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Background: X-linked agammaglobulinemia (XLA) is a primary immunodeficiency 
caused by Bruton’s tyrosine kinase (BTK) mutation. Patients are susceptible to severe 
enterovirus infections. The underlying mechanism remains unknown. BTK is involved in 
toll-like receptors pathway, which initiates antiviral responses including interferon (IFN) 
productions.

Objective: To demonstrate type I and III IFN productions in dendritic cells of XLA patients 
is decreased in response to oral poliovirus vaccine (OPV) but not H1N1 virus.

Methods: Monocyte-derived dendritic cells (MoDCs) were derived from nine XLA 
patients aged 22–32 years old and 23 buffy coats from Hong Kong Red Cross blood 
donors. LFM-A13 was used to inhibit BTK. OPV Sabin type 1 and H1N1 influenza virus 
were used to stimulate MoDCs with RPMI as mock stimulation. The antiviral cytokine 
productions and phenotypic maturation of MoDCs were determined 24 h post-stimula-
tion. OPV RNA was determined at 0, 6, 12, and 24 h post-stimulation.

results: Upon OPV stimulation, IFN-α2, IFN-β, and IFN-λ1 productions in MoDCs from 
XLA patients and BTK-inhibited MoDCs of healthy controls were significantly lower than 
that from healthy controls. Whereas upon H1N1 stimulation, the IFN-α2, IFN-β, and 
IFN-λ1 productions were similar in MoDCs from XLA patients, BTK-inhibited MoDCs of 
healthy controls and healthy controls. The mean fluorescent intensities (MFI) of CD83, 
CD86, and MHC-II in MoDCs from XLA patients in response to OPV was similar to 
that in response to mock stimulation, while the MFI of CD83, CD86, and MHC-II were 
significantly higher in response to H1N1 stimulation than that in response to mock stimu-
lation. Whereas, the MFI of CD83, CD86, and MHC-II in MoDCs of healthy controls were 
significantly higher in response to both OPV and H1N1 stimulation compared to that in 
response to mock stimulation.

https://www.frontiersin.org/Immunology/
https://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.01826&domain=pdf&date_stamp=2018-08-10
https://www.frontiersin.org/Immunology/archive
https://www.frontiersin.org/Immunology/editorialboard
https://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.01826
https://www.frontiersin.org/Immunology/
https://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:maohwei@qq.com
mailto:lauylung@hku.hk
https://doi.org/10.3389/fimmu.2018.01826
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01826/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01826/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01826/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01826/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.01826/full
https://loop.frontiersin.org/people/98343
https://loop.frontiersin.org/people/419679
https://loop.frontiersin.org/people/420067
https://loop.frontiersin.org/people/246671


2

Luk et al. XLA IFN Production to Viruses

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1826

conclusion: Production of type I and III IFN in response to OPV was deficient in MoDCs 
from XLA patients, but was normal in response to H1N1 due to deficient BTK function. 
Moreover, phenotypic maturation of MoDCs from XLA patients was impaired in response 
to OPV but not to H1N1. These selective impairments may account for the unique sus-
ceptibility of XLA patients toward severe enterovirus infections.

Keywords: type i interferon, type iii interferon, X-linked agammaglobulinemia, oral poliovirus vaccine, h1n1 
influenza virus, innate immunity, dendritic cells

inTrODUcTiOn

X-linked agammaglobulinemia (XLA) is a primary immunode-
ficiency caused by mutations of Bruton’s tyrosine kinase (BTK)  
(1, 2). BTK is expressed in all lineages of hematopoietic cells 
except T cells (3). As a result, XLA patients typically suffer from 
recurrent respiratory infections caused by encapsulated bacteria 
but are generally not susceptible to viral infections (1, 4). However, 
XLA patients are particularly vulnerable to severe enterovirus 
infections, notably chronic meningoencephalitis from Echo 
virus and vaccine-associated paralytic poliomyelitis (VAPP) from 
live-attenuated oral poliovirus vaccine (OPV) (5–9). Antibodies 
deficiency has been suggested to be responsible for the increase 
in susceptibility (10), but enterovirus infections in XLA patients 
with adequate immunoglobulin replacement have been reported 
(11, 12), indicating that antibody deficiency alone cannot fully 
explain the susceptibility toward severe enterovirus infections. 
To date the exact mechanism behind this unique susceptibility 
is unknown.

Enteroviruses are mainly transmitted through feco-oral route. 
The viruses then replicate in the upper respiratory tract, distal 
small bowel, and submucosal lymphoid tissues, leading to viremia 
and sometimes disseminated infections in the central nervous 
system (CNS), heart, and skin (7). Innate immunity, particularly 
interferons (IFN), as well as T cell-mediated immune responses 
are critical in protecting hosts from enterovirus infections (13).

Type I and III IFN play important roles in mucosal immunity 
and are often among the first cytokines produced in response 

Abbreviations: BMDC, bone marrow-derived conventional dendritic cells; 
BMDM, bone marrow-derived macrophages; BTK, Bruton’s tyrosine kinase; 
CNS, central nervous system; CXCL, chemokine (C-X-C motif) ligand; MoDCs, 
monocyte-derived dendritic cells; ECL, electrochemiluminescence; FBS, fetal 
bovine serum; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; IFN, inter-
feron; IL, interleukin; IP-10, interferon gamma-induced protein 10; IRF, interferon 
regulatory factor; IVIG, intravenous immunoglobulin; MDA5, melanoma differ-
entiation-associated protein 5; MFI, mean fluorescent intensity; MOI, multiplicity 
of infection; MX1, MX dynamin like GTPase 1; MyD88, myeloid differentiation 
primary response gene 88; NK, natural killer; OAS1, 2′-5′ oligoadenylate synthetase 
1; OPV, oral poliovirus vaccine; PAMPs, pathogen-associated molecular patterns; 
PBMC, peripheral blood mononuclear cells; pDCs, plasmacytoid dendritic cells; 
PH, pleckstrin homology; PID, primary immunodeficiency; PK, protein kinase; 
PKR, protein kinase R; PLK3, Polo-like kinase 3; PRRs, pattern recognition 
receptors; RIG-I, retinoic acid-inducible gene I; RLRs, RIG-I-like receptors; SEM, 
standard error of mean; SH2, Src homology 2; TIR, toll/interleukin-1 receptor; 
TIRAP, TIR domain-containing adaptor protein; TLRs, toll-like receptors; TNF-α,  
tumor necrosis factor alpha; TRIF, TIR-domain-containing adapter-inducing 
interferon-β; VAPP, vaccine-associated paralytic poliomyelitis; VDPV, vaccine-
derived poliovirus; XLA, X-linked agammaglobulinemia.

to viral infections, restricting viral replications. Majority of the 
antiviral actions of type I IFN are exerted through the expression 
of interferon-stimulated genes (ISGs) (14, 15). ISGs are hetero-
geneous proteins with myriad antiviral mechanisms that target 
the different stages of viral life cycles (16), from blocking nuclear 
import of viral nucleocapsids by MX dynamin like GTPase 1 
[MX dynamin like GTPase 1 (MX1)] to inhibiting translations 
by 2′-5′ oligoadenylate synthetase (OAS) and protein kinase 
R (PKR) (14, 17, 18). Production of ISGs such as interferon 
regulatory factor 3 (IRF3), IRF7, and toll-like receptor 3 (TLR3) 
sensitize pathogen detection and enhance IFN production to 
amplify antiviral responses (14). In addition, type I IFN has a 
broad range of effects on innate and adaptive immune cells that 
eventually result in clearance of viral infections (14). Type III IFN 
has similar effects as type I IFN but its actions are restricted to 
mucosal epithelium, liver, and a handful of immune cells includ-
ing plasmacytoid dendritic cells (pDCs) and monocyte-derived 
macrophages (15).

