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A better understanding of stable changes in regulation of gene expression that result 
from epigenetic events is of great relevance in the development of strategies to prevent 
and treat infectious diseases. Histone modification and DNA methylation are key epigen-
etic mechanisms that can be regarded as marks, which ensure an accurate transmission 
of the chromatin states and gene expression profiles over generations of cells. There 
is an increasing list of these modifications, and the complexity of their action is just 
beginning to be understood. It is clear that the epigenetic landscape plays a fundamental 
role in most biological processes that involve the manipulation and expression of DNA. 
Although the molecular mechanism of gene regulation is relatively well understood, the 
hierarchical order of events and dependencies that lead to protection against infection 
remain largely unknown. In this review, we propose that host epigenetics is an essential, 
though relatively under studied, factor in the protection or susceptibility to malaria.
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iNTRODUCTiON

Complex infectious diseases such as malaria, in which environmental and clinical features along 
with genetic susceptibility factors contribute significantly to the pathology of the disease, pose 
a great challenge for the identification of relevant biomarkers for protection against the disease. 
In the human host, the disease outcome is determined by a complex relationship between the 
host, the parasite, and the environment (1). For example, parasite virulence, infection burden, the 
route of inoculation, host’s immunity and susceptibility to infection, nutrition and gut microbiota, 
previous exposure to antimalarial drugs (2), or coinfection, such as with helminthes, virus, and 
bacteria (3) may influence disease severity. The contribution of immunogenetic factors to resist-
ance against malaria has been thoroughly investigated (4, 5). However, immunogenetic biomarkers  
that significantly correlate with a more protective immune response against malaria are not yet 
available. Recent studies generating large sequencing and immune variable data sets have begun 
to provide valuable insights (6). However, to date, a lack of data has hampered the identification of 
functional genomic features as well as the discovery of specific roles of genes in malaria.

Our understanding of the role of epigenetics in complex disease is rapidly emerging. Epigenetics 
play an important role in hematopoiesis, for example, proliferation of hematopoietic stem cells, as 
well as the successive stages of differentiation into more committed progenitors, are regulated at 
the transcriptional level through epigenetic modifications (7). Although many works in epigenet-
ics have been conducted in the field of hematopoietic cancers and autoimmune diseases, there is 
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still a gap of knowledge of how these epigenetics mechanisms 
contribute to the susceptibility or resistance to infectious diseases 
such as malaria.

In this review, we present and discuss the potential role of 
epigenetic factors in the protection/susceptibility to diseases. 
Particularly, we reviewed how the current knowledge on how 
epigenetic regulation contributes to protective immunity and 
susceptibility to disease can be applied to address the challenge 
of malaria.

GeNeTiC vARiATiONS AND 
SUSCePTiBiLiTY TO MALARiA

Knowledge of the host genetic susceptibility to malaria is key 
to understanding the complexity of the host immune response 
and its interaction with parasite infection. Plasmodium has been 
a major cause of morbidity and mortality throughout human 
history. As a result of this, malaria is believed to have exerted 
evolutionary pressure on the human genome by selecting 
genetic polymorphisms that provide protection against severe 
disease (8). Hence, many studies have attempted to assess host 
genetic factors involved in both the host immune response to 
malaria and the disease outcome. The best examples of such 
diseases are hemoglobinopathies, in which hemoglobin S was 
the first described human host genetic factor associated with 
protection against malaria (9). Studies have shown that HbAS 
has a 90% protective effect against severe and lethal malaria 
(10) and 50% protective effect against mild clinical cases (11). 
In addition, the carriage of HbAS was associated with a sig-
nificant delay in the time to first malaria clinical episode (12). 
Other hemoglobinopathies, which may have important role in 
the protection against malaria, include homozygote and het-
erozygote α-thalassemia. These genetic modifications showed 
a decreased risk of severe malaria in a systematic review and 
meta-analysis study (13). Genetic variations such as polymor-
phism in hemoglobin, intracellular enzymes, red-blood cell 
(RBC) channels, RBC-surface markers, and proteins impacting 
the RBC cytoskeleton and RBC morphology have also been 
shown to attenuate malaria pathogenesis (14). The RBC surface 
protein Duffy antigen receptor for chemokines (DARC) gene is 
one of the most compelling pieces of evidence for RBC evolu-
tion against Plasmodim vivax malaria. Mutation of the DARC 
gene is common among individuals in West and Central Africa 
and confers protection against P. vivax (15). However, recent 
evidence shows that P. vivax infects DARC negative individu-
als (16, 17). Therefore, understanding the molecular basis of 
genetic variations arising from selective pressure by malaria in 
different ethnic groups may offer insight into protective mecha-
nisms against malaria pathogenesis.

