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Tissue-resident memory T (TRM) cells provide first-line defense against invading patho-
gens encountered at barrier sites. In the lungs, TRM cells protect against respiratory infec-
tions, but wane more quickly than TRM cells in other tissues. This lack of a sustained TRM 
population in the lung parenchyma explains, at least in part, why infections with some 
pathogens, such as influenza virus and respiratory syncytial virus (RSV), recur throughout 
life. Intranasal (IN) vaccination with a murine cytomegalovirus (MCMV) vector expressing 
the M protein of RSV (MCMV-M) has been shown to elicit robust populations of CD8+ TRM 
cells that accumulate over time and mediate early viral clearance. To extend this finding, 
we compared the inflationary CD8+ T cell population elicited by MCMV-M vaccination 
with a conventional CD8+ T cell population elicited by an MCMV vector expressing the 
M2 protein of RSV (MCMV-M2). Vaccination with MCMV-M2 induced a population of 
M2-specific CD8+ TRM cells that waned rapidly, akin to the M2-specific CD8+ TRM cell 
population elicited by infection with RSV. In contrast to the natural immunodominance 
profile, however, coadministration of MCMV-M and MCMV-M2 did not suppress the 
M-specific CD8+ T cell response, suggesting that progressive expansion was driven by 
continuous antigen presentation, irrespective of the competitive or regulatory effects of 
M2-specific CD8+ T  cells. Moreover, effective viral clearance mediated by M-specific 
CD8+ TRM cells was not affected by the coinduction of M2-specific CD8+ T cells. These 
data show that memory inflation is required for the maintenance of CD8+ TRM cells in the 
lungs after IN vaccination with MCMV.
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inTrODUcTiOn

Tissue-resident memory T (TRM) cells protect against invading 
pathogens in barrier tissues by direct killing of infected cells and 
by recruitment of other immune effector cell populations into the 
tissue. Much work has been done in recent years to characterize 
the migration pattern, function, and phenotype of TRM cells in 
various anatomical locations (1–4). It has become clear that TRM 
cells are heterogeneous, and that the requirements for localization 
and maintenance differ across tissues (4–9). In the lungs, TRM 
cells have been shown to mediate immune protection against 
respiratory syncytial virus (RSV) (10–12) and heterosubtypic 
cross-protection against influenza virus (13–16). TRM cells are 
also important for immune protection against cancer (17–23). In 
particular, TRM cells have been shown to enhance the efficacy of 
intranasally administered cancer vaccines in mouse orthotopic 
head and neck tumor models (23). The abundance of TRM cells 
in malignant lung tumors further correlated with survival in 
humans (23). However, lung-resident TRM cells tend to wane 
over time, potentially reflecting a harsher and more dynamic 
environment compared with other barrier tissues (13, 14, 16, 24, 
25). This progressive loss of TRM cells likely explains why recur-
rent infections with RSV and influenza virus occur throughout 
life. Vaccination strategies aimed at maintaining high levels of 
TRM cells in the lungs may therefore enhance immunity against 
respiratory pathogens and cancers.

Cytomegalovirus (CMV) has been shown to elicit robust pop-
ulations of TRM cells in some tissues (26, 27). The persistent nature 
of CMV leads to a unique phenomenon among memory CD8+ 
T cells, which has been well characterized in mouse models using 
murine cytomegalovirus (MCMV). Specifically, MCMV infec-
tion generates two distinct populations of memory CD8+ T cells, 
termed conventional and inflationary (28–32). Conventional 
CD8+ T cell populations expand during acute infection and then 
contract, whereas inflationary CD8+ T  cell populations, which 
may not predominate in the early phase, continue to accumulate 
over time within the effector memory (EM) compartment. The 
ability to drive memory inflation may explain why CMV vectors 
have shown promise as vaccine candidates, protecting against 
various cancers and infectious agents and providing effective 
immunocontraception (33–41).

Several factors determine whether a particular epitope will 
elicit conventional or inflationary CD8+ T cell populations. For 
inflationary memory responses, the source protein must be 
transcribed during latency, a feature that depends primarily on 
location within the genome (42). In addition, the derived epitope 
may require processing by constitutive proteasomes, because 
antigen presentation occurs predominantly on the surface of non-
hematopoietic cells, which lack immunoproteasomes (43, 44).  
Interclonal competition may also play a role, given the observa-
tion that high-avidity clonotypes are preferentially selected for 
inflation during MCMV infection (45–47). Similar findings 
have been reported in the setting of human CMV infection (41, 
48–50). Other potential contributors include epitope-dependent 
requirements for co-stimulation and CD4+ T cell help (51–55). 
Memory inflation is therefore difficult to predict, even in well-
defined mouse models, yet a detailed understanding of this 

phenomenon is critical for the design of effective vaccines that 
deliver protective antigens vectored by CMV.