Innate immune cells sense pathogens by recognizing the 
pathogen-associated molecular patterns (PAMPs) via the pat-
tern recognition receptors (PRRs) (14, 15). Toll-like receptors 
(TLRs) and retinoic acid-inducible gene I (RIG)-I-like recep-
tors (RLRs) are the two main PRRs to detect viral infections. 
TLR3, 7, 8, 9, and melanoma differentiation-associated protein 
5 (MDA5) are utilized to detect enterovirus infections (2, 19) 
while TLR3, 7, 8, and RIG-I are utilized to detect influenza virus 
infections (20).

Activation of PRRs by viral PAMPs triggers downstream 
signaling cascades which lead to the production of type I and 
III IFN, along with other cytokines (14, 15). The influence of the 
TLRs and RLRs pathways on initiating IFNs productions varies 
from virus to virus (Figures 1 and 2). It has been shown that the 
TLR pathways, but not the MDA5 pathway, play the essential 
role in initiating IFN productions in response to enterovirus 
infections (Figure  1) (2, 21). On the other hand, it has been 
shown either TLRs or RLRs on its own is sufficient to initiate the 
production of type I IFN in response to influenza virus infection 
(Figure 2) (22).

Recent studies have revealed specific roles of BTK in TLR 
signaling pathways, from directly phosphorylating the TLR (23) 
to interacting with the adapters of TLRs (24–27). We, therefore, 
hypothesized that XLA patients have impaired type I and III IFN 
productions in response to enteroviruses but not to other viruses 
in a BTK-dependent manner. In this study, we sought to demon-
strate type I and III IFN productions are decreased in response to 
OPV, but normal to H1N1 virus in monocyte-derived dendritic 
cells (MoDCs) of XLA patients.
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TaBle 1 | Bruton’s tyrosine kinase mutations of the nine XLA patients.

Patient age exon/
intron

cDna change 
involved

amino acid 
change

Protein 
domain

P001a 26 E2 c.41C > A S14Y PH domain
P001b 27 E2 c.41C > A S14Y PH domain
P002 23 E11 c.942A > G G313fsX318 SH2 domain
P003 22 E14 c.1278delC D426fsX431 PK domain
P004 32 E2 c.3G > T M1I (Start codon)
P005 28 E2 c.3G > T M1I (Start codon)
P006 30 E10 c.885_887delA K296fsX330 SH2 domain
P007 25 E2 c.3G > T M1I (Start codon)
P008 24 I15 g.IVS15-2A > T, 

c.1567-1631del
A523fsX527 PK domain

PH, pleckstrin homology; SH2, Src homology 2; PK, protein kinase; XLA, X-linked 
agammaglobulinemia. All nine patients received oral poliovirus vaccine and had no 
history of acute flaccid paralysis and no excretion of vaccine-derived poliovirus. P001a 
and P001b were from the same kindred.

FigUre 2 | Either TLRs pathway or RIG-I pathway is sufficient for producing 
type I interferon against influenza A virus infection. Influenza A virus can be 
sensed by both TLRs and RIG-I and either TLRs pathway or RIG-I pathway  
is sufficient for producing type I interferon against influenza A virus infection 
(22). Abbreviations: TLRs, toll-like receptors; RIG-I, retinoic acid-inducible 
gene I; IFN, interferon.

FigUre 1 | TLRs pathway, but not MDA5 pathway, is essential to the 
production of type I interferon against enterovirus infections. Enterovirus can 
be sensed by both TLRs and MDA5; however, TLRs pathway, but not MDA5 
pathway, plays the essential role on type I interferon production against 
enterovirus infections (2). Abbreviations: PV, poliovirus; TLRs, toll-like 
receptors; MDA5, melanoma differentiation-associated protein 5; IFN, 
interferon.
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MaTerials anD MeThODs

subjects
Nine XLA patients aged 22–32 years old were recruited for the 
study (Table 1). All of the nine patients have received OPV vac-
cination before and none had a history of acute flaccid paralysis 
before or excreting vaccine-derived poliovirus (VDPV). 40 mL 
of heparinized fresh blood was drawn for the study before the 

commencement of their regular intravenous immunoglobulin 
replacement therapy in Queen Mary Hospital. Twenty-three 
donor buffy coats from Hong Kong Red Cross were obtained 
as healthy control. This study was approved by the Institutional 
Review Board of the University of Hong Kong/Hospital Authority 
Hong Kong West Cluster (UW 08-002). All subjects gave written 
informed consent in accordance with the Declaration of Helsinki.

generation of Monocyte-Derived Dendritic 
cells
Monocytes of patients and healthy controls were obtained 
from peripheral blood mononuclear cells (PBMC) using CD14 
MicroBeads (Miltenyi Biotec, Germany), and were cultured in 
RPMI with 10% fetal bovine serum (FBS), 50 ng/mL GM-CSF, 
and 10 ng/mL IL-4 for 6 days to obtain monocyte-derived den-
dritic cells (MoDCs) as described previously (4).

Bruton’s tyrosine kinase-inhibited MoDCs were generated 
by pretreating MoDCs from healthy control with LFM-A13 
(Calbiochem, USA) at 150  µM (Figure S1 in Supplementary 
Material) 2 h prior to viral stimulation (23, 28).

Viral stimulation of MoDcs
In our previous study, we have optimized the conditions of 
stimulating MoDCs of XLA patients with H1N1 (4). In our cur-
rent study, OPV Sabine type 1 and influenza A virus H1N1 were 
used to stimulate MoDCs on day 6. H1N1 virus was incubated 
at 56°C for 30 min before used to stimulate MoDCs as described 
previously (4). RPMI was used as mock stimulation. MoDCs and 
BTK-inhibited MoDCs from healthy controls, and MoDCs from 
XLA patients were incubated with OPV and H1N1 at multiplicity 
of infection (MOI) of 1 in the absence of FBS at 37°C for 2 h. 10% 
FBS was then supplemented to MoDCs.

