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genomes Project
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Laboratory of Transplantation Immunology, National Research Center for Hematology, Moscow, Russia

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is routinely used to treat 
hematopoietic malignancies. The eradication of residual tumor cells during engraftment 
is mediated by donor cytotoxic T lymphocytes reactive to alloantigens. In a HLA-matched 
transplantation context, alloantigens are encoded by various polymorphic genes situated 
outside the HLA locus, also called minor histocompatibility antigens (MiHAs). Recently, 
MiHAs have been recognized as promising targets for post-transplantation T-cell immu-
notherapy as they have several appealing advantages over tumor-associated antigens 
(TAAs) and neoantigens, i.e., they are more abundant than TAAs, which potentially 
facilitates multiple targeting; and unlike neoantigens, they are encoded by germline poly-
morphisms, some of which are common and thus, suitable for off-the-shelf therapy. The 
genetic sources of MiHAs are nonsynonymous polymorphisms that cause differences 
between the recipient and donor proteomes and subsequently, the immunopeptidomes. 
Systematic description of the alloantigen landscape in HLA-matched transplantation 
is still lacking as previous studies focused only on a few immunogenic and common 
MiHAs. Here, we perform a thorough in silico analysis of the public genomic data to 
classify genetic polymorphisms that lead to MiHA formation and estimate the number 
of potentially available MiHA mismatches. Our findings suggest that a donor/recipient 
pair is expected to have at least several dozen mismatched strong MHC-binding SNP-
associated peptides per HLA allele (116 ± 26 and 65 ± 15 for non-related pairs and 
siblings respectively in European populations as predicted by two independent algo-
rithms). Over 70% of them are encoded by relatively frequent polymorphisms (minor 
allele frequency > 0.1) and thus, may be targetable by off-the-shelf therapeutics. We 
showed that the most appealing targets (probability of mismatch over 20%) reside in the 
asymmetric allele frequency region, which spans from 0.15 to 0.47 and corresponds to 
an order of several hundred (213 ± 47) possible targets per HLA allele that can be con-
sidered for immunogenicity validation. Overall, these findings demonstrate the significant 
potential of MiHAs as targets for T-cell immunotherapy and emphasize the need for the 
systematic discovery of novel MiHAs.

Keywords: allogeneic hematopoietic stem cell transplantation, minor histocompatibility antigens, alloantigens, 
snP, immunopeptidome
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inTrODUcTiOn

T-cell immunotherapy is extremely promising in cancer treat-
ment, as was demonstrated in a number of successful cases of 
targeting tumor-associated antigens (TAAs) and/or neoantigens 
in melanoma and other solid cancers (1). The distinct feature 
of hematopoietic malignancies is that a patient’s hematopoietic 
system containing the malignant clone can be completely 
eradicated and replaced by the hematopoietic system of a donor. 
Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) 
not only provides healthy blood cells, T-cell-replete graft and/
or subsequent donor lymphocyte infusions also facilitate the 
elimination of residual disease by targeting alloantigens in the 
“graft versus leukemia” (GvL) reaction (2, 3). Thus, allo-HSCT 
can be considered a form of immunotherapy, where the targets 
are recipient-specific peptides. When presented in the context of 
matched HLA they are reffered to as minor histocompatibility 
antigens (MiHAs). It was suggested that MiHAs could be used as 
targets for leukemia relapse therapy after allo-HSCT or for relapse 
prophylaxis in high-risk patients alongside TAAs and neoantigens 
(4, 5, 6). MiHA-specific T-cell clones can be generated either by 
the antigen-specific expansion (7, 8), or by transducing cells with 
the MiHA-specific T-cell receptors (TCRs) (9, 10). However, to 
avoid “graft-versus-host” disease (GvHD), a severe complication 
after allo-HSCT, therapeutic immune response has to discrimi-
nate hematopoietic from non-hematopoietic (not affected by the 
disease) tissues. Ideal therapeutic MiHAs are encoded by genes 
exclusively or predominantly expressed in the hematopoietic 
lineage. Unfortunately, out of the 70 MiHAs discovered so far (11) 
very few are specific to the hematopoietic tissue (for review see 
Bleakley and Riddell (5)). It is unclear how many MiHAs remain 
to be discovered.

On the other hand, it was recently shown that the magnitude 
of response and the number of involved alloreactive clones rather 
than the expression pattern of the target antigen played a more 
prominent role in determining if GvL would be complicated with 
GvHD (12). Thus theoretically even ubiquitous MiHA could be 
safely targeted.

The genetic sources of MiHAs are nonsynonymous polymor-
phisms (nsSNP) that cause differences between the recipient 
and the donor proteomes and, subsequently, immunopepti-
domes (11). MiHA-specific T  cells in MiHA-negative donors 
are not eliminated during negative selection in the thymus, 
and upon transfer to MiHA-positive recipient may encoun-
ter their targets presented on recipient antigen presenting 
cells, subsequently become activated and drive alloreactive 
immune response. A similar situation but in the reverse 
direction arises in the case of organ transplantation (13). 
Most of the known MiHAs were discovered by the “forward 
immunology” approach, comprising the isolation of the 
alloreactive clone from the patient and subsequent inference 
of immunogenic nsSNP. Originally, cDNA libraries (14, 15)  
and genetic linkage analysis (16, 17) were used, while most 
recently genome-wide association studies were shown to be 
efficient (18). The major limitation of this approach is that it 
only allows the detection of the in vivo immunodominant tar-
gets. However, less immunogenic MiHAs may still be applicable 

for therapy, if antigen-specific clones can be generated in vitro. 
Also, the described above framework does not allow for system-
atic addressing of the actual MiHA landscape.

