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Inhibitory receptors are key regulators of immune responses. Aberrant inhibitory recep-
tor function can either lead to an exacerbated or defective immune response. Several 
regulatory mechanisms involved in the inflammatory reaction induced by monosodium 
urate crystals (MSU) during acute gout have been identified. One of these mechanisms 
involves inhibitory receptors. The engagement of the inhibitory receptors Clec12A and 
SIRL-1 has opposing effects on the responses of neutrophils to MSU. We review the 
general concepts of inhibitory receptor biology and apply them to understand and 
compare the modulation of MSU-induced inflammation by Clec12A and SIRL-1. We 
also discuss gaps in our knowledge of the contribution of inhibitory receptors to the 
pathogenesis of gout and propose future avenues of research.
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inTRODUCTiOn

Crystal-induced arthropathies are a group of disorders that are triggered by crystal deposits in 
articular and periarticular tissues (1). Monosodium urate crystals (MSU) cause one the most com-
mon inflammatory arthritis known as gout (2). Although significant advancements have been made 
in our understanding of the pathogenesis of this very painful and usually self-limiting arthritis, the 
role of immune inhibitory receptors in gout is only starting to emerge.

Inhibitory receptors play key roles in regulating almost every aspect of an immune response 
mainly by blocking activating pathways (3–5). The integration of activating and inhibitory signals by 
leukocytes determines the nature of an immune response. Among the vast repertoire of inhibitory 
receptors expressed by neutrophils, CLEC12A and SIRL-1 modulate MSU-induced inflammation. 
The ligation of these two receptors has opposing effects on certain neutrophil effector functions 
induced by MSU offering novel insights into alternative mechanisms through which inflammation 
in gout can be regulated (Figure 1). Herein, we provide a brief overview of the immunopathogenesis 
of gout and an overview of the biology of inhibitory receptors, their role in MSU-induced inflamma-
tion, as well as their therapeutic potential and suggestions for future research.

MSU-inDUCeD inFLAMMATiOn

Monosodium urate crystals are a crystallized form of uric acid, a product of purine metabolism (6). 
Uric acid is ubiquitous and only becomes inflammatory when it crystallizes to form MSU. Since MSU 
form in individuals with serum levels of uric acid that are chronically above the saturation point, the 
first line of treatment of gout is the pharmacological reduction of uric acid (7).
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FigURe 1 | The regulation of monosodium urate crystal (MSU)-induced neutrophil activation by CLEC12A and SIRL-1 after engagement with specific antibodies. 
The engagement of CLEC12A on the surface of human neutrophils with a specific antibody (50C1) induces its internalization (solid arrow pointing downwards) 
resulting in the enhancement of the signaling events and effector functions shown in the figure. The phosphatases that interact with the immunoreceptor tyrosine-
based inhibitory motif (ITIM) of CLEC12A in primary cells remain unknown (top panel). By contrast, the ligation of SIRL with the anti-SIRL-1 antibody inhibits 
neutrophil extracellular trap (NET) formation. In primary cells, the ITIM of SIRL-1 interacts with SHP-1. The MSU-induced responses that are not regulated by either 
receptor are also shown and underscore the specificity of inhibitory receptor function. The anti-SIRL-1 antibody has therapeutic potential since it inhibits NET 
formation.
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Monosodium urate crystals are a potent pro-inflammatory 
stimulus for professional phagocytes, the main drivers of acute 
gouty arthritis (8, 9). When these crystals accumulate in the joint, 
they activate resident mononuclear phagocytes to release several 
inflammatory mediators including IL-1β. The key role of IL-1β 
plays is underscored by the ability of IL-1 inhibitors to dimin-
ish the symptoms of an acute gout attack (10). IL-1β induces 
the expression of adhesion molecules by endothelial cells and 
the production of chemokines that promote a massive influx of 
neutrophils into the joint (11, 12). The recruited neutrophils very 
effectively drive the inflammatory reaction by secreting S100A9 
proteins and pro-inflammatory cytokines including the potent 
chemoattractant for neutrophils IL-8 (13). Neutrophils also 
release reactive oxygen species (ROS) and degradative enzymes 
that cause joint destruction. The pivotal role of the neutrophil 
in gout is supported by a significant decrease in MSU-induced 
inflammation in dogs depleted of neutrophils (14, 15). Monocytes 
are also recruited to the affected joint and contribute to gout by 
producing pro-inflammatory cytokines such as IL-1 and IL-6.