Infection of CB6F1 mice with RSV elicits CD8+ T cell responses 
that reproducibly target an immunodominant epitope from the 
M2 protein (Kd/M282–90) and a subdominant epitope from the M 
protein (Db/M187–195) (56). The M-specific CD8+ T cell population 
typically incorporates high-avidity clonotypes expressing private 
T cell receptors with characteristic sequence motifs, leading to 
greater levels of cytokine production and more effective kill-
ing of virus-infected targets in side-by-side comparisons with 
the M2-specific CD8+ T  cell population (57–59). In addition, 
M-specific CD8+ T cells regulate the magnitude of the otherwise 
numerically dominant M2-specific CD8+ T  cell population, an 
effect that mitigates the immunopathology associated with acute 
RSV infection (57).

Intranasal (IN) vaccination with an MCMV vector expressing 
the M protein of RSV (MCMV-M) has been shown to generate 
a robust population of M-specific CD8+ TRM cells with an effec-
tor/EM phenotype and augment early viral control relative to 
vaccination with MCMV alone or MCMV-M inoculated via the 
intraperitoneal (IP) route (60). In this study, we characterized 
the M2-specific CD8+ T cell response to IN vaccination with an 
MCMV vector expressing the M2 protein of RSV (MCMV-M2). 
Vaccination with MCMV-M2 induced a population of M2-specific 
CD8+ TRM cells in the lungs that subsequently waned over time, 
whereas vaccination with MCMV-M induced a population of 
M-specific CD8+ TRM cells in the lungs that subsequently inflated 
over time. Coadministration of both vaccines diminished the 
M2-specific CD8+ T cell response, but not the M-specific CD8+ 
T cell response, during the acute phase of infection, but had no 
impact on the magnitude of the conventional M2-specific CD8+ 
T  cell population or the inflationary M-specific CD8+ T cell 
population during the chronic phase of infection. Moreover, the 
inclusion of MCMV-M2 neither enhanced nor impaired the pro-
tective effects of vaccination with MCMV-M alone in challenge 
experiments with RSV.

MaTerials anD MeThODs

Mice
All experiments were conducted with age-matched (6–10 weeks) 
female CB6F1/J mice (Jackson Laboratories, Bar Harbor, ME, 
USA). Mice were maintained under specific-pathogen-free con-
ditions on standard rodent chow and water supplied ad libitum 
in the Animal Care Facility at the National Institute of Allergy 
and Infectious Diseases. This study was carried out in accord-
ance with the recommendations and guidelines of the NIH Guide 
to the Care and Use of Laboratory Animals. The protocol was 
approved by the Animal Care and Use Committee of the Vaccine 
Research Center, National Institute of Allergy and Infectious 
Diseases, National Institutes of Health. Mice were housed in 
a facility fully accredited by the Association for Assessment 
and Accreditation of Laboratory Animal Care International 
(AAALAC). Animal procedures were conducted in strict accord-
ance with all relevant federal and National Institutes of Health 
guidelines and regulations.
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cell lines
CB6F1 mouse embryonic fibroblasts (MEFs) were isolated as 
described previously (60). MEFs were cultured in Advanced 
Dulbecco’s Modified Eagle’s Medium (DMEM; Invitrogen, 
Carlsbad, CA, USA) containing 10% fetal bovine serum (FBS), 
2 mM glutamine, 10 U/ml penicillin G, 10 µg/ml streptomycin 
sulfate, and 0.1 M HEPES (DMEM-10). Human epithelial type 2 
(HEp-2) cells were cultured in Eagle’s Minimal Essential Medium 
(MEM; Invitrogen) containing 10% FBS, 2  mM glutamine,  
10 U/ml penicillin G, 10 µg/ml streptomycin sulfate, and 0.1 M 
HEPES (MEM-10).

Viruses and infection
Recombinant MCMVs were made using a bacterial artificial 
chromosome (BAC) system as described previously (35). 
Briefly, the M and M2 proteins from RSV were inserted into the 
IE2 gene of the K181Δm157 strain of MCMV using two-step 
allele replacement. BACs were extracted from E. coli using a 
NucleoBond Xtra Maxi Prep Kit (Clontech, Mountain View, 
CA, USA). MEFs were transfected with recombinant BACs by 
calcium phosphate precipitation (Clontech) as described previ-
ously (35). Single plaques were isolated by serial dilution after 
viral passage and selected based on excision of the BAC cassette 
determined by loss of GFP and confirmed by PCR. Viral stocks 
were made by sonication of infected MEFs, and plaque assays 
were performed in triplicate on CB6F1 MEFs. Mice were vac-
cinated IN with 3 × 105 PFU of recombinant MCMV-M and/or 
MCMV-M2 in 100 µl of DMEM-10 under isoflurane anesthesia 
(3%). For RSV challenge, stocks were generated from the A2 
strain by sonication of infected HEp-2 monolayers as described 
previously (61). Mice were challenged IN with 2 × 106 PFU of 
RSV in 100 µl of MEM-10 under isoflurane anesthesia (3%). All 
mice were euthanized via the administration of pentobarbital 
(250 mg/kg).