ePiGeNOMe-wiDe ASSOCiATiON 
STUDieS (ewAS) FOR COMMON HUMAN 
DiSeASeS

Epigenetics study the mechanisms that determine and/or perpe-
tuate genomic functions without changes in DNA sequence (18). 

It consists of the collective changes in phenotype due to processes  
that arise independently of primary DNA sequence (18).

During the past decades, genome-wide association studies 
have incrementally provided evidence of the association between 
genetic variations at a whole genome level and susceptibility to 
human diseases (19). However, genetic variation alone has not 
been able to give a clear explanation of the complex interaction 
between the genomic expression and the outcome of certain 
diseases. The impact of environmental factors on manifestation 
of disease may be the reason for these limitations. Particularly, 
different environmental conditions can result in the establish-
ment of different epigenetic states responsible for mediating gene 
expression patterns and other genomic responses. This makes 
the epigenome an especially intriguing and interesting target to  
study. Recent technological advances in high-throughput geno-
mic analysis have improved the genome-wide examination of 
epigenetic modifications such as DNA methylation and histone 
modification, collectively referred to as EWAS. These have ena-
bled unprecedented systematic large-scale association testing in  
correlation with disease phenotypes. Importantly, EWAS have 
begun to establish the link between variation in epigenetic regu-
lation and susceptibility to disease, including autoimmune dis-
eases such as rheumatoid arthritis (20) and type I diabetes (21).

The difficulty in EWAS arises in the interpretation of the 
findings. For example, vastly different epigenetic patterns exist 
in distinct cell types, and thus, cell subtype effects account for 
a major proportion of the epigenetic changes associated with 
disease phenotypes (22). To date, EWAS represent an important 
contribution toward a better understanding of the etiological 
role of epigenetic variations in autoimmune diseases; however, 
more evidence is needed to establish the relationship with more 
complex infectious diseases. However, in malaria, researchers 
have only just begun to perform genome wide examination of 
epigenetic variations and protection from malaria in different 
ethnic groups (23). It is the ambition that further advances will 
help account for our gap in knowledge of what underlies the 
differences in clinical phenotypes of certain complex infectious 
diseases including malaria, tuberculosis, and AIDS.

ePiGeNeTiCS MeCHANiSMS AND 
ACQUiSiTiON OF PROTeCTive iMMUNiTY

Epigenetic changes underlie both the differentiation and activa-
tion of immune cells, which are regulated by precise spatial and 
temporal control of gene expression (7). For example, hemat-
opoietic stem cell proliferation and differentiation into different 
immune cell types requires changes in chromatin structures 
and nuclear architecture, which depend on complex epigenetic 
regulation (24–26). The importance of epigenetic processes for 
the function of the immune system is illustrated by the prevalence 
of mutations in hematopoietic epigenetic regulators in leukemia 
and lymphoma (27–30), as well as identification of somatic muta-
tions of epigenetic regulators in autoimmune diseases and other 
immune-based disorders (31–36). Environmental exposures 
throughout the life span induce genetic and epigenetic alterations, 
particularly in susceptible populations (37). This indicates that 
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epigenetics may also hold the key to a larger understanding of 
the contributing factors of human health, where early life events 
shape later susceptibility to disease.