The complimentary “reverse immunology” approach is usually 
based on the mass spectrometry (MS) analysis of MHC-eluted 
peptides. The peptides detected by MS are further mapped to 
polymorphic genomic regions. This approach was validated by 
testing the immunogenicity of predicted MiHAs (19), while MHC-
tetramer verification was less effective (20). Over a hundred new 
MiHAs, restricted by the HLA-*02:01 and HLA-B*44:03 alleles, 
were predicted based on MS data (19). However, there is evidence 
that MS may significantly underpredict the number of candidate 
MiHAs, due to peptide loss, both during the purification step and 
the peptide mapping procedure. T-cell immunogenicity assays 
appear to be more sensitive than MS analysis (21, 22).

On the other hand, the “reverse immunology” approach, based 
solely on the in silico prediction of MHC affinity, is thought to 
substantially overpredict the number of MiHA candidates. This 
is the result of the complexity of the antigen presentation process, 
which, apart from peptide binding to the MHC (this step can 
be relatively well predicted) includes proteasomal degradation of 
the proteins, TAP transport to the endoplasmic reticulum, pep-
tide cleavage by the peptidases, and other factors. Additionally, 
some MHC-associated peptides and, potentially, MiHAs were 
shown to arise from non-coding regions (23) or as a result of 
a proteasomal splicing (24), which is even more challenging for 
the in silico prediction. As a result, no comprehensive description 
of the MiHA landscape was made. However, the recent applica-
tion of in  silico prediction to the neoantigen discovery showed 
remarkable performance with the substantial amount of predicted 
mutations confirmed as immunogenic (25, 26). In contrast to the 
neoantigens, all frequent nsSNPs are listed in the genomic vari-
ation databases (27), and thus the immunogenicity assessment 
of the most frequent polymorphisms is fundamentally feasible.

Here, we aim to advance towards the goal of the comprehensive 
description of the alloantigen landscape in the HLA-matched 
transplantation. Earlier approaches to systematically describe 
MiHA mismatches were based on the exome-sequencing data of 
the patients and the donors undergoing transplantation (28, 29).  
Although these studies had the advantage of using HLA and 
genomic data of actual transplantation pairs, the major limitation 
of these approaches was that they lacked the allele frequency analysis 
due to the small number of samples. Below we report in  silico 
analysis of the public genomic data and attempt to classify the 
features of the immunopeptidome mismatches in virtual (in silico 
paired) donor/recipient pairs. Using the MHC binding prediction 
algorithms, available MS databases and the data about known 
MiHAs, we speculate about the total number of MiHAs in the 
population. The results emphasize the need for systematic immu-
nogenicity verification of in silico predicted potential MiHAs.

MaTerials anD MeThODs

genomic Data
The reference genomic data from the ENSEMBL release 85 
and Phase 3 1000 Genomes Project genome variation data 
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were downloaded from ENSEMBL FTP site: ftp://ftp.ensembl.
org. Only transcripts from autosomes that have RefSeq Protein 
accessions were considered. From the initial 34 127 transcripts, 
50 were excluded due to the presence of stop codons inside 
annotated coding regions (these stop codons can be translated as 
stop, or selenocysteine under some conditions). Variations that 
extended beyond exon boundaries were ignored; the fraction of 
such variations was negligible. The IDs of considered transcripts 
and discarded SNPs for each studied pair are listed in Table S1 in 
Supplementary Material.

Genomic samples of related individuals from 1000 genomes 
project were obtained at ftp://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/release/20130502/supporting//related_samples_vcf, struc-
tural variants data were excluded. As the data were only available 
in GRCh37 coordinates, the files were converted to GRCh38 coor-
dinates with CrossMap software (https://sourceforge.net/projects/
crossmap/) using the recommended liftover file (GRCh37_to_
GRCh38.chain). Less than 0.35% of total entries failed to remap. 
The output files were compared to the VCF files of non-related 
samples used in the general analysis; only the transcripts that did 
not differ by the number or identity (i.e., SNP genomic position 
and the set of allelic variants) of the variations in coding regions 
were used for the analysis. This procedure filtered out 5% of 
transcripts; the remaining transcripts used for the comparative 
analysis of related and unrelated individuals are listed in Table S1 
in Supplementary Material.

hla genotyping Data
HLA typing is available for 932 samples from the 1000 Genomes 
Project (30). The data were downloaded from http://www.
internationalgenome.org/category/hla/. These data were used 
to compare genetic differences in HLA-matched and randomly 
selected HLA-unmatched pairs. For European population 4 
HLA-matched pairs were available; their HLA genotype is listed 
in Table S1 in Supplementary Material.