intravascular staining and Flow cytometry
Mice were injected intravenously (IV) with 3  µg of anti-CD45 
(BD Biosciences, San Jose, CA, USA). Five minutes after intravas-
cular staining, mice were euthanized with pentobarbital, and the 
lungs were harvested at various time points. Lymphocytes were 
isolated by physical disruption of tissue using a GentleMACs 
Machine (Miltenyi Biotec, San Diego, CA, USA) and separated 
using density gradient centrifugation with Fico-LITE (Thermo 
Fisher Scientific, Waltham, MA, USA). Isolated mononuclear 
cells were washed with phosphate-buffered saline (PBS) and 
resuspended in fluorescence-activated cell sorting buffer (PBS 
supplemented with 1% FBS and 0.05% sodium azide). Cells were 
stained with directly conjugated antibodies specific for the line-
age markers CD3 (145-2C11) and CD8 (53-6.7) (BD Biosciences) 
and the memory markers CD44 (IM7), CD62L (MEL-14), 
CD127 (A7R34), KLRG1 (2F1/KLRG1), CD69 (H1.2F3), and 
CD103 (M290) (BD Biosciences or BioLegend, San Diego, CA, 
USA). Dead cells were excluded from the analysis using LIVE/
DEAD Fixable Aqua (Invitrogen). Antigen-specific CD8+ T cells 
were identified using Db/M187–195 (RSV M) or Kd/M282–90 (RSV 
M2) tetramers (MBL, Woburn, MA, USA). For validation of 

intravascular staining, cells were labeled with directly conjugated 
antibodies specific for CD3 (145-2C11), CD11c (N418), CD64 
(X54-5/7.1), SiglecF (E50-2440), and CD11b (M1/70) (BD 
Biosciences or BioLegend). Data were acquired using an LSR 
II flow cytometer (BD Biosciences) and analyzed with FlowJo 
software version 9.9.6 (TreeStar, Ashland, OR, USA). Memory 
phenotypes were further analyzed using Pestle version 1.6.2 and 
SPICE version 6.0 (http://exon.niaid.nih.gov/spice/).

OnX-0914 inhibition study
Mice were treated subcutaneously on days 0, 2, 4, and 6 with 2, 6, or 
10 mg/kg of ONX-0914 (PR-957; Selleck Chemical, Houston, TX, 
USA) or vehicle control (10% captisol in 10 mM sodium citrate). 
On day 0, mice were infected IN as described above with 2 × 106 
PFU of RSV. On day 7, mice were euthanized with pentobarbital, 
and the lungs were harvested and processed as described above.

Plaque assay
Lungs were weighed and quick-frozen in 10% MEM-10, and 
plaque assays were performed as described previously (62). 
Briefly, thawed lung tissue was dissociated using a GentleMACs 
Machine (Miltenyi Biotec). Cell suspensions were pelleted to 
remove cellular debris, and clarified supernatants were serially 
diluted and inoculated in triplicate on 80% confluent HEp-2 cell 
monolayers. After rocking for 1 h at room temperature, monolay-
ers were overlaid with 0.75% methyl cellulose in MEM-10 and 
incubated at 37°C. Cells were fixed with 10% buffered formalin 
and stained with hematoxylin and eosin on day 4. Plaques were 
counted and expressed as Log10 PFU/g of lung tissue. The limit of 
detection was 1.8 Log10 PFU/g.

statistical analysis
Statistical analyses were performed using a one-way or two-way 
ANOVA as appropriate for multiple comparisons (GraphPad 
Prism, San Diego, CA, USA). Memory phenotypes were com-
pared using a permutation test (10,000 rounds) in SPICE version 
6.0 (http://exon.niaid.nih.gov/spice/).

resUlTs

in Vaccination With McMV-M2 elicits 
More lung-resident M2-specific  
cD8+ T cells Than iP Vaccination
We and others have demonstrated that IN vaccination is neces-
sary to elicit TRM cells in the lungs (19, 23, 60). In particular, our 
earlier work showed that IN vaccination with MCMV-M elicited 
more M-specific CD8+ T cells in the lung parenchyma than IP 
vaccination with MCMV-M (Figure  1A) (60). To extend this 
finding, we vaccinated mice with MCMV-M2 via the IN or IP 
route and used intravascular staining in conjunction with Kd/
M282–90 tetramers to analyze M2-specific CD8+ T cell responses 
in the blood and the lung parenchyma after 1 week. The intra-
vascular staining protocol was validated in the context of IN 
vaccination to ensure that direct infection of the lungs did not 
lead to increased permeability due to inflammation (Figure S1 
in Supplementary Material). Akin to the differences observed 
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FigUre 1 | Intranasal (IN) vaccination with murine cytomegalovirus (MCMV)-M2 elicits more lung-resident M2-specific CD8+ T cells than intraperitoneal (IP) 
vaccination. (a–e) Mice were vaccinated with MCMV-M or MCMV-M2 via the IN or IP route. Intravascular staining was used in conjunction with Db/M187–195 and 
Kd/M282–90 tetramers to quantify epitope-specific CD8+ T cells in the lung tissue and blood after 1 week. (a) Gating strategy used to identify M-specific and 
M2-specific CD8+ T cells in the tissue and blood of the lungs. (B) Frequency and (c) number of M-specific CD8+ T cells in the tissue and blood of lungs 1 week 
after MCMV-M vaccination. (D) Frequency and (e) number of M2-specific CD8+ T cells in the tissue and blood of the lungs 1 week after MCMV-M2 vaccination. 
Bars indicate mean ± SEM (n = 5 mice/group). ****P < 0.0001, **P < 0.01, *P < 0.05 by two-way ANOVA. Data are shown from one experiment and 
representative of two independent experiments.