Monosodium urate crystals activate a unique subset of signal-
ing pathways in the neutrophil [reviewed in Ref. (13)]. These 
include the Src-family kinases (e.g., Lyn), PKC, PI-3K, Tec, and 

Syk. Syk is required for the MSU-induced increase in intracel-
lular calcium levels, the production of superoxide and potentially 
the activation of MAP kinases. The MSU-induced synthesis of 
cytokines and degranulation depends on the activation of PI-3K.

One intriguing feature of acute gouty arthritis is its sponta-
neous resolution, typically within 7–10  days (16). Neutrophils 
not only secrete pro-inflammatory mediators when activated 
by MSU but also release neutrophil extracellular traps (NETs) 
(17–19). These extracellular web-like structures composed of 
decondensed DNA and neutrophil granule enzymes contribute 
to the resolution of inflammation by densely clustering MSU 
within them forming structures known as aggregated NETs or 
tophi (18, 19). Aggregated NETs form when neutrophils are pre-
sent at high density which is typical of a gout attack (20). NETs 
also degrade pro-inflammatory cytokines and chemokines that 
become trapped in these structures dampening the inflamma-
tory reaction. Additional mechanisms that terminate acute gout 
include the coating of MSU with lipoproteins, the production of 
TGFβ, IL-10, and the clearance of apoptotic neutrophils (21). 
IL-37, a cytokine produced by monocytes and dendritic cells, 
downregulates the MSU-induced production of cytokines and 
dampens neutrophil recruitment in mouse models of gout (22).
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Negative regulatory mechanisms not only dampen a gout 
attack but also influence its initiation by modulating the threshold 
of activation of leukocytes. These negative regulatory pathways 
are downstream effectors of inhibitory receptors expressed on the 
surface of the cell. Each leukocyte expresses a diverse repertoire 
of inhibitory receptors (4). The challenge to understanding the 
role of these receptors in gout is to identify those that regulate the 
mechanisms underlying MSU-induced inflammation.

HOw DO inHiBiTORY ReCePTORS 
wORK? geneRAL COnCePTS

Inhibitory receptors are essential for the maintenance of immune 
homeostasis as well as the termination of an immune response by 
blocking signaling pathways that lead to cellular activation (23). 
Aberrant inhibitory receptor function could either cause anergy 
or an excessive immune response.

Inhibitory receptors are composed of a variable number of 
extracellular ligand-binding domains, a transmembrane domain 
and a cytoplasmic tail that contains at least one immunoreceptor 
tyrosine-based inhibitory motif (ITIM) (3). The extracellular 
ligand-binding domains of inhibitory receptors come in two 
flavors, those that have the structure of the immunoglobulin 
superfamily (IgSF) domain and those with a C-type lectin-like 
domain (CTLD) (24).

Once engaged by a ligand, inhibitory receptors signal through 
their ITIM(s) (23) that is composed of six amino acids, (I/V/L/S)
xYxx(L/V) (“x” denotes any amino acid, “Y” is tyrosine). Briefly, 
engagement of inhibitory receptors induces their clustering and 
the phosphorylation of the tyrosine residue of their ITIM(s) by a 
Src kinase that serves as a ligand for the subsequent recruitment 
of cytoplasmic phosphatases such as SHP-1, SHP-2, and SHIP 
to the plasma membrane. These phosphatases dephosphorylate 
signaling proteins involved in activating pathways. Inhibitory 
receptors can also negatively regulate cellular activation by 
binding adaptor proteins such as the negative regulator of the 
Src family, Csk (c-Src tyrosine kinase), Dok adaptor proteins 
(Downstream of Kinase), or Cbl (Casitas B-lineage lymphoma). 
These events likely occur in specialized membrane domains such 
as lipid rafts as has been described in lymphocytes (25).