The major chromatin changes in immune cells occur by 
DNA methylation and histone modification, but also by rear-
ranging chromatin structure. The primary DNA modification 
is 5-methylcytosine (5meC) DNA methylation, arising from 
transfer of a methyl moiety from S-adenosylmethionine to the 
5-position of cytosine in certain CpG dinucleotides with the 
help of the DNA methyltransferases (DNMTs). Other epigenetic 
DNA modifications consist of the conversion of 5-methylcytosine  
to 5-hydroxymethylcytosine, and adenine methylation (38). 
The DNA methylation pattern changes often during hemat-
opoiesis to silence some genes by introducing CpG meth-
ylations and activate others by removing DNA methylations. 
Posttranslational modifications of histones such as acetylation 
and methylation are important in regulating the transcriptional 
activity of cells. They occur in a site-specific manner that influ-
ences the binding and activities of other proteins and chromatin 
organization (39). “Writers” such as histone acetyltransferases 
and methyltransferases (HMTs) catalyze histone acetylation 
and methylation while “erasers” such as the histone deacetylases 
(HDACs) and histone demethylases result in the removal modi-
fications within the chromatin. The epigenetic modification 
of chromatin is precisely regulated via mediating the activity 
and recruitment of these enzymes to specific loci, resulting in  
specific changes in gene expression, chromatin organization, 
and other DNA regulatory processes, for example, via estab-
lishing co-regulatory transcription programs or specialized 
functional domains within the nucleus. These are also regulated 
by chromatin remodeling complexes that alter the density of 
chromatin (40).

Recently, it has been shown that epigenetic modifications 
regulate the expression of key immune system genes, underly-
ing both the innate and adaptive immune responses (41, 42).  
In the adaptive immune response, the changes in phenotype 
that accompany T- and B-cell activation and differentiation are 
mediated through acquired transcriptional regulatory mecha-
nisms, including epigenetic modifications resulting in distinct 
DNA methylation and histone modification patterns (43–46). 
For example, genome-wide DNA methylation analysis of T- and 
B-cells reveals distinct differences during the transition from 
naive to effector cells (47, 48). In memory T-cells, histone modi-
fications epigenetically mark genes and prime them for rapid 
and robust transcription following exposure to specific antigens 
(45). In different T-cell populations, specific regions are differ-
entially methylated, for example, the CD4 gene was hypermethy-
lated in CD8+ T-cells and hypomethylated in CD4+ T-cells (48), 
while differential methylation of interferon gamma (IFN-γ) 
mediates differentiation of Th1 and Th2 cells (49). In contrast, 
in B-cell activation, DNA is predominantly hypomethylated 
(50). Epigenetic mechanisms also enable somatic hypermutation 
and class switch DNA recombination (51), thereby mediating 
antibody responses. Understanding the molecular mechanisms 
of these epigenetic changes in the memory responses of T- and 
B-cells may offer new areas in the development of safer and more 
effective vaccines (43).

In addition to classical adaptive immune memory, the innate 
immune system also has a memory, which manifests as a previ-
ous challenge driving an increased (“trained”) or decreased 
(“tolerized”) response to a second challenge in comparison to 
naïve cells. This altered state can persist for weeks to months 
following the initial stimuli and results in cells of the innate 
immune system, including monocytes and macrophages, being 
more or less capable of producing inflammatory cytokines, 
and/or phagocytizing and killing microorganisms, in response 
to a second unrelated stimuli. On one side, “tolerance” can 
arise following high bacterial burden, preventing responsive-
ness to an additional challenge, or the immunosuppressive 
phenotype observed in late sepsis and is viewed as a strategy 
to limit inflammation (52). At the other end of the spectrum, 
“trained” immunity can be induced following certain live vac-
cinations (BCG vaccination is the best characterized example), 
infectious stimuli, or metabolites, and is characterized by a 
change in cellular metabolism from oxidative phosphoryla-
tion toward aerobic glycolysis, an increased proinflammatory 
response, and resistance to infection (53, 54). The main 
mechanism by which innate cells develop a memory is through 
long-term epigenetic reprogramming (54, 55). Tolerance and 
trained immunity are associated with distinct and opposing 
epigenomic states (56). For example, monocytes tolerized by 
LPS treatments are associated with H3K4 monomethyaltion 
and a failure to accumulate H3K27 acetylation and active his-
tone marks at the promoters of tolerized genes, such as in the 
lipid metabolism and phagocytic pathways, during a second 
challenge (57, 58). On the other hand, monocytes trained by 
exposure to β-glucan are associated with H3K4 trimethylation 
and H3K27 acetylation at the promoters of genes, enabling 
higher transcriptional levels in genes such as pathogen- 
recognition receptors, signaling molecules, and proinflamma-
tory cytokines (57, 59).