Miha Prediction
The minor histocompatibility antigen prediction for the allo-
HSCT donor-recipient pair consists of two steps: (1) identifi-
cation of peptides that can arise in the process of proteasomal 
degradation in the recipient, but not in the donor (these pep-
tides are addressed in this paper as “unique recipient peptides,” 
URPs) and (2) estimation of the probability of their presenta-
tion on the surface of the recipient’s cells in the complex with 
MHC molecules (“unique recipient immunopeptides,” URiPs). 
URiPs represent potential MiHAs. More accurately, there is a 
third step that comprises prediction of URiP immunogenicity, 
i.e., the ability to induce a specific immune response. However, 
at this moment it is not clear which factors can influence 
the magnitude of an immune reaction. For that reason we 
restricted ourselves to the first two steps. In the first part 
of this paper, we described the features of 9-mer peptidome 
unique for the recipient, and further we described the features 
of in  silico predicted unique immunopeptidome presented 
by the common class I HLA alleles, namely, HLA-A*01:01,  
HLA-A*02:01, HLA-A*03:01, HLA-A*11:01, HLA-A*24:02, 

HLA-B*07:02, HLA-B*08:01, HLA-B*15:01, HLA-B*35:01, 
HLA-B*44:02, and HLA-B*57:01. Note that MHC binding pre-
diction for all samples was performed for the same set of alleles 
independent of actual HLA-genotypes of the individuals. This 
was done for the reason that the dataset contained only four 
HLA-matched pairs. However, we showed that the number of 
predicted binders is very consistent between samples, and that 
overall genomic disparity between samples did not depend on 
HLA-allele matching.

Our workflow of MiHA prediction is depicted at the Figure 1. 
First, 100 pairs of samples were randomly selected from 503 
available unrelated samples of European origin (populations 
IBS, FIN, TSI, GBR, and CEU). Each sample was allowed 
only once, i.e., 200 distinct samples were randomly assigned 
to 100 pairs. The IDs of selected samples are listed in Table S1 
in Supplementary Material. For URPs identification in each 
pair, individual sample proteomes were obtained for a virtual 
“donor” and “recipient” by mapping the variation data on the 
reference genome and subsequent translation of protein-coding 
transcripts (in-house made script). The individual proteomes 
were further cut into 9-mer peptidomes. The set of unique recipi-
ent peptides was obtained by subtracting the peptidome of the 
“donor” from the peptidome of the “recipient”. Each particular 
URP was assigned to the respective encoding allelic variant(s). 
The examples of possible allelic combinations leading to URP  
formation are schematically depicted in Figure S1 in Supplemen-
tary Material. We distinguished several main classes of URPs 
by their origin; URPs were caused by one or several adjacent 
nsSNPs, by in-frame insertions or deletions, by frameshift muta-
tions in recipient, homologous frameshift or nonsense mutation 
in the donor. In rare cases, URPs were caused by a combination 
of polymorphisms.

The obtained URP sets were then subjected to the MHC-
binding prediction for 11 common HLA alleles. URiPs with the 
optimal frequency of occurrence were defined as suitable for the 
therapeutic usage.

Prediction of Peptide-Mhc class i affinity
Two algorithms were used to predict peptide affinity to MHC 
proteins: NetMHCpan-3.0 (31) with the default thresholds for 
strong (rank < 0.5) and weak (rank < 2) binders; and MixMHC 
which was recently developed based on the large MS immun-
opeptidome dataset (32). The p-value thresholds for strong (SB) 
and weak binders (WB) for MixMHC were chosen as 0.005 and 
0.02, respectively. Both rank and p-value thresholds represent the 
fraction of positive predictions in the set of peptides randomly 
selected from the human genome. I.e., all URPs predicted with 
the 0.005 MixMHC threshold are among the top 0.5% binding 
peptides from human genome. The rank thresholds 0.5 and 2 of 
NetMHCpan-3.0 correspond to p-value thresholds 0.005 and 0.2 
of MixMHC, respectively. Such percentile-based thresholds dem-
onstrated better performance in comparison with the affinity-
based thresholds (31). To strengthen the reliability of predictions 
and reduce the number of candidates we also considered the 
overlapping predictions, i.e., peptides predicted as SB or WB by 
both programs.

https://www.frontiersin.org/Immunology/
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FigUre 1 | The workflow of the study. The main steps of the study are 
schematically depicted: 100 sample pairs of European origin were randomly 
selected from the 1000 Genomes Project as virtual “donors” and “recipients” 
(I). The variation data were used to obtain individual proteomes (II). For each 
pair peptides unique for recipient (URPs) were identified (III). For all URPs 
MHC binding to the most frequent HLA alleles was predicted with two 
MHC-binding programs, non-binding peptides were filtered out. The peptides 
obtained at this stage are designated as unique recipient immune peptides 
(URiPs) (IV). On the last stage only therapeutically relevant peptides, i.e., with 
high probability of mismatch, were left (V). On the right side of the figure the 
analysis applied to the data on each step is shown: (1) for URPs: analysis of 
encoding allele frequency and the type of encoding polymorphisms, (2) for 
URiPs: analysis of encoding allele frequency and co-dominant/dominant 
ratio, and (3) comparative analysis of URiPs, mass spectrometry data, and 
known minor histocompatibility antigens.
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Datasets of Ms analysis of 
immunopeptidome
Mass spectrometry dataset used in this paper was collected 
 following Bassani-Sternberg et al. (32) from publicly available 
MS datasets (33–39). The HLA restriction assignment was done 
de novo with MixMHC program using the HLA-genotyping data 
for the samples specified in the studies. For the data from Abelin 
et al. (39) there was only one HLA per sample, thus, the prediction 
of HLA restriction was not performed. The full MS dataset used 
in the paper can be found in Table S4 in Supplementary Material.

resUlTs

Peptidome Unique for recipient
We analyzed the genomic variation data for 100 pairs of unrelated 
individuals belonging to the European populations, arbitrarily 
defining one of them as a virtual “recipient” and the other as a 
virtual “donor” (Figure 1). For each pair, we took 34,077 protein-
coding transcripts, confirmed by RefSeq, into consideration (see 
Materials and Methods). First, we calculated the number of allelic 
variants that were unique to the recipient genome, which was 
11 243 ± 255 (Table S1 in Supplementary Material). A fraction 
of these allelic variants changes the amino acid sequence of the 
encoded protein and thus, gives rise to the new peptides, which 
are potentially presented in complex with MHC. We further 
focused on the nature and number of the peptides that were 
unique to the recipient.