4

Morabito et al. Maintenance of Lung TRM Cells

Frontiers in Immunology | www.frontiersin.org August 2018 | Volume 9 | Article 1861

after vaccination with MCMV-M (Figures 1B,C), we found that 
IN vaccination with MCMV-M2 induced significantly more 
lung-resident M2-specific CD8+ T cells than IP vaccination with 
MCMV-M2, both in terms of frequency (P < 0.01; Figure 1D) 
and number (P < 0.05; Figure 1E). By contrast, IP vaccination 

with MCMV-M2 elicited higher frequencies of M2-specific 
CD8+ T cells in the blood (P < 0.0001, Figure 1D) and in total 
(P < 0.05), but similar numbers of M2-specific CD8+ T cells in 
the blood and in total. We therefore focused on IN vaccination 
in our efforts to induce and maintain lung-resident CD8+ T cells.
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FigUre 2 | The M-specific CD8+ T cell population inflates, whereas the M2-specific CD8+ T cell population contracts, after vaccination with murine cytomegalovirus 
(MCMV). (a–F) Mice were infected with respiratory syncytial virus (RSV) or vaccinated with MCMV-M or MCMV-M2 alone or a combination of MCMV-M and 
MCMV-M2 via the intranasal route. Intravascular staining was used in conjunction with Db/M187–195 and Kd/M282–90 tetramers to quantify M-specific (a–c) and 
M2-specific (D–F) CD8+ T cells in the lung tissue and blood at weeks 1 (W1), 8 (W8), and 16 (W16). Total (a,D) denotes all tetramer+ CD8+ T cells regardless of 
location. Bars indicate mean ± SEM (n = 5 mice/group). ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05 by two-way ANOVA. Data are shown from one 
experiment and representative of two independent experiments.
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The M-specific cD8+ T cell Population 
inflates, Whereas the M2-specific cD8+  
T cell Population contracts, after 
Vaccination With McMV
Next, we used a similar approach to evaluate CD8+ T  cell 
responses at weeks 1, 8, and 16 after vaccination with MCMV-M 
or MCMV-M2 alone or a combination of MCMV-M and 
MCMV-M2. Intravascular staining was used as above in 
conjunction with Db/M187–195 and Kd/M282–90 tetramers to 

quantify epitope-specific CD8+ T  cells in the blood and lung 
parenchyma. MCMV-M administered either alone or together 
with MCMV-M2 generated an M-specific CD8+ T cell population 
that inflated between weeks 1 and 8 (P < 0.0001) and remained 
stable through week 16 (Figure 2A). This trend was observed in 
the lung tissue and blood (P < 0.0001; Figures 2B,C). By contrast, 
M2-specific CD8+ T cells in the lung tissue and blood contracted 
over time (P < 0.0001; Figures 2D–F), irrespective of coadminis-
tration with MCMV-M. After RSV infection, which generates only 
conventional memory responses as a consequence of self-limited 
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FigUre 3 | The M2 epitope is preferentially generated by the immunoproteasome. (a,B) Mice were infected with respiratory syncytial virus (RSV) and treated with 
the immunoproteasome inhibitor ONX-0914 or vehicle control on days 0, 2, 4, and 6 at doses of 2, 6, or 10 mg/kg. Db/M187–195 and Kd/M282–90 tetramers were used 
to quantify the frequency (a) and number (B) of M-specific and M2-specific CD8+ T cells in the lungs on day 7. ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05 
by two-way ANOVA. Bars indicate mean ± SEM (n = 5 mice/group). Data are shown from one experiment and representative of two independent experiments.
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antigen production, the M-specific and M2-specific CD8+ T  cell 
populations both contracted dramatically between weeks 1 and 8  
in the lung tissue and blood (P < 0.001; Figures 2A–F). Similar 
epitope-specific patterns were observed when assessing T  cell 
frequency in the lung and spleen (Figure S2 in Supplementary 
Material). In addition, the MCMV-encoded M38-specific CD8+ 
T  cell response was largely equivalent among experimental 
groups, suggesting that the observed loss of M2-specific CD8+ 
T cells over time was not attributable to clearance of MCMV-M2. 
Thus, the M-specific CD8+ T  cell population is inflationary, 
whereas the M2-specific CD8+ T cell population is not inflation-
ary, after vaccination with MCMV.