ePiGeNeTiCS AND MALARiA

Despite understanding that host epigenetics underlie differentia-
tion and activation of immune cells, as well as the regulation of 
key genes in both the innate and adaptive immune responses, 
there is a vast gap of knowledge of role of epigenetic factors in 
the protection from or susceptibility to malaria. A systematic 
database search of all relevant publications illustrates how under 
studied the role of host epigenetics in malaria has been until 
very recently (Figure 1). Only 231 publications were identified 
that address both malaria and epigenetics, and of these, the vast 
majority address the role of epigenetics in gene regulation in the 
malaria parasite. Current knowledge of the role of epigenetics in 
Plasmodium biology, and how this may be exploited to combat 
malaria, has been comprehensively covered by recent reviews, 
and will not be discussed in depth here (60, 61).

The few research articles that address epigenetics of the 
infected host are not comprehensive but apply current know-
ledge of epigenetics and infection to specific questions in 
malaria. They investigated the epigenetic regulation of specific 
host genes that provide resistance to malaria (62) or mediate the 
immune response to malaria (e.g., promoter DNA methylation 
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of TLR6 (63) and ABCB1 (64), and H3K4me3 at TNF, IL-6, and 
mTOR promoters (65)). Recently, Lessard et  al. utilized epig-
enomic profiling to determine functionally relevant genomic 
sequences at a loci associated with protection from malaria (66). 
Others discussed the role of epigenetics in generating specific 
immune cell populations that contribute to susceptibility to or 
protection from malaria, particularly, CD4+ T-cells (67), and 
CD8+ T-cells (68), or the mechanisms by which testosterone 
(69) or nutrition (70) can confer susceptibility to or protection 
from malaria. Kumari et al. investigated the effect of the anti-
malarial drug artemisinin on epigenetic modifiers (71). Others 
examined global changes in miRNA expression (72) or DNA 
methylation in specific cell or tissue types of malaria-infected 
individuals (23, 64, 73). The majority of these research articles 
have been published within the last 2 years, hopefully indicating 
an interest in applying the lessons we have learned regarding  
the important role of epigenetics in other diseases to the chal-
lenge of malaria.

ePiGeNeTiCS AND PROTeCTiON FROM 
MALARiA

Despite the few studies that directly address the role of host 
epigenetics in protection from or susceptibility to malaria, a 
number of recent studies indicate that immune responses that 
are controlled by epigenetic changes are important for protection 
from the disease. There is growing evidence that Plasmodium can 
induce a state of trained innate immunity. Stimulation of human 
peripheral blood mononuclear cells (PBMCs) with Plasmodium 
falciparum, both in vivo and in vitro, results in subsequent toll-
like receptor specific stimuli driving significantly higher proin-
flammatory responses (74, 75). The hyper-responsiveness of 
PBMCs that have been exposed to either P. falciparum-infected 
RBCs or hemozoin is associated with increased H3K4 trimethyla-
tion at specific immuno-metabolic promoters (65). This trained 