Most of the peptides presented in the MHC I are 9 amino acids 
long (the exact percentage can vary between distinct HLA alleles) 
(35). In line with this and for simplification, we restricted our 
analysis to 9-mer peptides. To obtain all the peptides unique to 
recipients, individual peptidomes of the donors were subtracted 
in silico from the peptidomes of the recipients in each pair. As a 
result, the average number of 9-mer unique recipient peptides 
(URPs) per pair was found to be 47,057 ± 1,566, which occupied 
0.47 ± 0.02% of the whole recipient 9-mer peptidome (Table S1 
in Supplementary Material; Figures 2A,C). This suggested that 
the ratio of URiPs to all peptides presented on the surface of the 
recipient cell was approximately 1:200, as we did not expect any 
bias toward variant or invariant peptides in the antigen presenta-
tion machinery. Consequently, low estimation of MiHA numbers 
in an unrelated donor-recipient pair can be defined around 250, 
as individual immunopeptidome diversity is at least 50,000 
according to estimations from MS experiments (33).

The majority of the obtained URPs (88 ±  2%) were caused 
by nsSNPs encoding a single amino acid substitution in the 
donor–recipient pair of homologous peptides, while another 
3 ± 0.2% were caused by several adjacent SNPs that resulted in 1 
or more amino acid substitutions. This is in line with the fact that 
most of the known MiHAs are associated with a single nsSNP 
(11). The remaining 9 ± 1% of URPs were caused by frameshifts 
and indels in donor or recipient genomes, or by homozygous 
nonsense mutations in the donor (Figure  2B). Among non-
nsSNP peptides, 11 ± 3% were due to indel in the recipient or 
donor, 19  ±  7% due to frameshift in the recipient, 40  ±  13% 
due to homozygous frameshift in the donor, 28 ±  11% due to 
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FigUre 2 | Relative contribution of different genetic polymorphisms to unique recipient peptidome. (a) The fraction of total recipient’s peptidome occupied by 
unique recipient peptides (URPs). (B) The share of URPs encoded by different polymorphisms. (c) Absolute numbers of URPs in all analyzed pairs, HLA-matched 
and unmatched pairs are shown separately. Error bars mark one SD from the mean. Significance of two-tailed t-test for comparison of the two groups is shown as 
follows: p < 0.05 (*), n.s, non significant.
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homozygous nonsense mutation in the donor, and 1 ± 1% due 
to the combination of several reasons. The detailed counts of 
peptides per polymorphism type in the studied pairs are given 
in Table S2 in Supplementary Material. As expected, the average 
number of variant peptides per polymorphism was 9 for missense 
SNPs and small in-frame indels, whereas the distribution was 
much broader for frameshift and nonsense mutations (Figure 
S2 in Supplementary Material). Some of the polymorphisms 
can result in thousands of URPs when found in the homozygous 
state in the donor. In this situation, the source of the mismatched 
peptides is unaltered recipient protein, whereas only truncated 
protein is present in the donor. Notably, truncated proteins are 
a relatively common phenomenon. An estimated 20 complete 
loss-of-function proteins are present in the homozygous state per 
individual; most of them are caused by frameshifts, which lead to 
premature protein truncation (40).

Since URP-coding SNPs are evenly distributed across the 
genome, most of them are not in linkage disequilibrium with 
HLA alleles. Thus, we demonstrated that the number of URPs 
in HLA-matched pairs do not significantly differ from that in 
random pairs, i.e., obtained estimations could be extrapolated to 
actual HLA-matched unrelated allo-HSCTs (Figure 2C).

Altogether, 672,913 distinct URPs were found in all 100 
considered pairs, thereby showing that most URPs are repeated 
among pairs (see below). The probability of finding a particular 
URP in a pair depends on the frequency of the corresponding 

encoding allele (referred below as allele frequency, f) in the 
population. It is described by the following formula:

 P f f fmm = × −( ) × −( )1 22 . 

Here, Pmm is the probability of MiHA mismatch and f is the 
frequency of the MiHA-encoding allele in the population. It is 
a product of the probability that the MiHA-encoding allele is 
absent in the donor and the probability that it is present in the 
recipient (for derivation of the formula see Supplementary Text 
in Supplementary Material). The same formula, as a function of 
the donor allele frequency, was obtained earlier as well (41). This 
formula approximates well with our data (Figure 3A). It implies 
that the probability of a specific URP-mismatch non-linearly 
depends on the f of the corresponding polymorphism, which 
favors polymorphisms whose alternative (not MiHA-encoding) 
allelic variant is more frequent in the population. Maximum Pmm 
(0.25) is achieved at f = −1 1

2
 (0.293). The optimal window to search 

for therapeutically relevant MiHAs (Pmm > 0.1) would be in the f 
range of 0.06–0.65 for URP-coding alleles, while the most relevant 
MiHAs (Pmm > 0.2) would be found in f range of 0.15–0.47 (blue 
and green dashed lines, respectively in Figure  3A). We then 
analyzed the distribution of nsSNP-encoded URPs in a pair 
with respect to the frequency of the encoding allele. We found 
that 7.9  ±  0.9% of URPs were coded by very low-frequency 
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FigUre 4 | Saturation of the number of distinct unique recipient peptides 
(URPs). The encoding allele frequency (f) distribution of distinct URPs is 
plotted separately for different number of analyzed pairs (1–100). Note that 
Y-axis is in logarithmic scale.