All procedures involving viruses were conducted in biosafety 
level 2 (BSL 2) laboratory and in accordance with the World 
Health Organization polio laboratory manual (29).

Phenotypic and cytokine analysis
At 24  h post-stimulation, supernatant and MoDCs were col-
lected for analysis. Antiviral cytokines levels in the supernatant 
were measured using cytometric bead array [LEGENDplex™ 

https://www.frontiersin.org/Immunology/
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Human Anti-Virus Response Panel (13-plex), BioLegend, San 
Diego, CA, USA].

Phenotypic maturation of MoDCs was analyzed by flow 
cytometry using anti-CD14 PB, anti-CD86 PE, anti-MHC II 
FITC, anti-CD83 FITC, and anti-CD155 APC (Biolegend, San 
Diego, CA, USA).

rna analysis
Viral RNA of OPV was determined at 0, 6, 12, and 24 h post-stim-
ulation in MoDCs from healthy controls and patients. IRF3, IRF7, 
TLR3, PKR, MX1, OAS1, and IFN-α2 RNA were determined at 0, 
24, and 48 h post-stimulation in MoDCs from healthy controls 
and XLA patients by OPV.

Total RNA was extracted from MoDCs and supernatant using 
TaKaRa MiniBEST Universal RNA Extraction Kit (TaKaRa, 
Japan). cDNA conversion was performed using TaKaRa 
PrimeScript RT reagent Kit (TaKaRa, Japan). Quantitative PCR 
for OPV (Custom TaqMan® Gene Expression Assay PN4331348, 
Assay ID: AIY9Z0P, ThermoFisher, USA), IRF3 (TaqMan® 
Gene Expression Assay 4331182, Assay ID: Hs01547283_m1), 
IRF7 (TaqMan® Gene Expression Assay 4331182, Assay ID: 
Hs00185375_m1), TLR3 (TaqMan® Gene Expression Assay 
4331182, Assay ID: Hs00152933_m1), PKR (TaqMan® Gene 
Expression Assay 4331182, Assay ID: Hs00169345_m1), 
MX1 (TaqMan® Gene Expression Assay 4331182, Assay ID: 
Hs00182073_m1), OAS1 (TaqMan® Gene Expression Assay 
4331182, Assay ID: Hs00973635_m1), and IFN- α2 (TaqMan® 
Gene Expression Assay 4331182, Assay ID: Hs00265051_s1) was 
performed using ABI 7900 sequence detection system (Applied 
Biosystems). The amplification was performed with denaturation 
for 20 s at 95°C followed by 40 cycles of 95°C for 2 s and 60°C for 
30 s. β-actin (Hs99999903_m1, TaqMan Gene Expression Assays, 
ThermoFisher, USA) and glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) (Hs02758991_g1, TaqMan Gene Expression 
Assays, ThermoFisher, USA) were used as internal control. 
Arbitrary threshold cycle of 40 was set for measurements under 
the detection limit of qPCR. Results were normalized to β-actin 
or GAPDH expression and presented as fold increase in RNA 
expression at 6, 12, 24, and 48 h post-stimulation compared to 
that at 0 h using the comparative threshold cycle method (ΔΔCt).

statistics
All data were expressed in mean ± SEM. Statistics were analyzed 
by one-way ANOVA with Dunnett’s multiple comparison test, 
unpaired t-test, or Wilcoxon matched-pairs signed rank test 
using Prism 7 (GraphPad Software). Statistical significance was 
defined as p < 0.05.

resUlTs

Production of iFn-α2, iFn-β, and iFn-λ1 
Were impaired in a BTK-Dependent 
Manner in MoDcs of Xla Patients Upon 
OPV stimulation
Cytokines produced upon OPV stimulation from the MoDCs 
of XLA patients, BTK-inhibited MoDCs and MoDCs of healthy 
controls were measured at 24 h post-stimulation.

IFN-α2, IFN-β, IFN-λ1, and interferon gamma-induced 
protein 10 (IP-10) productions were lower in MoDCs from XLA 
patients compared to that from healthy controls upon OPV 
stimulation (Figure 3).

IFN-α2, IFN-β, and IFN-λ1 productions were lower in 
BTK-inhibited MoDCs of healthy controls compared to that 
from MoDCs of healthy controls upon OPV stimulation 
(Figure 3).

There was no difference in the production of IFN-α2, IFN-β, 
IFN-λ1, and IP-10 between MoDCs from patients and healthy 
controls upon mock stimulation (Figure  3). There was no dif-
ference in the production of interleukin-1 beta (IL-1β), tumor 
necrosis factor alpha (TNF-α), and IL-8 between MoDCs from 
patients and healthy control upon OPV stimulation (Figure S2 in 
Supplementary Material).

Production of iFn-α2, iFn-β, and iFn-λ1 
Were normal in MoDcs of Xla Patients 
Upon h1n1 stimulation
Cytokines produced upon H1N1 stimulation from the MoDCs 
of XLA patients, BTK-inhibited MoDCs and MoDCs of healthy 
controls were measured at 24 h post-stimulation.

There was no difference in IFN-α2, IFN-β, IFN-λ1, and IP-10 
productions among the MoDCs of XLA patients, BTK-inhibited 
MoDCs, and MoDCs of healthy controls upon H1N1 stimulation 
(Figure 4). There was no difference in the production of IL-1β, 
TNF-α, and IL-8 among the three groups upon H1N1 stimulation 
(Figure S3 in Supplementary Material).

expression of IRF7, TLR3, PKR, MX1, 
OAS1, and IFN-α2 Were impaired in Xla 
Patients Following OPV stimulation
RNA expressions of IRF3, IRF7, TLR3, PKR, MX1, OAS1, and 
IFN-α2 in MoDCs of XLA patients and healthy controls were 
measured at 24 and 48 h post-stimulation with OPV.

There was no increase in RNA expressions of IRF3, IRF7, 
TLR3, PKR, MX1, OAS1, and IFN-α2 in MoDCs of XLA patients 
upon OPV stimulation (Figure 5).

RNA expressions of IRF7, PKR, MX1, OAS1, and IFN-α2 were 
increased in MoDCs of healthy controls at 24 and 48  h post-
stimulation with OPV (Figure 5). RNA expression of TLR3 was 
increased in MoDCs of healthy control at 48 h post-stimulation 
with OPV (Figure 5).

There was no increase in RNA expression of IRF3 in MoDCs 
of healthy control upon OPV stimulation (Figure 5).

Phenotypic Maturation of Xla Patients Dc 
Was impaired Upon OPV but not h1n1 
stimulation
MoDCs from patients, BTK-inhibited MoDCs, and MoDCs of 
healthy controls were collected at 24 h post-stimulation with OPV 
and H1N1 for flow cytometry.