Inhibitory receptors regulate many aspects of leukocyte devel-
opment and function (3). Some of the functions they regulate 
in phagocytes include phagocytosis, the production of ROS and 
cytokines (4, 5). Although there is some degree of redundancy in 
their function, these receptors also differentially affect leukocyte 
function as illustrated by SIRL and CLEC12A in MSU-induced 
inflammation (discussed below). A loss of function of an inhibi-
tory receptor can thus dysregulate multiple leukocyte functions 
and cause inflammatory diseases.

THe ROLe OF inHiBiTORY ReCePTORS 
in MSU-inDUCeD inFLAMMATiOn

To understand the role of inhibitory receptors in an inflammatory 
response, the modulation of their expression and their clustering, 
the phosphorylation of their ITIM motif(s), and the recruitment 

of protein partners are studied in vitro. Although these experi-
mental approaches only offer us a snapshot of the involvement 
of these inhibitory receptors in the continuum of the cellular 
and chemical events of an inflammatory response, they provide 
insight into how these receptors work. Experiments in knock-out 
mice complement in  vitro studies by revealing the outcome of 
the integration of activating and inhibitory signals in a specific 
inhibitory receptor-deficient background.

Studies in neutrophils identified two inhibitory receptors 
associated with MSU-induced inflammation, namely, MICL (the 
myeloid inhibitory C-type lectin-like receptor, CLEC12A, DCAL-
2, CLL-1, and CD371) and the IgSF receptor known as SIRL-1 
(the signal inhibitory receptor on leukocytes-1). The ligation of 
these receptors regulates MSU-induced activation of neutrophils 
in different ways underscoring the ability of inhibitory receptors 
to differentially regulate leukocyte function.

CLeC12A
CLEC12A belongs to the C-type lectin superfamily of proteins. 
It harbors an extracellular CTLD linked to its transmembrane 
domain by a neck domain and one ITIM motif (VTYADL) in 
its cytoplasmic tail (26–28). CTLDs bind a diverse array of 
glycan ligands of endogenous or microbial origin (29–33) in 
a calcium-dependent manner or via alternative mechanisms. 
They can also bind non-glycan ligands (e.g., proteins and lipids). 
CLEC12A is devoid of the known amino acid required for glycan 
and calcium binding in its CTLD, rendering the identification of 
its natural ligands a challenge. Murine CLEC12A binds various 
mouse tissues, the identity of which remains to be determined 
(34, 35). Regarding the neck domain, it allows the oligomeriza-
tion of CLRs increasing their affinity for their ligand (36, 37). 
It remains unknown whether human CLEC12A oligomerizes 
in primary cells under resting and/or stimulated conditions. 
Human CLEC12A is predominantly a myeloid receptor but is also 
expressed in some lymphocyte populations (e.g., B cells) (26–28, 
38, 39). As for the underlying molecular mechanisms through 
which CLEC12A regulates leukocyte functions, its ITIM binds 
SHP-1 and SHP-2 in RAW cells (Table 1) (26). This observation 
requires confirmation in human primary cells.

It is now widely accepted that one of the key roles of CLEC12A 
is to negatively regulate myeloid cell function and that it is associ-
ated with several inflammatory diseases (40–44). The function 
of CLEC12A is regulated by changes in its expression (26–28). 
TLR ligands (e.g., LPS and pam2csk4), for instance, downregulate 
CLEC12A expression in human monocytes. In a human skin 
abrasion model of inflammation, the expression of CLEC12A is 
also reduced (45). The effect of the downregulation of CLEC12A 
expression was studied in several cell types (Table 1). In monocyte-
derived dendritic cells, the internalization of CLEC12A induced 
by its ligation with a specific antibody suppressed TLR-induced 
cytokine production such as IL-12 (27). By contrast, the expres-
sion of CCR7 was enhanced (27). Together, these observations 
indicate that CLEC12A expression is downregulated in response 
to various inflammatory stimuli that signal through different 
receptors resulting in the modulation of leukocyte activation.

Several lines of evidence indicate that CLEC12A negatively 
regulates myeloid cell function in MSU-induced inflammation. 
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TABLe 1 | Overview of the molecular mechanisms that govern CLEC12A and SIRL-1 function in different cell types.