FigUre 3 | Correlation of allele frequency and unique recipient peptides (URP) occurrence. (a) Allele frequency of encoding polymorphism is plotted against the 
fraction of pairs in which this particular URP was found (random selection of 10,000 URPs is shown). Theoretical curve calculated by the formula provided in the text 
is shown in black. Red dashed line indicates the peak at which Pmm (probability of minor histocompatibility antigen mismatch) reaches 25%. Blue and green lines 
delineate allele frequency range yielding Pmm ≥ 20 and 10%, respectively. (B) The distribution of nonsynonymous polymorphism-encoded URPs by the frequency 
of encoding allele. The data were averaged among all considered pairs, error bars show one SD. The red fill indicates the fraction of URPs encoded by the alleles 
relatively frequent in the population (0.1 < MAF < 0.9).
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alleles (f  <  0.01), 18.8  ±  0.9% were coded by low-frequency 
alleles (0.01 < f < 0.1), and 72.5 ± 1.1% were coded by common 
alleles, with an f range of 0.1–0.9. Only 0.8 ± 0.2% of URPs were 
encoded by alleles with f > 0.9 (Figure 3B, the data for each pair 
can be found in Table S2 in Supplementary Material). The minor 
contribution of polymorphisms encoded by frequent alleles to 
overall URP space is explained by the diminishing probability for 
a donor to be homozygous by the alternative allele. This is in line 
with previous experimental data (12), where no specific immune 
target was assigned to 30% of the alloreactive clones most prob-
ably because the frequency of the corresponding polymorphism 
was lower than the detection threshold. The URP saturation curve 
(increase in the number of unique URPs with the addition of new 
pairs to the analysis) is also highly f-dependent (Figure 4). When 
taking 100 pairs of individuals into consideration, we obtained 
almost all (over 99.99%) relevant URPs (Pmm > 0.1).

Using HLA-matched siblings as donors is considered to be the 
gold standard for allo-HSCT, since these kinds of transplantations 
are associated with lower incidences of GvHD than transplanta-
tions from unrelated HLA-matched donors. Sibling donors have 
a 25% probability of sharing both HLA haplotypes and they are 
expected to share more allelic variants of MiHAs with the recipi-
ent than unrelated donors. Therefore, we also studied sibling pairs 
available on the 1000 Genomes project data (see Materials and 
Methods). The observed number of URPs were approximately 
1.8-folds less for siblings than for unrelated pairs (Figure S3 and 
Table S1 in Supplementary Material), which closely matches 
previously obtained results (42, 43). Pmm for sibling pairs was 
calculated using the following formula:

 P f f fmmSib = −( ) × × −( )1 4 42 / , 
where f is the frequency of the MiHA-encoding allele in the 
population (for derivation of the formula see Supplementary Text 

in Supplementary Material). The maximum Pmm for sibling pairs 
is 0.136, which is achieved at f = −7 33

4
 (0.314) (Figure S4 in 

Supplementary Material).

Features of In Silico Predicted Potential 
Mihas
Next, we studied URPs that were in  silico predicted to bind to 
MHC proteins (see Materials and Methods), henceforth addressed 
as “unique recipient immunopeptides” (URiPs). We utilized two 
independent algorithms: widely used netMHCpan-3.0, which 

https://www.frontiersin.org/Immunology/
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TaBle 1 | Number of predicted unique recipient immunopeptides (URiPs) and mass spectrometry (MS) peptides in the region where Pmm > 10 and 20%.

hla allele netMhcpan WB netMhcpan sB MixMhc WB MixMhc sB Overlap WB Overlap sB Ms peptides

region of Pmm > 10%

A*01:01 3,097 750 2,713 634 1,684 390 9
A*02:01 4,161 1,400 3,032 717 1,782 451 20
A*03:01 3,167 923 2,771 647 1,864 404 23
A*11:01 4,002 1,268 2,969 693 1,936 473 2
A*24:02 3,419 984 2,728 638 1,641 404 4
B*07:02 5,372 1,758 3,634 888 2,519 657 40
B*08:01 4,779 1,395 2,989 691 1,838 377 15
B*15:01 3,822 1,076 2,848 681 1,511 277 7
B*35:01 6,523 1,724 2,953 706 2,133 488 16
B*44:02 3,198 894 2,768 633 1,623 373 4
B*57:01 3,291 941 2,907 827 1,797 515 9

region of Pmm > 20%

A*01:01 1,495 357 1,325 293 801 185 2
A*02:01 2,025 699 1,464 361 875 226 9
A*03:01 1,497 449 1,306 330 874 200 13
A*11:01 1,864 622 1,411 313 903 215 1
A*24:02 1,635 482 1,330 304 795 192 1
B*07:02 2,571 845 1,740 420 1,238 322 23
B*08:01 2,289 696 1,466 323 896 183 6
B*15:01 1,890 519 1,405 342 746 141 6
B*35:01 3,135 846 1,422 344 1027 238 12
B*44:02 1,540 430 1,338 323 783 193 1
B*57:01 1,567 444 1,387 1387 856 254 5
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implemented neural networks (31), and recently released PSSM 
matrices, which were trained on an extensive experimental 
dataset (32). Both programs were used to predict strong and weak 
MHC-binding URiPs.