Mean fluorescent intensity (MFI) of CD83, MHC-II, and CD86 
of MoDCs and BTK-inhibited MoDCs of healthy controls were 
higher upon both OPV and H1N1 stimulation when compared to 
mock stimulation (Figure 6).

https://www.frontiersin.org/Immunology/
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FigUre 3 | IFN-α2, IFN-β, IFN-λ1, and interferon gamma-induced protein 10 productions in MoDCs from healthy controls (n = 23), Bruton’s tyrosine kinase 
(BTK)-inhibited MoDCs from healthy controls (n = 11), and MoDCs from X-linked agammaglobulinemia patients (n = 9) upon OPV stimulation. MoDCs were 
stimulated with OPV at multiplicity of infection of 1 for 24 h. Open symbols represent MoDCs stimulated with OPV; filled symbols represent MoDCs that were 
mock-stimulated with RPMI. Healthy + INH, BTK-inhibited MoDCs from healthy controls. Data represented as mean ± SEM. *p < 0.05 and **p < 0.01.

5

Luk et al. XLA IFN Production to Viruses

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1826

There was no difference in MFI of CD83, MHC-II, and CD86 
of MoDCs from XLA patients upon OPV stimulation when 
compared to mock stimulation (Figure 6A).

However, MFI of CD83, MHC-II, and CD86 were higher 
in MoDCs from XLA patients upon H1N1 stimulation when 
compared to mock stimulation. Interestingly the MFI of MHC-II 
in MoDCs from patients was higher than that in MoDCs from 
healthy control (Figure 6B).

no Difference of Viral replication in MoDcs 
of Xla Patients and healthy control
The fold increase of viral RNA at 6, 12, and 24 h were similar in 
MoDCs of XLA patients and healthy control (Figure 7).

DiscUssiOn

Type I and III IFN productions were found to be near absent 
in MoDCs from XLA patients upon OPV stimulation. The 

deficits were replicated when BTK of healthy control MoDCs 
was inhibited, indicating the deficits were BTK-dependent. 
This is the first time such deficits were observed, which may 
be attributed to impairment of TLR signaling. Previous studies 
have shown that activation of TLR3, 4, 7, 8, and 9 can signal 
type I and III IFN productions (14, 15, 30). BTK has been 
shown to interact with the TLRs responsible for detecting OPV, 
phosphorylating the toll/interleukin-1 receptor (TIR) domain 
of TLR3 (23) as well as interacting with TIR domain of TLR 
8 and 9 (24). In addition, BTK has been shown to interact 
with myeloid differentiation primary response gene 88, TIR-
domain-containing adapter-inducing interferon-β, and TIR 
domain-containing adaptor protein (25, 26), which are the 
adapter molecules for TLRs. The impaired type I and III IFN 
responses in XLA patients could be due to interruption of TLR 
signaling by loss of BTK functions.

The near absence of type I and III IFN production in XLA 
patients impaired their antiviral responses toward OPV. MoDCs 
of XLA patients failed to express PKR, MX1, and OAS1 in response 

https://www.frontiersin.org/Immunology/
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FigUre 4 | IFN-α2, IFN-β, IFN-λ1, and interferon gamma-induced protein 10 productions in MoDCs from healthy controls (n = 15), Bruton’s tyrosine kinase 
(BTK)-inhibited MoDCs from healthy controls (n = 9), and MoDCs from X-linked agammaglobulinemia (XLA) patients (n = 9) upon H1N1 stimulation. MoDCs were 
stimulated with H1N1 at multiplicity of infection of 1 for 24 h. Open symbols represent MoDCs stimulated with H1N1; filled symbols represent MoDCs that were 
mock-stimulated with RPMI. Controls of healthy controls, BTK-inhibited healthy controls, and XLA patients were subsets of controls in Figure 3. Healthy + INH, 
BTK-inhibited MoDCs from healthy controls. Data represented as mean ± SEM.
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to OPV (Figure 5), which are well-known ISGs to directly restrict 
viral replication and translation (14, 17, 18).

In addition to the above ISGs, MoDCs of XLA patients failed 
to up-regulate the expression of IRF7 and TLR3 in response to 
OPV, while OPV failed to induce IRF3 expression in MoDCs 
of both XLA patients and healthy controls (Figure 5), possibly 
because IRF3 is constitutively expressed in all dendritic cell 
types and its expression cannot be further stimulated by IFN-α 
(31, 32). Apart from dendritic cells, previous study has also 
reported on the failure to induce IRF3 expression in neuronal 
cells by OPV (33). IRF7 is not constitutively expressed in 
majority of the dendritic cell types except pDCs, but its expres-
sion can be strongly induced by type I IFN in MoDCs (34). 
IRF3 and IRF7 are integral components of the TLR signaling 
pathway for type I and III IFN production (14, 15). IRF3 is 
more important than IRF7 in inducing IFN-β (35, 36). On the 
other hand, IRF7 can induce a wider range of type I and III IFN 
(34–36) and is critical in inducing IFN-α (36). Furthermore, 
IRF7 is required to amplify IFN production to mount an 
adequate antiviral response through the following mechanism 
(37). Upon recognition of PAMPs, the constitutively expressed 

IRF3 is activated, rapidly produces a small amount of IFN-β, 
which then stimulates the expression of IRF7 to amplify and 
diversify the IFN production in an autocrine and a paracrine 
fashion (34, 35, 37). This positive feedback loop was absent in 
MoDCs of XLA patients, resulting in prolonged impairment 
of IFN production (Figure 5). Such impairment may impede 
the clearance of viral infection and may further increase the 
susceptibility of XLA patients toward OPV infection.

Interferon gamma-induced protein 10 production was found 
to be impaired in MoDCs from XLA patients in response to 
OPV stimulation, but such impairment was not demonstrated 
by inhibiting BTK in healthy controls. This may be due to 
the IP-10 production is regulated by other cytokines apart 
from type I IFN (38, 39), including TNF-α and IL-1 (40, 41), 
which were shown to be normal in XLA patients (Figure S2 
in Supplementary Material). IP-10 is a chemokine attracting 
activated T lymphocytes, macrophages and natural killer (NK) 
cells (42). Impaired IP-10 production in XLA patients may result 
in impaired recruitment of T cells to attack enterocytes infected 
with OPV during vaccination, increasing the risk of developing 
complications (43).
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FigUre 5 | IRF3, IRF7, TLR3, PKR, MX1, OAS, and IFN-α2 RNA levels in MoDCs from healthy controls (n = 7) and X-linked agammaglobulinemia patients (n = 3) 
after 0 to 48 h post-infection. MoDCs were treated with OPV at multiplicity of infection of 1. Open bars represent RNA fold changes in MoDCs treated with OPV; 
filled bars represent RNA fold changes in MoDCs treated with RPMI. Fold change of RNA at 24 and 48 h compared to 0 h post-infection was calculated by the 
“ΔΔCt” method using GAPDH as endogenous control. Abbreviations: IRF, interferon regulatory factor; TLR, toll-like receptor; PKR, protein kinase R; MX1, MX 
dynamin-like GTPase 1; OAS1, 2′-5′ oligoadenylate synthetase 1; IFN, interferon; GAPDH, glyceraldehyde-3-phosphate dehydrogenase. Data represented as 
mean ± SEM. Statistics were analyzed by Wilcoxon matched-pairs signed rank test. *p < 0.05.
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Type I and III IFN productions were normal in MoDCs from XLA 
patients upon H1N1 stimulation, which was similar as reported 
previously (4). The IFN productions were normal even with the 
inhibition of BTK in healthy controls. This indicates XLA patients 
have a normal capacity to produce type I and III IFN, supporting 
the deficit of producing type I and III IFN in response to OPV 
resides in the difference in initiating IFN productions between 
enterovirus and influenza virus. OPV is sensed by TLRs and 