immunity may be associated with protection from malaria.  
In P. falciparum malaria, patients who display the production 
of malaria-specific IFN-γ by PBMCs have significantly lower rates 
of reinfection (76, 77). Further, a recent study of the Fulani, 
an ethnic group with lower susceptibility to malaria, found 
that following P. falciparum infection, the Fulani displayed 
characteristics suggestive of trained immunity, with more tran-
scriptionally reactive monocytes and a more pro-inflammatory 
response relative to a sympatric ethnic group (72). Finally, in 
mice BCG vaccination, which is known to induce trained innate 
immunity, results in reduced parasitemia during a subsequent 
challenge with malaria parasites (78). Conversely, malaria may 
induce innate immune tolerance, particularly, after multiple 
infections or in patients in which the infection progresses 
without treatment (79). Individuals historically infected with 
malaria as therapy for neurosyphilis exhibited depressed 
responses to a subsequent challenge with heat-killed Salmonella 
(80). The parasite burden that initiates symptomatic malaria 
increases with multiple infections, with individuals in endemic 
areas infected with P. falciparum for weeks to months while 
remaining apparently healthy (81, 82). Therefore, the dynamics 
of epigenetic regulation of innate immune memory, to either 
a “trained” or “tolerized” phenotype, has implications for the 
outcome of the disease.

A role for epigenetics in protection from malaria may 
also extend to nutrition, microbiome, and other factors that 
affect the metabolome. The role of dietary nutrients and gut 
microbiota in influencing immune function has now been well 
established (83–85). For example, probiotic commensal bacte-
ria can dampen immune activation, protecting against allergy 
development (86, 87). The different activation of immune cells 
is underscored by epigenetic changes (88–90). In the context 
of malaria, gut microbiota has a potential role in resistance 
of individuals to malaria (91). Particularly, the role of dietary 
advanced glycation end-products in the modulation of immune 
responses through chronic oxidative stress, which mediates 
epigenetic and transcriptional programs, has been established, 
which also seems to play a role in the natural protection against 
malaria (92).

Whole blood genomic DNA studies of global DNA methyla-
tion in individuals infected with P. falciparum have shown that 
global DNA methylation levels are inversely proportional to 
parasitemia, with reduced 5meC levels in infected compared 
to uninfected individuals (64). However, currently, it is unclear 
whether this is due to a strategy of the host immune system to 
mediate the immune response, or alternatively whether the para-
site and/or its by-products can change methylation levels in the 
host genome to provide itself with a survival advantage.

ePiGeNeTiCS AND SUSCePTiBiLiTY TO 
MALARiA: THe OTHeR SiDe OF THe COiN

Immunity to malaria is short-lived, despite repeated parasite 
exposure in endemic areas, and the established strong selec-
tive force of malaria on human populations. Malaria parasites 
have evolved to escape the immune system of the human host, 
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utilizing a number of mechanisms including allelic variation 
and modification of host cell phenotype (93). Recently, the 
ability of the parasite to impact host immune response through 
modulating epigenetic and transcriptional pathways has been 
proposed. For example, malaria patients display reduced num-
bers of circulating dendritic cells (DCs) and an accumulation 
of immature DCs (94), and further studies have implicated 
the malaria pigment hemozoin in partially preventing DC 
maturation and capacity to activate T-cells (95–98). However, 
so far, the role of epigenetic mechanisms have not been esta-
blished, only implied. For example, the malaria parasite and 
its by-products drive DNA hypomethylation and increased 
expression of the ABCB1 gene (99), and the hypothesis that this 
multidrug resistance transporter protein is regulated by malaria 
infection to eliminate hemoglobin degradation products is 
being investigated (64). In support of this, other parasites have 
demonstrated ability to co-opt host epigenetic mechanisms to 
orchestrate changes in host gene expression (100). For example, 
Mycobacterium tuberculosis inhibits IFN-γ-induced expression 
of several immune genes through histone acetylation, con-
tributing to the persistence of long-term chronic tuberculosis 
infections in some patients (101–103). Other protozoan para-
sites specifically, including Leish mania and Toxoplasma, employ 
a variety of strategies to actively modulate host immune epig-
enome and transcriptome. For example, Leishmania parasite 
replicates in the macrophages of its mammalian host, where it 
efficiently inhibits activation of innate immune reponses, such 
as antigen presentation, IFN-γ, and activation of cytokines 
and chemokines. Infection of macrophages with Leishmania 
donovani, compared to a heat-killed control, results in global 
changes in DNA methylation, including at genes involved in 
macrophage activation (104, 105). The intracellular parasite 
Toxoplasma gondii can prevent chromatin remodeling and 
association of transcription factors at the TNF-α promoter, and 
mediate levels of DNA methylation at the arginine vaso pressin 
(Avp) gene promoter (103, 106, 107).