First, we analyzed the URiPs in the Pmm > 0.1 region (where 
URPs were saturated, allowing us to detect nearly all the URPs 
in the population in this region). The number of strong binders 
(SB) predicted by netMHCpan-3.0 (rank < 0.5, see Materials and 
Methods) ranged from 750 to 1,758 for HLA-A*01:01 and HLA-
B*07:02, respectively, whereas the number of weak binders (WB) 
(rank < 2) from 3,097 to 6,523 for HLA-A*01:01 and HLA-B*35:01, 
respectively (note that WB by definition included SB). Analysis with 
the PSSM prediction algorithm using the same p-value thresholds 
resulted in less variable estimations among the HLA alleles. Strong 
binders ranged from 633 to 888 for HLA-B*44:02 and HLA-
B*07:02, respectively, whereas the number of weak binders ranged 
from 2,713 to 3,634 for HLA-A*01:01 and HLA-B*07:02, respec-
tively (Table 1). However, the predictions of the two programs only 
partially overlapped. The number of overlapping strong binders 
ranged from 277 to 657 for HLA-B*15:01 and HLA-B*07:02, 
respectively, whereas the number of overlapping weak binders 
ranged from 1,511 to 2,519 for HLA-B*15:01 and HLA-B*07:02, 
respectively (Table 1). To increase the odds of actual MHC-binding 
by the peptide and to decrease the number of MiHA candidates, 
we used stringent criteria and only considered peptides that were 
predicted as strong or weak by both algorithms in the downstream 
analysis. The overlapping strong binders in the Pmm > 0.1 region are 
listed in Table S3 in Supplementary Material as potential MiHAs.

The distribution of URiPs among the studied pairs showed 
that the variation in URiPs numbers was dictated by the HLA 

allele rather than genetic variation (Figure  5). Moreover, the 
number of predicted URiPs per HLA corresponded to their bind-
ing promiscuity, which was calculated using a random sample 
from the genome (Figure S5 in Supplementary Material). URiP 
distribution with respect to the encoding allele frequency was not 
significantly different from the URP distribution (Figure S6 in 
Supplementary Material). Thus, we confirmed that MHC-binding 
did not introduce any bias into the f profile and that the above 
described dependency between Pmm and f was also valid for URiPs.

intersection of UrPs With Ms Data  
and reported Mihas
Mass spectrometry of peptides eluted from pMHC complexes is 
extensively used to examine immunopeptidomes and is believed 
to be significantly more accurate than in  silico prediction of 
antigen presentation as a strategy to search for novel MiHAs and 
neoantigens (19, 36, 44, 45). To study the extent to which MS data 
intersected with predicted URPs and URiPs, we accumulated a 
large set of published MS-identified peptides described in the lit-
erature (32, 33, 39). The dataset included 89,324 distinct 9-amino 
acid long sequences, of which 74,007 were assigned to either 
HLA-A or HLA-B alleles by the MixMHC program. We focused 
our study on this dataset (Table S4 in Supplementary Material). 
Next, we analyzed the intersection of this dataset with the URPs 
and URiPs reported here.

The vast majority (99.2%) of the 9-mer peptides detected by 
MS did not intersect with the URP set obtained in our experi-
ments, which suggested that they were encoded by the invariant 
loci. 565 distinct URPs found in MS dataset represent naturally 

https://www.frontiersin.org/Immunology/
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TaBle 2 | Fraction of peptides unique for recipient (URPs) from mass spectrometry (MS) data predicted to bind MHC.

hla allele number of UrPs  
in Ms data

Of them in UriP  
weak binders (WB)

Of them in UriP  
strong binders (sB)

Fraction from Ms  
UrPs (WB)

Fraction from Ms UrPs  
(sB)

A*01:01 14 6 4 0.43 0.29
A*02:01 45 38 23 0.84 0.51
A*03:01 48 34 25 0.71 0.52
A*11:01 3 3 1 1.00 0.33
A*24:02 13 11 9 0.85 0.69
B*07:02 88 69 44 0.78 0.50
B*08:01 29 27 19 0.93 0.66
B*15:01 11 6 2 0.55 0.18
B*35:01 17 12 5 0.71 0.29
B*44:02 24 22 19 0.92 0.79
B*57:01 20 15 11 0.75 0.55

Mean 0.77 0.48

sD 0.17 0.19

FigUre 5 | Unique recipient peptides (URPs) predicted to bind MHC. The number of URPs predicted to bind MHC is shown for 11 most frequent HLA alleles, 
variance among pairs is depicted with violin density plots. The results of different prediction programs used with different prediction thresholds are shown with color.  
SB – strong binders; WB – weak binders; SB overlap – strong binders predicted by two independent algorithms.
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processed and presented peptides. These peptides are potential 
MiHAs that require immunogenicity validation (they are listed 
in Table S4 in Supplementary Material). Most of the variant pep-
tides in the MS dataset were predicted to be MHC-binders via 
the stringent approach that utilized two independent algorithms 
implemented here. On average, 77 ± 17 and 48 ± 19% of the vari-
ant MS peptides were reported to be weak and strong binders, 
respectively among considered HLA alleles, whereas this share 
was 84 and 51%, respectively for the most frequent allele (HLA-
A*02:01) in European population (Table 2). Strikingly, when we 

analyzed the f distribution of the URPs found in the MS data, 
we found that it was significantly skewed toward a higher f, i.e., 
toward URPs with non-optimal Pmm (Figure  6). It is unlikely 
that MS exhibits some intrinsic bias: thus, the skewness of the 
data toward peptides encoded by higher frequency alleles may 
be explained by two factors. It could either be caused by the 
usage (at least in some experiments) of reference genome data 
for peptide mapping or by the insufficient number of experi-
ments. The rare allelic variants certainly require more samples 
to be detected.