One week after vaccination, coadministration of MCMV-M 
and MCMV-M2 elicited an epitope-specific hierarchy equivalent 
to that observed after RSV infection, with a dominant CD8+ T cell 
response to Kd/M282–90 and a subdominant CD8+ T cell response 
to Db/M187–195 (Figures 2A,D). At weeks 8 and 16, this hierarchy 
was inverted as a consequence of M-specific CD8+ T cell infla-
tion and M2-specific CD8+ T  cell contraction (Figures  2A,D). 
Coadministration of MCMV-M and MCMV-M2 did not alter the 
number or frequency of M-specific CD8+ T cells in the blood or 
the tissue at any time point relative to vaccination with MCMV-M 
alone (Figures 2B,C; Figure S2B,C in Supplementary Material). 
By contrast, coadministration of MCMV-M and MCMV-M2 
dampened the frequency, but not the overall magnitude, of the 
M2-specific CD8+ T cell response at week 1 (P < 0.01), but not 
at weeks 8 and 16 (Figure  2D; Figure S2D in Supplementary 
Material). This effect was anatomically discrepant. Specifically, 
coadministration of MCMV-M and MCMV-M2 did not sig-
nificantly reduce the number or frequency of M2-specific CD8+ 
T cells in the lung tissue (Figure 2E; Figure S2E in Supplementary 
Material), but did significantly reduce the number and frequency 
of M2-specific CD8+ T cells in the blood at weeks 1 and 8 rela-
tive to vaccination with MCMV-M2 alone (P < 0.01; Figure 2F; 
Figure S2F in Supplementary Material). No significant differ-
ences in the frequency of M2-specific CD8+ T cells were observed 
after contraction of the response at week 16 (Figures 2D–F). The 
reduction of M2-specific CD8+ T  cells at the acute time point 

after coadministration of MCMV-M and MCMV-M2 was not 
unexpected, because competition between the M-specific and 
M2-specific CD8+ T cell populations has been demonstrated after 
RSV infection of CB6F1 mice (57).

The M2 epitope is Preferentially 
generated by the immunoproteasome
Memory inflation likely requires epitope generation via the 
constitutive proteasome, because antigen processing and presen-
tation are thought to occur predominantly by non-hematopoietic 
cells, which lack immunoproteasomes (43, 44). To determine if 
proteasomal processing impacted the M-specific or M2-specific 
CD8+ T cell responses, we infected mice with RSV and treated 
them with the immunoproteasome inhibitor ONX-0914 on days 
0, 2, 4, and 6 at doses of 2, 6, or 10 mg/kg. On day 7, we evaluated 
M-specific and M2-specific CD8+ T cells in the lungs. Treatment 
with ONX-0914 significantly reduced the frequency and number 
of M2-specific CD8+ T cells, but not M-specific CD8+ T cells, in a 
dose-dependent manner (Figures 3A,B). These data suggest that 
the M2 peptide is preferentially generated by the immunoprotea-
some, whereas the M peptide is preferentially generated by the 
constitutive proteasome, which is unaffected by ONX-0914.

in Vaccination With McMV elicits  
cD8+ TrM cells
A previous study demonstrated that IN vaccination with 
MCMV-M generated a robust population of TRM cells, identified 
by expression of CD103 (60). However, it has also been shown 
that not all TRM cells express CD103 (7). We therefore used 
intravascular staining to quantify M-specific and M2-specific TRM 
cells in the lung parenchyma based on expression of CD69 and 
CD103 after infection with RSV or vaccination with MCMV-M 
or MCMV-M2 alone or a combination of MCMV-M and 
MCMV-M2. The administration of MCMV-M, either alone or 
together with MCMV-M2, generated a substantial population of 
CD69+ TRM cells that was largely maintained between weeks 8 and 
16, and significantly outnumbered the corresponding population 
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FigUre 4 | Intranasal (IN) vaccination with murine cytomegalovirus (MCMV) elicits CD8+ tissue-resident memory T (TRM) cells. (a–e) Mice were infected with 
respiratory syncytial virus (RSV) or vaccinated with MCMV-M or MCMV-M2 alone or a combination of MCMV-M and MCMV-M2 via the IN route. Intravascular staining 
was used in conjunction with Db/M187–195 and Kd/M282–90 tetramers to quantify M-specific (a,B,D,F) and M2-specific (a,c,e,g) CD8+ T cells in the lung tissue at weeks 
8 (W8) and 16 (W16). (a) Representative flow cytometry plots showing expression of CD69 and CD103 on epitope-specific CD8+ T cells in the lung parenchyma at 
week 8. (B,D) The number of M-specific CD103+CD69+ TRM cells (B) and CD103−CD69+ TRM cells (D) elicited by infection with RSV or vaccination with MCMV-M 
alone or together with MCMV-M2. (c,e) The number of M2-specific CD103+CD69+ TRM cells (c) and CD103−CD69+ TRM cells (e) elicited by infection with RSV or 
vaccination with MCMV-M2 alone or together with MCMV-M. (F,g) Percentage of CD103+ and CD103− M-specific CD69+ TRM cells (F) and M2-specific CD69+ TRM 
cells (g). ****P < 0.0001 by two-way ANOVA. Bars indicate mean ± SEM (n = 5 mice/group). Data are shown from one experiment and representative of two 
independent experiments.
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of CD69+ TRM cells induced by RSV infection at both time points 
(P  <  0.0001; Figures  4A,B,D). By contrast, the M2-specific 
CD69+ TRM population significantly decreased between weeks 8 
and 16, irrespective of M2 protein expression via MCMV or RSV 
(P < 0.01; Figures 4A,C, E). There was no difference in the number 
of M2-specific TRM cells elicited by vaccination with MCMV-M2 
or infection with RSV. As the M-specific TRM population induced 
by MCMV was maintained in the lungs and the M2-specific TRM 
population induced by MCMV waned in the lungs, there were 
significantly more M-specific TRM cells than M2-specific TRM 
cells in the lung parenchyma at weeks 8 and 16 (P  <  0.0001; 
Figures 4B–E). In the context of RSV infection, however, there 
were significantly more M2-specific TRM cells than M-specific 
TRM cells in the lung parenchyma at both time points (P < 0.05; 
Figures 4B–E). Coadministration of MCMV-M and MCMV-M2 
did not affect the number of M-specific or M2-specific TRM cells at 
either time point compared with the administration of MCMV-M 
or MCMV-M2 alone (Figures 4B–E).