MDA5, which is a type of RLR (2), while H1N1 is sensed by TLRs 
and RIG-I (22). It has been shown that TLRs, but not MDA5, 
play the essential role in initiating IFN productions in response to 
poliovirus infection (Figure 1) (2, 21). On the other hand, it has 
been shown either TLRs or RLRs on its own is sufficient to initiate 
the production of type I IFN in response to influenza infection 
(Figure 2) (22). This difference in utilizing PRRs to initiate IFN 
productions between OPV and H1N1 maybe behind the selective 
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FigUre 7 | OPV RNA level in MoDCs from healthy controls and X-linked 
agammaglobulinemia (XLA) patients from 0 to 24 h post-infection. MoDCs 
from healthy controls (n = 6) and XLA patients (n = 4) were treated with OPV 
at multiplicity of infection of 1. Circles represent healthy control; squares 
represent patients. Fold change of viral RNA compared to 0 h post-infection 
was calculated by the “ΔΔCt” method using beta-actin as endogenous 
control. Data represented as mean ± SEM.

FigUre 6 | Surface marker changes in MoDCs from healthy controls, Bruton’s tyrosine kinase (BTK)-inhibited MoDCs from healthy controls, and MoDCs from 
X-linked agammaglobulinemia (XLA) patients upon OPV and H1N1 stimulation. MoDCs were stimulated with OPV and H1N1 at multiplicity of infection of 1 for 24 h. 
Open symbols represent MoDCs stimulated with OPV or H1N1; filled symbols represent MoDCs that were mock-stimulated with RPMI. Healthy + INH, BTK-
inhibited MoDCs from healthy controls. Data represented as mean ± SEM. ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001; and ****p < 0.0001. (a) MFI of CD83, 
MHC-II, and CD86 in MoDCs from healthy controls (n = 19), BTK-inhibited MoDCs from healthy controls (n = 11), and MoDCs from XLA patients (n = 9) upon OPV 
stimulation. (B) MFI of CD83, MHC-II, and CD86 in MoDCs from healthy controls (n = 15), BTK-inhibited MoDCs from healthy controls (n = 9), and MoDCs from XLA 
patients (n = 9) upon H1N1 stimulation. Controls of MoDCs from healthy controls, BTK-inhibited MoDCs from healthy controls, and MoDCs from XLA patients were 
subsets of controls in Figure 6a.
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type I and III IFN production impairments upon OPV but not 
H1N1 stimulation in XLA patients.

Production of IL-1β, IL-8, and TNF-α were not impaired 
in MoDCs of XLA patients upon OPV stimulation. Instead of 
using pathogens, many previous studies used TLR agonists as 
stimulants. To date, at least 19 such studies using TLR agonists 
have been performed to investigate the effect of BTK deficiency 
on cytokine productions (Table 2) (23, 24, 44–60). They reported 
conflicting results on the effect of BTK deficiency on these 
cytokine productions upon TLR agonist stimulations (61), which 
may be due to the differences in experimental designs, including 
TLR agonists and BTK-deficient models used in these studies.

In our current study, using OPV instead of TLR agonists 
as stimulation resulted in more complex interactions between 
virus and host, as OPV can be recognized by various PRRs. To 
date there are at least 3 more studies in addition to our current 
study that used pathogen instead of TLR agonists to stimulate 
cytokine productions (Table 3) (4, 23, 54). Cytokine produc-
tions in response to live or dead pathogen stimulation are 
different (54) as live pathogen may have mechanisms to evade 
immunity (62, 63), which further complicate the virus–host 
interactions.

In our current study, we used XLA patients and LFM-A13 
inhibited healthy control as BTK-deficiency groups. LFM-A13 
has been used to generate BTK-deficiency models in previous 

https://www.frontiersin.org/Immunology/
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TaBle 2 | Previous studies on the effect of BTK deficiency on cytokine productions in response to TLR agonists.

cytokine effect of BTK 
deficiency on 
cytokine production

Tlr 
tested

Tlr agonist 
used

cell type 
used

BTK-deficient  
model

cytokine detection studies Year

IFN-α Decreased TLR 9 ODN 2216 pDC RN486 Flow cytometry Wang et al. (44) 2014

No effect TLR 7/8 CL097/
Loxoribine

pDC XLA patient ELISA Marron et al. (45) 2012

Gardiquimod pDC RN486 Flow cytometry Wang et al. (44) 2014

TLR 9 ODN-2006 pDC XLA patient ELISA Cunningham-
Rundles et al. (46)

2006

IFN-β Decreased TLR 3 Poly I: C (Mice) BMDM BTK−/− mice ELISA Lee et al. (23) 2012

TLR 4 LPS (Mice) BMDM BTK−/− mice ELISA Lee et al. (23) 2012

TLR 7/8 R848 (Mice) BMDC BTK−/− mice RT-PCR Li et al. (47) 2014

TLR 9 CpG-ODN1668 (Mice) BMDC BTK−/− mice RT-PCR/ELISA Li et al. (47) 2014

Tumor 
necrosis 
factor alpha 
(TNF-α)

Decreased TLR 2/6 PAM3Cys4 PBMC XLA patient ELISA Horwood et al. (48) 2006

PGN MoDCs XLA patient ELISA Taneichi et al. (49) 2008

TLR 3 Poly I: C MoDCs XLA patient ELISA Taneichi et al. (49) 2008

(Mice) BMDM BTK−/− mice ELISA Lee et al. (23) 2012

TLR 4 LPS MoDCs XLA patient ELISA Taneichi et al. (49) 2008

Monocyte XLA patient ELISA Horwood et al. (50) 2003

TLR 7/8 R848 MoDCs XLA patient ELISA Taneichi et al. (49) 2008

ssRNA MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

TLR 9 ODN-2216 MoDCs XLA patient/Ibrutinib RT-PCR Lougaris et al. (52) 2014

pDC RN486 Flow cytometry Wang et al. (44) 2014

Increased TLR 4 LPS B cell depleted 
PBMC

XLA patient ELISA González-Serrano 
et al. (53)