The other side of the coin is also related to the role of immune 
response in the pathology of malaria as a disease. Severe 
pathophysiological events during malaria infection include 
erythrocyte destruction and ineffective erythropoiesis, adhesion 
of Plasmodium-infected red blood cells to capillary veins of vital 
host organs, and excessive production and the release of proin-
flammatory cytokines (108). These symptoms are driven by high 
levels of proinflammatory immune responses. In escaping the 
host immunity, the parasite may also prevent the development of 
symptoms of severe malaria infection. Thus, understanding the 
epigenetic mechanisms by which the parasite stimulates or evades 
immune response in the human host may shed light into how 
this complex host–parasite interaction results in the pathology 
of the disease.

CONCLUSiON

Despite long lasting efforts to control and eliminate malaria infec-
tion, the disease remains a public health concern in sub-Saharan 
Africa. According the World Health Organization (WHO), 
malaria remains a major cause of morbidity and mortality, 

causing an estimated 445,000 deaths globally in 2016 (109). Sub-
Saharan Africa is the most affected region with 92% of global 
malaria death. Among these, 88% occurs in children under 
5 years of age (109). Challenges in malaria include difficulties in 
estimating the changing burden of disease due to limitations in 
health reporting systems in many African countries, inequality 
in malaria intervention coverage in countries with slow growth 
or a large baseline inequality (110), emergence of mosquitos 
resistant to insecticides, and the spread of artemisinin-resistant 
malaria parasites in Southeast Asia (111). Consequently, 
progress against malaria has stalled, with increased worldwide 
incidence of malaria reported for the first time in recent  
history (109).

The development of new strategies that will explore new 
research avenues and hypotheses on biological factors of malaria 
susceptibility or resistance are urgently needed. This should be 
a priority if the goal of eradication is to be achieved by 2030.

Interestingly, growing evidence suggests that epigenetics play 
a key role to multiple levels of this complex disease, including 
immune evasion by the parasite, tolerance, training, and adap-
tive responses. The tools and frameworks are readily available 
to investigate the impact of epigenetics in the protection from 
or susceptibility to malaria in more depth. In other fields, 
drugs targeting epigenetic enzymes and processes have already 
advanced to clinic. For example, the DNMT inhibitors and 
HDAC inhibitors have proven efficacious in the treatment of can-
cer, particularly hematopoietic cancers (29, 112, 113). Inhibitors 
of chromatin modifying enzymes that target the Plasmodium 
parasite have already been considered as an antimalarial strategy 
(61). Understanding how epigenetic mechanisms in the human 
host impact the disease outcome during malaria, through either 
driving or dampening immune responses, may offer a relatively 
achievable approach to develop new strategies that can be applied 
to the treatment of the disease.

There are several challenges that epigenetic epidemiological 
studies have to address to elucidate fully the role of epigenetics 
in susceptibility or protection to malaria. One of these chal-
lenges is to understand how the parasite alters the host immune 
responses by exerting a strong selective pressure on population 
genetics in endemic regions. A better understanding of the 
mechanisms that underlie the chromatin and DNA methylation 
changes are topics of scientific interest. Such studies will gener-
ate more evidence in the role of epigenetics in the acquisition of 
protective immunity against infectious disease such as malaria. 
As we gain insight into the functional significance of changes 
in DNA methylation events and other epigenetic mechanisms, 
there will be a push to manipulate these processes, as tools 
and strategies to develop vaccines and target for therapeutic 
discoveries.
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