https://www.frontiersin.org/Immunology/
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FigUre 6 | Encoding allele frequency of mass spectrometry (MS)-verified 
unique recipient peptides (URPs). The peptides obtained at the intersection 
of URPs and MS datasets were grouped according to the frequency of 
URP-encoding allele. The columns are divided at segments corresponding to 
the assigned HLA-restricting allele.

FigUre 7 | Co-dominant/dominant ratio of unique recipient immunopeptide 
(URiP)-encoding nonsynonymous polymorphisms (nsSNPs). The number of 
URiP-encoding nsSNPs predicted to be co-dominant (i.e., both allelic 
variants give rise to peptides predicted to bind specific MHC) divided by the 
number of dominant nsSNPs. Only the concordant predictions between 
programs (shown as “overlap” at Figure 5) were used for both strong and 
weak binding thresholds.
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Minor histocompatibility antigens with high Pmm (>0.2) repre-
sent prime therapeutic targets as they are mismatched in a sub-
stantial number of donor–patient pairs. However, the available 
MS data contain very few of them due to the above-described 
bias. Even for alleles with the highest number of MS-reported 
peptides (HLA-B*07:02, HLA-A*03:01, and HLA-A*02:01), only 
a few peptides with Pmm > 0.2 exist (23, 13, and 9, respectively), 
whereas the in silico-predicted URiP dataset contains 322, 200, 
and 226 strong MHC binders, respectively. This suggests that a 
substantial number of high therapeutic potential MiHAs may be 
still undiscovered (Table 1).

Another evidence of MS data deficiency in the high Pmm region 
was that most of the known MiHAs were not detected in the MS 
experiments. Out of 35 previously reported 9-mer MiHA peptides 
[reviewed in Ref. (11)], only 6 were present in the studied MS 
dataset, whereas 32 of them were present in the URP set (three 
peptides were not found because they were caused by entire gene 
deletion or were transcribed from an alternative reading frame 
and thus, were beyond the scope of our approach). Out of 32 
detected URPs, 27 (84%) weak- and 20 (62.5%) strong-binding 
URiPs were predicted (Table S5 in Supplementary Material). 
This suggests that around 60% of still undiscovered MiHAs 
would be contained in the strong binder set predicted by the two 
algorithms. Given that the number of such URiPs for each allele 
is not prohibitively high, in silico reverse immunology approach 
followed by in vitro immunogenicity testing can be feasibly used 
to discover them.

co-Dominant/Dominant Miha ratio
Most MiHAs are encoded by biallelic nsSNPs, and they fall into 
1 of 2 principal groups depending on whether both or just 1 of 
the allelic variants encode peptides presented in the immun-
opeptidome. A MiHA allele is termed dominant when its peptide 
is exclusively presented in MHC; the counterpart allele coding 

non-presented peptide is accordingly designated as recessive. 
When both alternative alleles encode peptides presented in the 
immunopeptidome, they are referred to as co-dominant (46). 
Although in-depth knowledge is lacking as to how these two 
groups of MiHAs differ from each other with respect to their 
immunogenicity or other features, the presence or absence 
of counterpart peptides can theoretically influence allogeneic 
immune responses to MiHA targets. From another perspective, 
the co-dominant to dominant MiHA ratio represents a funda-
mental feature of the antigen presentation machinery; in essence, 
it describes the extent to which a single amino acid substitution 
affects proteasomal degradation and MHC binding. We aimed 
to calculate this value in our dataset and compare it to the co-
dominant/dominant ratio of reported MiHAs and MS-detected 
peptides.

The co-dominant/dominant ratio for all URiP-encoding 
nsSNPs in our data is 1.15 ± 0.18 for strong and 1.57 ± 0.21 for 
weak binders (mean value among considered HLA alleles ±  SD, 
Figure 7). To isolate the possible effect of differential proteasome 
degradation we took advantage of a recently published finding 
(39) which reported that only mutations to arginine and lysine 
contained in a peptide significantly increased the probability 
of internal proteasomal cleavage. The exclusion of all peptides 
containing arginine or lysine from the analysis yielded a more 
balanced ratio of polymorphisms representing strong (0.8 ± 0.14) 
and weak (1.03 ± 0.13) binders. Thus, our analysis suggests that 
the number of co-dominant MiHAs should be comparable to that 
of dominant MiHAs. Strikingly, the dominant variant peptides 
are much more abundant in MS data, resulting in a reversed co-
dominant/dominant ratio. Only 28 (of 489) nsSNP demonstrated 
both variants (i.e., confirmed co-dominant via MS) in the dataset 
used in this study, resulting in a co-dominant/dominant ratio of 
0.06 (Table S4 in Supplementary Material). The same tendency 
was reported in other MS studies (19, 46). Among 30 known 

https://www.frontiersin.org/Immunology/
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9-mer MiHA-encoding nsSNP polymorphisms, only 2 were 
reported as co-dominant, resulting in a ratio of 0.07 (Table S5 in 
Supplementary Material). For known MiHAs, the independent 
discovery of two variants of the same MiHA is very unlikely as 
only a small number of MiHAs have been discovered and the 
systematic investigation of counterpart peptide immunogenicity 
is usually not performed. Recent quantitative MS experiments, 
focused on specific MiHAs rather than the whole immun-
opeptidome, confirmed that some MiHAs, previously thought 
to be dominant, were actually co-dominant (47). If the MiHA 
co-dominant/dominant ratio suggested by in  silico analysis is 
valid, approximately half of the MiHAs would be categorized 
as co-dominant and the number of targetable antigens would 
substantially increase.