Next, we assessed the expression of CD103 on CD69+ TRM 
cells. After vaccination with single MCMV vectors, a higher 
proportion of M-specific CD8+ T  cells coexpressed CD69 and 
CD103 compared with M2-specific cells at week 8 (84.6 vs. 28.1%; 
P < 0.0001) and week 16 (74.2 vs. 30.9%; P < 0.05) (Figures 4F,G). 
A similar trend was observed after coadministration of MCMV-M 
and MCMV-M2. At week 8, the vaccine-induced M-specific TRM 
population also contained a significantly higher proportion 
of cells expressing CD103 than the M-specific TRM population 
elicited by RSV infection (84.6% for MCMV-M and 83.9% for 
MCMV-M + MCMV-M2 vs. 55% for RSV; P < 0.0001).

These data show that inflation of the M-specific CD8+ T cell 
population elicited by vaccination with MCMV enhances the 
frequency and number of TRM cells relative to acute infection with 
RSV. By contrast, M2-specific CD8+ TRM cells were induced at 
similar levels irrespective of M2 protein expression via MCMV or 
RSV. It is also notable that a larger fraction of M-specific CD69+ 
TRM cells elicited by vaccination with MCMV coexpressed CD103 
compared with either M2-specific CD69+ TRM cells elicited by 
vaccination with MCMV or TRM cells of either specificity elicited 
by infection with RSV.

M-specific and M2-specific cD8+ T cells 
are Phenotypically Distinct in the lung 
Tissue and Blood after Vaccination With 
McMV
Inflationary and conventional epitope-specific CD8+ T  cell 
populations have previously been shown to differ phenotypically 
after IP infection with MCMV (63). In this context, inflationary 
memory cells are predominantly CD127−KLRG1+ effectors, while 
conventional memory cells display a more CD127+CD62L+ central 
memory (CM)-like phenotype. This pattern is recapitulated after 
IP vaccination with MCMV-M. However IN vaccination with 
MCMV-M induces a CD8+ T cell population with predominantly 
effector and EM phenotypes (60). We therefore analyzed the 
phenotype of antigen-specific CD8+ T cells elicited by MCMV-M 
and/or MCMV-M2 vaccination at 8  weeks post-vaccination. 
We categorized the RSV-specific CD8+ T  cell populations as 

CM, EM, effector, or KLRG1+ effectors (KLRG1+) (Figure  5). 
Populations were defined as follows: all: tetramer+ CD44+; CM: 
CD127+KLRG1−CD62L+; EM: CD127+KLRG1−CD62L−; effector: 
CD127−KLRG1−CD62L−; KLRG1+ effector: CD62L−KLRG1+. 
Overall, there were no obvious phenotypic differences when 
the MCMV vectors were administered alone or in combination 
(Figure  5B). By contrast, distinct phenotypes were observed 
across anatomical compartments for both the M-specific and 
M2-specific CD8+ T  cell populations, with higher frequencies 
of KLRG1+ effectors (yellow) and CM cells (blue) and lower 
frequencies of EM cells (green) in the blood compared with the 
tissue (P < 0.05). A comparison of M-specific and M2-specific 
CD8+ T  cells in the blood and tissue also showed that these 
antigen-specific populations were comprised of different propor-
tions of memory subsets (Figure 5, P < 0.05). In the blood, the 
M2-specific CD8+ T cell population incorporated larger fractions 
of CM (blue) and KLRG1+ effectors (yellow) and smaller fractions 
of effector (orange) and EM (green) cells than the M-specific 
CD8+ T  cell population. Although statistically significant, the 
differences between the M-specific and M2-specific CD8+ T cell 
population were more subtle in the tissue. Interestingly, we 
observed higher levels of CD44 expression on CD8+ T cells in the 
lung tissue compared with CD8+ T cells in the blood, irrespec-
tive of antigen specificity and vaccination modality (Figure 5C). 
When parsed out by location, expression of CD44 by M-specific 
and M2-specific CD8+ T cells was relatively high compared with 
the corresponding bulk CD8+ T cell populations in the blood and 
tissue of the lungs (Figure S3 in Supplementary Material).