2012

Monocyte/
MoDCs

XLA patient Flow cytometry/ELISA Marron et al. (45) 2012

TLR 7/8 CL097 Monocyte/
MoDCs

XLA patient Flow cytometry/ELISA Marron et al. (45) 2012

No effect TLR 2/6 PAM3Cys4 (Mice) BMDM BTK−/− mice ELISA Köprülü et al. (54) 2013

Zymosan MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

TLR 3 Poly I: C MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

TLR 4 LPS MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

MoDCs XLA patient/Ibrutinib RT-PCR Lougaris et al. (52) 2014

Monocyte XLA patient Flow cytometry de Diego et al. (55) 2006

TLR 5 Flagellin MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

TLR 7 Gardiquimod pDC RN486 Flow cytometry Wang et al. (44) 2014

TLR 9 ODN-2006 MoDCs XLA patient ELISA Taneichi et al. (49) 2008

IL-1β Decreased TLR 2/6 PAM3Cys4 PBMC XLA patient ELISA Horwood et al. (48) 2006
TLR 4 LPS PBMC XLA patient ELISA Horwood et al. (48) 2006
TLR 7 Imiquimod (Mice) BMDM BTK−/− mice ECL assay Byrne et al. (60) 2013

Increased TLR 4 LPS B cell depleted 
PBMC

XLA patient ELISA González-Serrano 
et al. (53)

2012

IL-8 No effect TLR 2/6 PAM3Cys4 PBMC XLA patient ELISA Horwood et al. (48) 2006
TLR 4 LPS PBMC XLA patient ELISA Horwood et al. (48) 2006

IL-10 Decreased TLR 2/6 PGN (Mice) BMDM BTK−/− mice ELISA Schmidt et al. (56) 2006

TLR 3 Poly I: C (Mice) BMDM BTK−/− mice ELISA Schmidt et al. (56) 2006

(Mice) BMDM BTK−/− mice ELISA Lee et al. (23) 2012

TLR 4 LPS (Mice) BMDM BTK−/− mice ELISA Schmidt et al. (56) 2006

TLR 7 Imiquimod (Mice) BMDM BTK−/− mice ECL assay Byrne et al. (60) 2013

TLR 9 E. coli CpG (Mice) BMDM BTK−/− mice ELISA Schmidt et al. (56) 2006

ODN-1826 (Mice) B 
lymphocyte

BTK−/− mice ELISA Lee et al. (57) 2008

(Continued)
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(Continued)

TaBle 2 | Continued

cytokine effect of BTK 
deficiency on 
cytokine production

Tlr 
tested

Tlr agonist 
used

cell type 
used

BTK-deficient  
model

cytokine detection studies Year

Increased TLR 4 LPS B cell depleted 
PBMC

XLA patient ELISA González-Serrano 
et al. (53)

2012

MoDCs XLA patient ELISA Gagliardi et al. (58) 2003

(Mice) BMDM BTK−/− mice ELISA Gabhann et al. (59) 2012

MoDCs XLA patient ELISA Marron et al. (45) 2012

TLR 7/8 CL097 MoDCs XLA patient ELISA Marron et al. (45) 2012

No effect TLR 2/6 PAM3Cys4 PBMC XLA patient ELISA Horwood et al. (48) 2006

Zymosan MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

TLR 3 Poly I: C MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

TLR 4 LPS MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

PBMC XLA patient ELISA Horwood et al. (48) 2006

MoDCs XLA patient/Ibrutinib RT-PCR Lougaris et al. (52) 2014

Monocyte XLA patient ELISA Marron et al. (45) 2012

TLR 5 Flagellin MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

TLR 7/8 CL097 Monocyte XLA patient ELISA Marron et al. (45) 2012

ssRNA MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

TLR 9 ODN-2216 MoDCs XLA patient/Ibrutinib RT-PCR Lougaris et al. (52) 2014

IL-6 Decreased TLR 3 Poly I: C (Mice) BMDM BTK−/− mice ELISA Lee et al. (23) 2012

TLR 8 ssRNA MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

TLR 9 ODN-2216 MoDCs XLA patient/Ibrutinib RT-PCR Lougaris et al. (52) 2014

pDC RN486 Flow cytometry Wang et al. (44) 2014

CpG-ODNs PBMC XLA patient/LFM-A13 ELISA Doyle et al. (24) 2007

Increased TLR 4 LPS B cell depleted 
PBMC

XLA patient ELISA González-Serrano 
et al. (53)

2012

MoDCs XLA patient RT-PCR Lougaris et al. (52) 2014

(Mice) BMDM BTK−/− mice ELISA Schmidt et al. (56) 2006

Monocyte/
MoDCs

XLA patient Flow cytometry/ELISA Marron et al. (45) 2012

TLR 7/8 CL097 Monocyte/
MoDCs

XLA patient Flow cytometry/ELISA Marron et al. (45) 2012

TLR 9 ODN-1826 (Mice) B 
lymphocyte

BTK−/− mice ELISA Lee et al. (57) 2008

No effect TLR 2/6 PAM3Cys4 PBMC XLA patient ELISA Horwood et al. (48) 2006

(Mice) BMDM BTK−/− mice ELISA Köprülü et al. (54) 2013

Zymosan MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

PGN MoDCs XLA patient ELISA Taneichi et al. (49) 2008

TLR 3 Poly I: C MoDCs XLA patient ELISA Taneichi et al. (49) 2008

MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

TLR 4 LPS MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

PBMC XLA patient ELISA Horwood et al. (48) 2006

MoDCs XLA patient ELISA Taneichi et al. (49) 2008

MoDCs Ibrutinib RT-PCR Lougaris et al. (52) 2014

Monocyte XLA patient Flow cytometry de Diego et al. (55) 2006

TLR 5 Flagellin MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007

TLR 7/8 R848 MoDCs XLA patient ELISA Taneichi et al. (49) 2008

Gardiquimod pDC RN486 Flow cytometry Wang et al. (44) 2014

TLR 9 ODN-2006 MoDCs XLA patient ELISA Taneichi et al. (49) 2008

IL-12 Decreased TLR 3 Poly I:C (Mice) BMDM BTK−/− mice ELISA Lee et al. (23) 2012
TLR 4 LPS (Mice) BMDM BTK−/− mice ELISA Gabhann et al. (59) 2012
TLR 7 Imiquimod (Mice) BMDM BTK−/− mice ECL assay Byrne et al. (60) 2013
TLR 9 ODN-2216 MoDCs XLA patient/Ibrutinib RT-PCR Lougaris et al. (52) 2014

Increased TLR 9 ODN-1826 (Mice) B 
lymphocyte

BTK−/− mice ELISA Lee et al. (57) 2008
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cytokine effect of BTK 
deficiency on 
cytokine production