DiscUssiOn

Many sophisticated constructs were developed recently to facili-
tate T-cell immunotherapy. For instance, T-cell transduction with 
transgenic TCRs (10) and chimeric antigen receptors (48) created 
antigen-specific T cells in vitro, while bispecific T-cell engaging 
antibodies (49, 50) and ImmTACs (51) changed the specificity 
of the cell in vivo effectively redirecting any T cell to the desired 
antigen. However, in the end, immunotherapy is only as good 
as its antigenic target. Tumors of the hematopoietic system bear 
relatively low mutational load (52); thus, the use of neoantigens 
is restricted. Some tumors express CD19 and are targetable by 
anti-CD19 CAR T  cells; however, acute myeloid leukemia, the 
most common hematopoietic malignancy in adults, lacks this 
marker. MiHAs represent an appealing alternative target for 
immunotherapy following allo-HSCT. Only a small part of them 
are hematopoietically restricted; a feature necessary to avoid 
potentially detrimental off-tumor targeting. Another limitation 
is that the maximum frequency of MiHA mismatch is only 25%, 
and restriction by a particular HLA allele lowers the number of 
eligible patients even more. To use MiHAs as therapeutic targets 
on a large scale, a reasonably sized panel of MiHAs is needed. This 
highlights the demand for the discovery of novel hematopoietic 
MiHAs. Since tumors are prone to immune escape by downregu-
lating HLA expression or via homologous recombination in the 
HLA locus that leads to the loss of HLA heterozygosity (53), the 
simultaneous use of several MiHAs, restricted by different HLA, 
is ideal. Currently, a total of around 70 MiHAs with confirmed 
immunogenicity are known (a few of them are suggested to be 
hematopoetically restricted). The number of undiscovered MiHAs 
remains unknown. This knowledge will determine the applicabil-
ity and potential efficacy of anti-MiHA immunotherapy. Here, 
we attempted to draw attention to the importance of systematic 
MiHA discovery.

Although in silico approaches cannot provide the exact set of 
immunogenic targets, we focused on the descriptive features of 
the immunopeptidome that are unlikely to be influenced by the 
biases of the antigen presentation machinery. Our study revealed 
the following features. Only 0.5% of the immunopeptidome tar-
gets in the patient (also referred to as URPs) were absent in the 
donor, i.e., they were unique to the recipient. Most of the variant 
peptides (90%) were caused by nsSNP polymorphisms, which 

was in line with the existing experimental data. We showed that 
most of URPs and potential MiHAs  in a given donor/recipient 
pair are caused by polymorphisms common in the population 
(MAF > 0.1).

The pioneering work of Granados et  al. (19) demonstrated 
that MiHAs could be detected using proteogenomic approach. 
More importantly, all the tested predicted peptides appeared to 
elicit an immune response. However, evidence also suggests that 
bulk MS studies could significantly underestimate the size of the 
immunopeptidome. For example, Kumari et al. (22) and Gubin 
et al. (21) showed that T cells could recognize epitopes that were 
undetected in bulk MS experiments. The immunopurification 
step in immunopeptidome analysis was also shown to capture 
around 5% of all peptides, essentially detecting only the most 
common epitopes (54). Upon analyzing allele frequency distri-
bution of MS-predicted MiHAs, we found that most of MS pep-
tides were found in the region of frequent immunogenic alleles, 
while only a few peptides were present in the region optimal 
for therapeutic usage (around allele frequency 0.3). Although 
MS experiments are highly consistent in immunopeptidome 
and MiHA recovery (19, 55), it is still to be determined whether 
they systematically underestimate the number of immunogenic 
MiHAs or there is indeed a limited number of them. Indirect 
evidence suggesting that MiHA numbers might be underesti-
mated during MS appears via the reversed ratio of co-dominant 
and dominant MiHAs observed in the MS data when compared 
to in silico predictions.

We have provided a list of the best in silico-predicted 9-mer 
MiHAs for the most frequent MHC alleles in the ideal Pmm range 
(over 10%). Analysis of the known MiHAs suggested that a list 
obtained with selected prediction thresholds should contain 50% 
of all MiHAs in this region. The relatively small number of pep-
tides (from 100 to 200 peptides per each allele), which is still about 
10 times more than is suggested by the MS data, provides the 
possibility of systematically checking their immunogenicity. The 
feasibility of reverse immunology approach followed by immu-
nogenicity verification was shown for neoantigens (25). In our 
opinion, this approach will facilitate the systematic examination 
of the MiHA landscape and yield therapeutically relevant targets.

In the present work, we restricted analysis to 9-mer peptides 
translated in normal reading frames from protein-coding tran-
scripts. However, it is known that T-cell can recognize 10- or 
11-mer peptides, moreover T-cell targets can be translated from 
protein-coding transcripts in alternative reading frames or from 
alternative transcripts (11). As such, it is possible that there are 
additional sets of URPs that were not considered here.
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