CLeC12A SiRL-1

Antibody None 50C1 None hDCAL-2 hDCAL-2 hDCAL-2 5D3 None Anti-SIRL-1 Anti-SIRL-1 Anti-SIRL-1
Cell type RAW Human neutrophil Clec12A KO 

neutrophils
iDC iDC iDC MDDC Human 

monocyte
RBL-2H3 (and 
293 cells)

RBL-2H3 Human 
neutrophil

Stimulus Pervan. MSU MSU None LPS/zymosan CD40L-Fc CCL2 Pervan. Pervan. Anti-TNP IgE MSU (or ops. 
bacteria)

Receptor internalization Yes Yes Yes Yes Yes
Co-IP SHP-1 

and 
SHP-2

SHP-1 SHP-1 (SHP-2 
in 293 cells)

Signaling ↑ [Intracellular 
calcium],  
global tyrosine 
phospho

↑ Phospho. 
p40phox

↑ Tyrosine phospho 
pp38 and ppERK

ITIM phospho

Functions enhanced IL-8 release ROS CCR7 expression 
and production of 
TNFα, IL-6, IL-10, 
and MIP-3β

CCR7, DC-LAMP, 
expression

CCR7, DC-LAMP, 
CD83, CD86, IL-12, 
IL-6, IL-10, and 
TNFα expression; 
co-cultured T cell 
production of IFN-γ

Functions diminished or 
inhibited

IL-12 (and TNFα for 
LPS)

Migration 
toward 
CCL2

Degranulation NET release

Functions not affected IL-1 production IL-1 
production

IL-6 and IL-10 
production

ROS (or 
intra-cellular 
killing)

The studies were chosen according to the insight they provide on the molecular mechanisms governing CLEC12A and SIRL-1 function. The information in this table does not cover all the published findings on these receptors. 
Additional references can be found in the text. The signaling events downstream of both receptors and their effect on cell function depend on the cellular context and type of stimulus.
iDC, immature dendritic cells; MDDC, monocyte-derived dendritic cells; Pervan., pervanadate; phospho, phosphorylation; ops, opsonized; NET, neutrophil extracellular trap; ITIM, immunoreceptor tyrosine-based inhibitory motif; ROS, 
reactive oxygen species; MSU, monosodium urate crystals.
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The stimulation of neutrophils with MSU crystals downregulates 
the cell-surface expression of CLEC12A (40). CLEC12A is not 
shed, but is internalized and degraded. When the cell-surface 
expression of CLEC12A is downregulated with a specific anti-
body, an enhancement in the MSU-induced increase of the 
concentration of intracellular free calcium, the tyrosine phospho-
rylation of proteins, and the release of IL-8 is observed. Similar 
observations were made in a neutrophil-like cell line in which 
CLEC12A expression was silenced (40). Similar to other inhibi-
tory receptors, CLEC12A exhibits selectivity in its suppressive 
properties. Although it dampens the release of IL-8 induced by 
MSU, it does not regulate the MSU-induced secretion of IL-1 by 
human neutrophils. Our observations in vitro were corroborated 
in  vivo in a knock-out mouse model of CLEC12A (41). MSU-
induced inflammation in these mice was characterized by a 
significant increase in the recruitment of leukocytes to the site 
of inflammation. Of pertinence to gout, is the production of sig-
nificantly higher amounts of ROS by CLEC12A deficient, mouse 
leukocytes partly due to the phosphorylation of the p40phox, a 
subunit of NADPH oxidase (41). It remains to be determined 
whether CLEC12A modulates the production of ROS in human 
neutrophils. Together, the above observations identify a regula-
tory role for CLEC12A in various leukocyte effector functions 
relevant to the immunopathogenesis of gout.

SiRL-1
SIRL-1 is an IgSF receptor that is expressed on myeloid cells 
including neutrophils, eosinophils, monocytes, and dendritic 
cells (46). SIRL harbors one extracellular IgV domains and two 
ITIMs (VtYaeL and HeYaaL) in its cytoplasmic portion that 
recruit SHP-1 and SHP-2 indicative of a negative regulatory 
function for this receptor [Table 1; (46)].