Tlr 
tested

Tlr agonist 
used

cell type 
used

BTK-deficient  
model

cytokine detection studies Year

No effect TLR 2/6 Zymosan MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007
PGN MoDCs XLA patient ELISA Taneichi et al. (49) 2008

TLR 3 Poly I:C MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007
MoDCs XLA patient ELISA Taneichi et al. (49) 2008

TLR 4 LPS MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007
MoDCs XLA patient ELISA Taneichi et al. (49) 2008
MoDCs XLA patient ELISA Gagliardi et al. (58) 2003
MoDCs XLA patient/Ibrutinib RT-PCR Lougaris et al. (52) 2014

TLR 5 Flagellin MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007
TLR 7/8 R848 MoDCs XLA patient ELISA Taneichi et al. (49) 2008

ssRNA MoDCs XLA patient/LFM-A13 Flow cytometry Sochorová et al. (51) 2007
TLR 9 ODN-2006 MoDCs XLA patient ELISA Taneichi et al. (49) 2008

IL-18 Decreased TLR 4 LPS (Mice) BMDM BTK−/− mice ELISA Gabhann et al. (59) 2012

CXCL-1 Decreased TLR 7 Imiquimod (Mice) BMDM BTK−/− mice ECL assay Byrne et al. (60) 2013

PGN, Zymosan and PAM3Cys4 are TLR 2/6 agonist. Poly I:C is TLR 3 agonist. LPS is TLR4 agonist. Flagellin is TLR5 agonist. CL097 and R848 are TLR 7/8 agonist. Gardiquimod 
and Loxoribine are TLR 7 agoinst. ssRNA is TLR8 agonist. E. coli CpG, CpG-ODNs, ODN-2006, CpG-ODN1668, ODN-1826, and ODN-2216 are TLR9 agonist. LFM-A13, RN486, 
and Ibrutinib are BTK inhibitors.
TLR, toll-like receptor; IFN, interferon; IL, interleukin; CXCL, chemokine (C-X-C motif) ligand; ECL assay, electrochemiluminescence assay; pDC, plasmacytoid dendritic cells; BMDM, 
bone marrow-derived macrophages; BMDC, bone marrow-derived conventional dendritic cells; MoDCs, monocyte-derived dendritic cells; PBMC, peripheral blood mononuclear 
cells; XLA, X-linked agammaglobulinemia; BTK, Bruton’s tyrosine kinase.

TaBle 2 | Continued
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TaBle 3 | Studies of the effect of BTK deficiency on cytokine productions in response to pathogen stimulation.

cytokine effect of BTK-
deficiency on 
cytokine production

Pathogen used cell used BTK-deficiency model cytokine detection studies Year

Type I IFN Decreased OPV MoDCs XLA patients/LFM-A13 Flow cytometry Current study 2018
Dengue virus BMDM BTK−/− mice Semiquantitative PCR Lee et al. (23) 2012

No effect H1N1 MoDCs XLA patients/LFM-A13 Flow cytometry Current study 2018
MoDCs XLA patients ELISA Liu et al. (4) 2012

Listeria monocytogenes BMDM BTK−/− mice Bioassay Köprülü et al. (54) 2013

Type III IFN Decreased OPV MoDCs XLA patients/LFM-A13 Flow cytometry Current study 2018

IP-10 Decreased OPV MoDCs XLA patients Flow cytometry Current study 2018
No effect OPV MoDCs LFM-A13 Flow cytometry Current study 2018

H1N1 MoDCs XLA patients/LFM-A13 Flow cytometry Current study 2018

IL-1β No effect OPV MoDCs XLA patients/LFM-A13 Flow cytometry Current study 2018
H1N1 MoDCs XLA patients/LFM-A13 Flow cytometry Current study 2018

TNF-α Increased L. monocytogenes BMDM BTK−/− mice ELISA Köprülü et al. (54) 2013

No effect OPV MoDCs XLA patients/LFM-A13 Flow cytometry Current study 2018
H1N1 MoDCs XLA patients/LFM-A13 Flow cytometry Current study 2018
(Heat killed) L. monocytogenes BMDM BTK−/− mice ELISA Köprülü et al. (54) 2013

IL-8 No effect OPV MoDCs XLA patients/LFM-A13 Flow cytometry Current study 2018
H1N1 MoDCs XLA patients/LFM-A13 Flow cytometry Current study 2018

IL-6 Increased L. monocytogenes BMDM BTK−/− mice ELISA Köprülü et al. (54) 2013
No effect (Heat killed) L. monocytogenes BMDM BTK−/− mice ELISA Köprülü et al. (54) 2013

IL-10 No effect L. monocytogenes BMDM BTK−/− mice ELISA Köprülü et al. (54) 2013

IL-12 Increased L. monocytogenes BMDM BTK−/− mice Flow cytometry (IL12p40) Köprülü et al. (54) 2013
No effect L. monocytogenes BMDM BTK−/− mice ELISA (IL12p70) Köprülü et al. (54) 2013

H1N1 MoDCs XLA patients ELISA Liu et al. (4) 2012

LFM-A13 is a BTK inhibitor. IFN, interferon; IP-10, interferon gamma-induced protein 10; IL, interleukin; OPV, oral poliovirus vaccine Sabine 1; MoDCs, monocyte-derived dendritic 
cells; BMDM, bone marrow-derived macrophages; XLA, X-linked agammaglobulinemia; BTK, Bruton’s tyrosine kinase.

studies (24, 51, 60), along with Ibrutinib and RN486 (Table 2) 
(44, 52). LFM-A13 is a dual kinase inhibitor for BTK and Polo-
like kinase 3 (PLK3) (64, 65). PLK3 is a serine/threonine protein 

kinase that regulates cell cycle and apoptosis (66). Since PLK3 is 
not involved in TLRs signaling or IFN productions (67), there-
fore using LFM-A13 in our current study would demonstrate 
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FigUre 8 | Postulated mechanisms that increase the risk of vaccine-associated paralytic poliomyelitis in XLA patients. (1) Lack of secretory Ig A allows OPV to 
adhere and penetrate digestive tract mucosa (78). (2) At the mucosa, restriction of viral replication is impaired due to impaired type I and III IFN productions (14, 15). 
(3) In addition, impaired IP-10 production and phenotypic maturation of dendritic cells reduce T lymphocytes migration and activation which in turns impair clearance 
of OPV infection (42, 43). (4) The lack of neutralizing antibodies in XLA patients results in prolonged viremia. (5) The lack of type I IFN enhances tropism of OPV, 
allowing more extensive infection of extraneural tissues by OPV and thus enhancing replication of OPV, which leads to sustained secondary viremia (74, 80). (6) 
Prolonged replication of OPV increases the chance of mutation which may revert the vaccine strain to a neurovirulent one (5, 6, 73, 81). (7) Type III IFN protects the 
epithelium component of blood–brain barrier, while type I IFN protects the endothelium component. Combined impairment of both type I and III IFN compromises 
blood–brain barrier integrity (82). (8) Finally, OPV can enter central nervous system (CNS) via “Trojan horse” mechanism in which they cross the blood–brain barrier 
by hiding in immune cells such as macrophages. Type I IFN response may limit CNS invasion by “Trojan horse” mechanism (82). Green textboxes represent humoral 
immunodeficiency and its consequences in XLA patients and red textboxes represent innate immunodeficiencies and their consequences in XLA patients. Textboxes 
with italic and bolded text represent our findings and their consequences. Abbreviations: CNS, central nervous system; IFN, interferon; IP-10, interferon gamma-
induced protein 10; OPV, oral polio vaccine.

the impairment of type I and III IFN productions were through 
BTK inhibition.

