH) precursor frequencies with islet autoimmunity. (A) Overview of recent 
studies on the dynamics of circulating TFH precursor frequencies and miRNA92a abundance in islet autoimmunity. *Serr et al. (22), #Viisanen et al. (32), §Snowhite 
et al. (33). #§: islet autoantibody positive participants were not stratified based on the duration of islet autoantibody positivity. §: increase in miRNA92a was borderline 
significant and statistical significance was not reached after additional data processing. (B) Potential signaling mechanisms in CD4+ T cells targeted by miRNA92a. 
In states of no islet autoimmunity (left) miRNA92a is expressed at low levels, allowing for the expression of its targets. Targets of miRNA92a are among others 
negative regulators of T cell activation (e.g., FOXO1, PHLPP2, CTLA4, and PTEN) and negative regulators of TFH differentiation [e.g., krueppel-like factor 2 (KLF2)] 
which contributes to a reduced expression of the TFH transcription factor B-cell lymphoma 6 (BCL6) and reduced TFH differentiation. During recent onset of islet 
autoimmunity (right) the expression of miRNA92a is upregulated, leading to a decreased expression of its targets, increased expression of BCL6, and increased TFH 
differentiation.
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MeCHAniSMS OF TFH inDUCTiOn  
in iSLeT AUTOiMMUniTY

The TFH differentiation process is highly complex, involving 
several steps and factors (25–27). In 2013, two research groups 
demonstrated an important role of the microRNA17~92 
(miRNA17~92) cluster, which is essential for normal TFH devel-
opment and function in mice (38, 39). miRNAs are small, ~22 
nucleotide long, non-coding RNAs which can complementarily 
bind their target mRNAs in the RNA-induced silencing complex 
and induce their translational silencing or degradation (40–42). 
miRNAs usually have a multitude of targets and induce rather 

modest regulation (43, 44), enabling them to regulate complex 
cellular states, such as T cell activation (45, 46) and making them 
suitable targets for immune modulating therapies.

The miRNA17~92 cluster transcribes six mature miRNAs 
(miRNA17, miRNA18a, miRNA19a, miRNA19b, miRNA20a, 
and miRNA92a). The relevance of these miRNAs in autoim-
mune diseases is highlighted by the fact that overexpression of 
the cluster leads to autoimmunity and autoantibody production 
in mice (47). Regarding the role of the cluster in murine TFH 
cell differentiation, miRNA17~92 regulates differentiation and 
migration of TFH cells together with Bcl6 by repressing TFH 
subset inappropriate genes like retinoid-related orphan receptor α 
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(Rora) and by regulating signaling molecules important for TFH 
differentiation and function, such as inducible T cell costimula-
tor (Icos) and phosphatidylinositol-3-kinase (PI3K)/protein 
kinase B signaling (38, 39). Accordingly, two validated targets of 
 miRNA92a are the phosphatase and tensin homolog (Pten) and 
PH domain and leucine rich repeat protein phosphatase 2 (Phlpp2), 
both negative regulators of PI3K signaling (47, 48). In line with 
its role in TFH cell differentiation and function, additional 
confirmed targets for miRNA92a are other negative regulators 
of T cell activation, such as forkhead box protein O1 (Foxo1) and 
cytotoxic T-lymphocyte associated protein 4 (Ctla4) (47, 48).

In an miRNA profiling approach to investigate miRNAs in 
T  cells that could be involved in human autoimmune activa-
tion, we identified miRNA92a to be significantly increased in 
CD4+ T  cells from children with ongoing islet autoimmunity 
compared to healthy controls (22). Confirmation via RT-qPCR 
highlighted an increase in miRNA92a specifically in T  cells 
from children with recent onset of islet autoimmunity and not 
in children with long-term islet autoimmunity (Figure  1A). 
Our analysis demonstrated furthermore that this increase in 
 miRNA92a expression correlates with TFH precursor frequen-
cies in the peripheral blood. Accordingly, the lowest expression 
of miRNA92a was found in T cells from children with long-term 
islet autoimmunity.