McMV-elicited TrM cells expedite Viral 
clearance after infection With rsV
To evaluate the biological relevance of these observations, we 
challenged mice with 2 × 106 PFU of RSV delivered via the IN 
route 16 weeks after vaccination with MCMV-M, MCMV-M2, or 
a combination of MCMV-M and MCMV-M2. Viral loads were 
measured on days 3 and 5 after infection with RSV. On day 3, 
mice vaccinated with MCMV-M or MCMV-M together with 
MCMV-M2 exhibited significantly lower viral loads in the lungs 
compared with mice vaccinated with the MCMV vector alone 
(P  <  0.01 and P  <  0.05, respectively; Figure  6A). By contrast, 
vaccination with MCMV-M2 did not lead to a significant reduc-
tion in viral load on day 3. All vaccination regimens significantly 
reduced viral loads on day 5 relative to the MCMV vector alone 
(P < 0.0001 for MCMV-M, P < 0.01 for MCMV-M2, P < 0.0001 
for MCMV-M  +  MCMV-M2; Figure  6B). However, simulta-
neous vaccination with MCMV-M and MCMV-M2 did not 
enhance viral clearance relative to vaccination with MCMV-M 
alone (Figure 6B).

inflation of the M-specific cD8+ T cell 
Population alters immunodominance  
after challenge With rsV
In further experiments, we assessed the frequency of antigen- 
specific CD8+ T cells in the lung parenchyma on day 5 after chal-
lenge with RSV (Figures 6C,D). Mice vaccinated with the MCMV 
vector alone harbored relatively few M-specific or M2-specific 
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FigUre 5 | Phenotype of M-specific and M2-specific CD8+ T cells elicited by murine cytomegalovirus (MCMV) vaccination. Mice were vaccinated with MCMV-M 
or MCMV-M2 alone or a combination of MCMV-M and MCMV-M2 via the IN route. Intravascular staining was used in conjunction with Db/M187–195 and Kd/M282–90 
tetramers to identify M-specific and M2-specific CD8+ T cells in the blood and tissue of the lungs at week 8. (a) Gating strategy for phenotypic analysis. 
Populations were defined as follows: CD127+KLRG1−CD62L+ [central memory (CM)]; CD127+KLRG1−CD62L− [effector memory (EM)]; CD127−KLRG1−CD62L− 
(effector); and KLRG1+CD62L− (KLRG1+ effector). (B) The proportions of CM cells (blue), EM cells (green), effectors (orange), and KLRG1+ effectors (yellow) in the 
lungs are shown for each specificity. (c) CD44 expression on M-specific, M2-specific, and all CD8+ T cells in the tissue and blood of the lungs. *P ≤ 0.05, 
**P < 0.01 by permutation test (SPICE). Data are shown from one experiment (n = 5/group) and representative of two independent experiments.
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FigUre 6 | Murine cytomegalovirus (MCMV)-elicited tissue-resident memory T cells expedite viral clearance after infection with respiratory syncytial virus (RSV). 
(a–D) Mice were vaccinated with MCMV vector, MCMV-M or MCMV-M2 alone, or a combination of MCMV-M and MCMV-M2 via the intranasal route and challenged 
with RSV at week 16. Viral titers in the lungs were measured by plaque assay on days 3 (a) and 5 (B). ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05 by 
one-way ANOVA. (c,D) Intravascular staining was used in conjunction with Db/M187–195 and Kd/M282–90 tetramers to quantify M-specific and M2-specific CD8+ T cells 
in the lungs (c) and the blood (D). ****P < 0.0001, **P < 0.01, *P < 0.05 by two-way ANOVA. Data shown from one experiment and representative of two 
independent experiments.
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CD8+ T  cells in the lungs, but the M2-specific population was 
immunodominant, as typically observed in unvaccinated mice 
after infection with RSV. As expected, mice vaccinated with 
MCMV-M or MCMV-M2 alone mounted immunodominant 
CD8+ T  cell responses to the corresponding vaccine antigens, 
whereas mice vaccinated with both MCMV-M and MCMV-M2 
displayed very high frequencies of M-specific CD8+ T  cells 
relative to M2-specific CD8+ T cells, inverting the natural immu-
nodominance hierarchy observed after infection with RSV. 
This finding may explain why the addition of MCMV-M2 did 
not enhance the protective effects of vaccination with MCMV-M 
alone in response to challenge with RSV.