Phenotypic maturation of MoDCs, characterized by increased 
expressions of CD83, CD86, and MHC-II, was impaired in 
MoDCs of XLA patients upon OPV but not H1N1 stimulation. 
However, such pattern was not demonstrated by inhibiting BTK 
in MoDCs of healthy controls. It has been shown that MoDCs of 
XLA patients have partial impairment of phenotypic maturation 
when stimulated with TLRs agonists (49). Such partial impair-
ment could be explained by the maturation of dendritic cells not 
only depends on TLR engagement but also on RLRs, type I IFN, 
and TNF-α (68–70).

There was no difference in the rise of OPV RNA between 
MoDCs of XLA patients and healthy controls in spite of the near 
absence of type I and III IFN productions in MoDCs of XLA 
patients. With the use of MOI of 1 during viral stimulation, all 
MoDCs were simultaneously exposed to OPV before type I and 
III IFN were produced to limit OPV replication. In addition, with 
the replication capacity of OPV attenuated (71), the protection 
effect of IFN may not be critical, resulting in no difference in 
replication between the two groups. More importantly, the lack 
of difference in OPV RNA level indicated the difference in type 
I and III IFN productions between MoDCs of XLA patients and 
healthy controls were independent of the titers of OPV.
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All patients in our current study received OPV and none 
developed complications, namely VAPP and VDPV excretion 
(Table 1) (5, 6, 72). The risk of VAPP in the world is approxi-
mately four cases per million births (73). Patients with antibody 
deficiencies, including XLA patients, are 3,000 to 10,000 times 
more susceptible to have VAPP compared to general popula-
tion (8, 9) (i.e., with a risk of 1.2–4%). In addition, XLA patients 
can have prolonged VDPV excretion for as long as 5 years (5), 
thus posing a significant obstacle for global eradication of 
poliovirus.

Apart from antibody deficiency, impaired type I IFN 
response has been hypothesized before to be responsible for 
developing VAPP in general population by allowing unchecked 
multiplication of OPV in extraneural tissues (74). However, 
IFN or antibody deficiency alone cannot explain the suscep-
tibility of having VAPP and VDPV excretion in XLA patients. 
Hyper IgM syndrome patients, who have a deficiency of IgG, 
IgA, and IgE, are not susceptible to VAPP or VDPV excretion. 
In addition, they are less susceptible to severe enterovirus 
infections compared to XLA patients (75). Similarly, IFN 
deficiency patients, including those with TLR3 and UNC-93B 
deficiency, are not susceptible to OPV vaccination complica-
tions or severe enterovirus infections (76, 77). Therefore, it 
may require a combined impairment of both IFN and antibody 
to render XLA patients susceptible toward severe enterovirus 
infections.

Therefore, based on our findings and previous reports, we 
postulated the increased risk of VAPP in XLA patients is due 
to combined deficiency of IFN and antibody which impairs 
defenses at various checkpoints against the development of 
VAPP after OPV vaccination (Figure 8). The lack of secretory 
Ig A on mucosa promotes the adherence and invasion of OPV 
(78). Decreased type I and III IFN and impaired maturation of 
antigen presentation cells may permit unrestricted viral replica-
tion and impair T cell recruitment as well as activation (14, 15). 
In addition, our previous study has shown that BTK-deficient 
NK  cells have impaired IFN-γ production and reduced cyto-
toxicity in response to TLR3 stimulation (79). Together these 
defects result in prolonged replication and shedding of OPV. 
Moreover, decreased type I IFN and antibody deficiency result 
in enhanced tissue tropism of OPV which may lead to more 
effective infection of extraneural tissue and OPV replication 
(74, 80). Defects in these checkpoints allow OPV replication 
which may result in reversion of neurovirulence through muta-
tions, thus increasing risk of having VAPP and excreting VDPV 
(5, 6, 73, 81). Since type I and III IFN offers some protection 
against CNS invasion by maintaining the integrity of blood–
brain barrier (82), the integrity of blood–brain barrier in XLA 
patients may be compromised, becoming more vulnerable to 
neuroinvasion.

In conclusion, selective impairment of type I and III IFN pro-
ductions in response to OPV but not to H1N1 was demonstrated 
in XLA patients, implicating BTK-dependent impairments are 
responsible for the unique susceptibility of these patients to 
severe enterovirus infections.
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FigUre s1 | IFN-β production in MoDCs from healthy controls (n = 4) and 
Bruton’s tyrosine kinase-inhibited MoDCs from healthy controls (n = 4) upon OPV 
and H1N1 stimulation. LFM-A13 at 0, 100, and 150 µM were added to MoDCs 
from healthy controls 2 h prior to viral stimulation. Data represented as 
mean + SEM. *p < 0.05; ns, p > 0.05.

FigUre s2 | IL-1β, tumor necrosis factor alpha, and IL-8 productions in MoDCs 
from healthy controls (n = 23), Bruton’s tyrosine kinase (BTK)-inhibited MoDCs 
from healthy controls (n = 11), and MoDCs from XLA patients (n = 9) upon OPV 
stimulation. MoDCs were stimulated with OPV at multiplicity of infection of 1 for 
24 h. Open symbols represent MoDCs stimulated with OPV; filled symbols 
represent MoDCs that were mock-stimulated with RPMI. Healthy + INH, 
BTK-inhibited MoDCs from healthy controls. Data represented as mean ± SEM.

FigUre s3 | IL-1β, tumor necrosis factor alpha, and IL-8 productions in MoDCs 
from healthy controls (n = 15), Bruton’s tyrosine kinase (BTK)-inhibited MoDCs 
from healthy controls (n = 9), and MoDCs from XLA patients (n = 9) upon H1N1 
stimulation. MoDCs were stimulated with H1N1 at multiplicity of infection of 1 for 
24 h. Open symbols represent MoDCs stimulated with H1N1; filled symbols 
represent MoDCs that were mock-stimulated with RPMI. Controls of healthy 
controls, BTK-inhibited healthy controls, and XLA patients were subsets of 
controls in Figure S2 in Supplementary Material. Healthy + INH, BTK-inhibited 
MoDCs from healthy controls. Data represented as mean ± SEM.
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