For the investigation of the role of miRNA92a in human TFH 
differentiation, in  vitro TFH induction assays, relying on the 
stimulation of human naïve CD4+ T cells with anti-CD3 and anti-
CD28 antibodies in the presence of memory B cells, were estab-
lished. In line with a role of miRNA92a in TFH induction, human 
TFH induction was decreased in in vitro assays, when miRNA92a 
activity was blocked, whereas an miRNA92a mimic promoted 
TFH induction (Figure 1B). In assays with an miRNA92a mimic, 
negative regulators of T cell activation such as PTEN, PHLPP2, 
FOXO1, and CTLA4 that are confirmed targets of miRNA92a, 
were reduced in their expression (22) (Figure 1B). These find-
ings are in line with previous studies, highlighting that TFH 
cell differentiation is largely dependent on low levels of FOXO1, 
maintained either by ICOS-PI3K signaling or by degradation via 
the E3 ubiquitin ligase ITCH (49, 50). miRNA92a mediated TFH 
induction likewise depends on PI3K signaling, since in vitro TFH 
induction with an miRNA92a mimic is blunted in the presence of 
a PI3K inhibitor, whereas it is increased when PTEN is inhibited 
(22). PTEN, as a negative regulator of PI3K signaling, is critically 
involved in the de novo induction of regulatory T cells (Tregs). 
Accordingly, in vitro Treg induction from naïve CD4+ T cells was 
found to be impaired in the presence of an miRNA92a mimic. 
Moreover, insulin-specific Treg frequencies are reduced in chil-
dren with recent onset of islet autoimmunity, a disease state where 
miRNA92a abundance was shown to be significantly enhanced in 
T cells (21, 22) (Figure 2A).

T follicular helper cell function is largely dependent on their 
ability to enter the B cell follicle in the lymph nodes. Therefore, 
molecules that regulate lymphocyte trafficking and homing are 
important mediators of TFH cell function. One example is kruep-
pel-like factor 2 (KLF2). Lee et al. demonstrated that TFH differ-
entiation is dependent on low levels of Klf2, since Klf2 induces the 
expression of sphingosine 1 phosphate receptor 1 (S1pr1), which 

opposes TFH induction (51). Furthermore, Klf2 was shown to 
inhibit Bcl6 expression by upregulating B-lymphocyte induced 
maturation protein 1 (51). Interestingly, our data suggest that 
KLF2 can be directly targeted by miRNA92a, since a target site 
blocker, that inhibits the binding of miRNA92a specifically to 
KLF2 abolishes in vitro TFH induction (22) (Figure 1B), thereby 
offering one additional mechanism of miRNA92a-mediated TFH 
differentiation.

miRnAs AS BiOMARKeRS in iSLeT 
AUTOiMMUniTY

The heterogeneous disease progression from the development 
of islet autoantibodies to the symptomatic disease necessitates 
the discovery of biomarkers that will enable a better prediction 
of the progression time to the clinically active disease. To that 
end, it remains to be determined, whether changes in miRNA92a 
expression can also be observed in the serum of children with 
recent development of islet autoantibodies, or whether the 
detection of these alterations is limited to the CD4+ T cell popu-
lation. One recent study by Snowhite et al. aimed at identifying 
differentially expressed miRNAs in the serum of children with 
and without autoantibodies. miRNA92a was one of the identi-
fied miRNAs that was increased in children with autoantibodies, 
however, this increase was only borderline significant and not 
significant after further data processing (33) (Figure 1A). The 
autoantibody positive children investigated in this study were 
not stratified based on the duration of autoantibody positivity, 
which might account for this outcome. The study of longitudinal 
samples from children at risk of developing T1D will help to 
assess the usefulness of miRNA92a, TFH cell frequencies, and 
their respective subsets as biomarkers to predict the progression 
to clinically overt T1D. More specifically, the analysis of possible 
correlations between these markers and autoantibody titers or 
subtypes might be of interest. In this context, a correlation of 
miRNA92a expression in T cells with TFH precursor frequen-
cies in the blood as well as a modest correlation with insulin 
autoantibody titers was reported (22). A more detailed analysis 
of TFH precursor subsets might be especially relevant, because 
of their divergent functions with respect to providing B  cell 
help and impacting Ig subtype production. Moreover, given the 
negative impact of high miRNA92a levels on Treg induction, the 
analysis of Treg frequencies and possible inverse correlations 
with  miRNA92a abundance or TFH subset frequencies can be 
envisioned. Together, these analyses could be useful to define 
TFH signature profiles that might serve as biomarkers for assess-
ing T1D disease progression.