DiscUssiOn

Vaccination with MCMV-M via the IN route has been shown 
to generate a robust population of M-specific CD8+ TRM cells in 

the lungs that subsequently inflates over time (60). To extend 
this finding, we evaluated MCMV vaccine-induced CD8+ T cell 
responses to the immunodominant M2 epitope. We found 
that IN vaccination with MCMV-M2 induced a conventional 
memory response, but failed to establish a stable population of 
lung-resident M2-specific CD8+ TRM cells. Moreover, coadmin-
istration of MCMV-M and MCMV-M2 inverted the natural 
immunodominance hierarchy, but did not significantly impact 
the generation of M-specific or M2-specific CD8+ TRM cells. 
As a consequence, the protective effects of vaccination with 
MCMV-M were neither impeded nor enhanced by the addition 
of MCMV-M2.

Memory inflation is essential for the maintenance of lung-
resident CD8+ TRM cell populations. In the setting of self-limiting 
viral infections of the respiratory tract, conventional epitopes 
induce populations of CD8+ TRM cells in the lung parenchyma 
that wane over time (14). Our data further show that persistent 
antigen expression is insufficient to overcome this decline, 
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consistent with the findings of Smith et al., who demonstrated 
that TRM cells are maintained in the salivary glands via continu-
ous production rather than via long-term survival after infec-
tion with MCMV (26). In our previous work, we demonstrated 
that the robust population of M-specific CD8+ TRM cells induced 
by IN vaccination with MCMV-M contributed to early clear-
ance of RSV (60). This effect was maintained after treatment 
with a sphingosine 1-phosphate receptor modulator, suggesting 
that protection was independent of recirculation via the lymph 
nodes. These data concur with the observation herein that IN 
vaccination with MCMV-M2 failed to mediate early immune 
control of RSV. Together, these studies highlight the importance 
of lung-tropic TRM cells in protection against respiratory infec-
tion. Accordingly, immunization with a persistent vector offers 
no immediate advantages over traditional vaccine platforms for 
conventional epitopes like M2. By contrast, the induction and 
maintenance of inflationary epitope-specific CD8+ TRM cells in 
the lungs after vaccination with MCMV may enhance immune 
protection against respiratory pathogens, which typically 
induce only transient memory responses at the site of infection 
(14–16, 24).

Several factors determine the immunogenicity and memory 
characteristics of any given epitope. In this study, the M and 
M2 sequences were inserted into the IE2 gene, which naturally 
encodes inflationary epitopes, and the proteins were under 
the control of the constitutive promoter IE1 (30, 31, 45). 
Despite identical genomic locations, the M2 epitope failed to 
elicit inflationary CD8+ T cell responses. This lack of inflation 
may reflect greater dependence on the immunoproteasome 
compared with the M-specific CD8+ T cell response, consist-
ent with previous studies that postulated a key role for antigen 
processing as a determinant of immunodominance patterns 
in the context of infection with MCMV (43, 44). In addition, 
M-specific CD8+ T cells operate with higher composite avidi-
ties than M2-specific CD8+ T  cells after infection with RSV 
(57). However, this factor alone may not preclude M2-driven 
memory inflation, because recent work has demonstrated the 
existence of low-avidity inflationary CD8+ T cell populations 
(41). It is also difficult to exclude other possible influences, such 
as competition between CD8+ T  cells with different antigen 
specificities and variable requirements for co-stimulation and 
CD4+ T cell help, which are more difficult to assess directly. Any 
or all of these factors may contribute to the lack of inflation 
among M2-specific CD8+ T  cells. In vivo testing is therefore 
required to assess the true inflationary potential of any given 
epitope, a process that will become more difficult as vaccines 
advance from inbred animal models to human populations 
with diverse genetic backgrounds. A better understanding of 
the factors that govern memory inflation and how they can be 
manipulated will be important for the development of CMV 
vaccines.

As memory inflation is difficult to predict, it is important to 
study the effect of both inflationary and conventional epitopes 
in  vaccine settings. Coadministration of MCMV-M and 

MCMV-M2 reduced the overall magnitude of the conventional 
M2-specific CD8+ T cell response acutely after vaccination but 
did not impact the inflationary M-specific CD8+ T cell response 
at any stage after vaccination. Moreover, dual immunization was 
equivalent to vaccination with MCMV-M alone in terms of pro-
tective efficacy after challenge with RSV. These data suggest that 
both conventional and inflationary epitopes can be included in a 
persistent vaccine without detrimental effects. However, it should 
be noted that competition for antigen can occur if inflationary 
epitopes are delivered by the same vector (45). Individual epitopes 
are therefore probably best expressed separately if polyvalency is 
required to prevent immune escape.

In summary, we have shown that memory inflation is 
required for the maintenance of CD8+ TRM cells in the lungs 
after IN vaccination with MCMV. These findings highlight an 
important consideration in the development of persistent vectors 
and suggest that epitope selection will be a central determinant 
of efficacy in the setting of vaccines that deliver antigens on a 
continuous basis.
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