TARgeTing miRnAs TO inTeRFeRe wiTH 
AUTOiMMUne ACTivATiOn

miRNAs can function as promising novel potential drug targets, 
since they can be targeted by small, highly specific oligonucleo-
tides. In this regard, clinical trials for the treatment of hepatitis C 
virus infections with an miRNA inhibitor have been successfully 
conducted (52). Targeting specific cell types, especially immune 
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FigURe 2 | Modifying microRNA (miRNA)92a activity impacts T follicular helper (TFH) and regulatory T cell (Treg) induction in vitro and immune activation in vivo.  
(A) TFH induction in vitro is increased, while Treg induction in vitro is decreased in the presence of an miRNA92a mimic (upper row). By contrast, inhibition of 
miRNA92a, using an miRNA92a antagomir (lower row), results in decreased TFH induction and increased Treg induction in vitro. (B) Non-obese diabetic (NOD) mice 
with islet autoantibodies express increased amounts of miRNA92a and increased TFH precursor frequencies, accompanied by immune infiltration in the pancreas. 
Treatment of NOD mice with an miRNA92a antagomir reduces circulating TFH precursor frequencies and immune cell infiltration in the pancreas.
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cells, with miRNA inhibitors is, however, challenging, because 
of the negative charge of the oligonucleotides which inhibits 
penetration of the cell membrane (53). Research efforts focus 
mainly on encapsulation techniques, and various nanoparticles 
were shown to mediate an efficient uptake of small RNAs by 
lymphocyte populations (54). Other techniques, targeting 
T cells more specifically, are, e.g., the use of a single chain CD7 
antibody (scFvCD7) fused to an oligonucleotide-nona-arginine 
peptide (55).

The possibility of altering immune activation and regulation 
by targeting miRNAs was demonstrated in insulin autoantibody 
positive non-obese diabetic mice, the most commonly used mouse 
model for T1D. I.p. Application of an miRNA92a antagomir, opti-
mized for in vivo use, decreased TFH frequencies and immune 
activation in the pancreas, accompanied by decreased insulitis 
scores and autoantibody titers (22). Furthermore, this decreased 
immune activation went along with increased frequencies of 

Tregs in treated animals, suggesting that, apart from reducing 
immune activation, inhibition of miRNA92a positively impacts 
on mediators of T cell tolerance (Figure 2B).

The restoration of immune tolerance mechanisms in autoim-
mune diseases is a long envisioned goal. Since Tregs are important 
mediators of T cell tolerance in the periphery and can be induced 
in an antigen-specific fashion, Treg induction could contribute 
to interfering with the progression of autoimmune activation 
in autoimmune diseases. This notion is supported by identi-
fied associations indicating high frequencies of insulin-specific 
Tregs accompanied by reduced numbers of insulin-specific TFH 
precursors in the peripheral blood of children with long-term 
islet autoimmunity without progression to clinically active T1D. 
During recent onset of islet autoimmunity, a significant decrease 
in insulin-specific Treg frequencies was observed accompanied 
by impaired in vitro Treg induction (23). Specifically, during this 
critical time frame we found an increased sensitivity to antigenic 
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stimulation in naïve CD4+ T  cells and reduced expression of 
negative regulators of T cell activation which can interfere with 
efficient Treg induction (23). Using miRNAs to tame T cell activa-
tion during ongoing islet autoimmunity might therefore open a 
window of opportunity for improving Treg induction potential in 
a setting, where the autoimmune process is already in progress. 
However, the effectiveness of inhibiting miRNA92a to interfere 
with autoimmune activation and progression to T1D requires 
long-term in  vivo studies in animal models of T1D, which are 
missing so far.

COnCLUSiOn

Accumulating evidence points toward a role of TFH cells in the 
development of autoimmune diseases including T1D. During 
recent onset of islet autoimmunity, children display increased 
frequencies of TFH precursor cells, specifically Th2-like TFH 
precursors, whereas this increase is absent in children with long-
term islet autoimmunity without overt T1D (22). The analysis of 
TFH cell frequencies or miRNAs involved in TFH development in 
longitudinal samples could therefore help to identify biomarkers 

in order to improve our ability to predict the progression time 
to clinically overt T1D, as well as to improve the stratification of 
respective disease groups. In addition, progress is made regarding 
the cell type-specific delivery of miRNA inhibitors or mimics. 
Since miRNAs regulate cellular states, rather than single targets, 
they compose a new, promising group of future drug targets. 
In this regard, miRNAs such as miRNA92a that regulate TFH 
differentiation and function might be targeted to limit immune 
activation in settings of autoimmunity such as T1D.
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