SIRL-1 negatively regulates innate immune responses toward 
various stimuli. As is the case with CLEC12A, the cell-surface 
expression of SIRL-1 diminishes when certain stimuli activate 
monocytes and neutrophils (47, 48). The decrease in expression 
may enhance cell activation since monocytes with a low expres-
sion of SIRL-1 produce more TNFα in response to Curdlan 
than SIRLhigh monocytes. While a decrease in SIRL-1 expression 
enhances cell activation, its ligation with a specific antibody (anti-
SIRL) has the opposite effect. In the RBL-2H3 cell in vitro model 
of FcεRI activation, for instance, ligation of SIRL-1 with anti-SIRL 
antibody inhibited IgE-induced degranulation [Table  1; (46)]. 
Likewise, in human neutrophils, SIRL-1 ligation suppresses NET 
formation induced by opsonized S. aureus but not the produc-
tion of ROS, thereby underscoring a certain degree of functional 
selectivity (49).

SIRL-1 also inhibits neutrophil activation in response to MSU. 
The ligation of SIRL-1 with anti-SIRL suppresses MSU-induced 
formation of NETs (49). This inhibitory effect on the release of 
NETs seems specific for stimuli that signal through Fc receptors 
since MSU-induced NET formation is Fcγ receptor-dependent 
and SIRL does not downregulate the formation of NETs by 
neutrophils stimulated with non-opsonized S. aureus or LPS (49, 
50). It is noteworthy that SIRL-1 does not dampen extracellular 
ROS production in response to MSU which is consistent with the 
fact that MSU-induced formation of NETs is ROS independent. 

Together, these observations indicate that SIRL suppresses MSU-
induced NET release in a ROS-independent but FcR-dependent 
manner.

wHAT inDUCeS THe engAgeMenT OF 
inHiBiTORY ReCePTORS in THe 
COnTeXT OF MSU-inDUCeD 
inFLAMMATiOn?

The evidence that CLEC12A and SIRL-1 modulate MSU-induced 
neutrophil activation was obtained from experiments performed 
with naked crystals. MSU thus trigger activating signaling 
pathways by directly interacting with components of the cell 
surface. Since MSU are composed of a rugged, crystalline surface 
that is negatively charged, it is difficult to envisage how such a 
surface can exhibit the same level of specificity as a conventional 
“hand in the glove” receptor–ligand interaction. One receptor 
through which MSU activates signaling in human neutrophils 
is the Fc receptor FcγRIIIb (50). Since there are no antibodies 
on naked crystals, MSU seem to act as an opportunistic ligand 
for Fc receptors. It stands to reason that the same applies to the 
other receptors with which MSU have been shown to interact 
including CLEC12A, CD11b, CD14, TLR2, and TLR4 (6, 13, 
41, 50). It is likely that MSU induces the clustering of these 
receptors to induce their activation, possibly in signaling hubs 
located in specialized membrane domains as reported for other 
inhibitory receptors causing cellular activation (25). An elegant 
study provided evidence that MSU interacts with components 
of cellular membranes, particularly cholesterol, supporting this 
notion (51). These electrostatic interactions induce changes in the 
composition and distribution of lipid-rich domains of the plasma 
membrane and most likely cause the clustering of receptors on 
the cell surface resulting in cell activation. Immune receptors 
signal through these membrane domains (25).

wHAT CAn we LeARn ABOUT THe 
MODULATiOn OF MSU-inDUCeD 
neUTROPHiL ACTivATiOn BY CLeC12A 
AnD SiRL-1?

CLEC12A and SIRL-1 elegantly illustrate the ability of inhibi-
tory receptors to have distinct effects on leukocyte activation. 
Whereas the ligation of SIRL-1 with a specific antibody leads to 
the downregulation of cellular effector functions, the antibody-
induced ligation and internalization of CLEC12A enhances 
cellular activation. This implies that the downregulation of the 
cell-surface expression of CLEC12A releases its inhibitory effect 
and consequently lowers the threshold of activation of neutro-
phils toward MSU. These observations suggest that CLEC12A 
may be constitutively phosphorylated in resting cells to increase 
the threshold of activation. The phosphorylation status of the 
ITIM of CLEC12A remains, however, to be determined in rest-
ing and stimulated cells. With regards to SIRL-1, it is most likely 
constitutively phosphorylated since it associates with SHP-1 in 
resting monocytes. This notion is supported by the inhibition 
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of the MSU-induced formation of NETs after the ligation of 
SIRL-1. Since the anti-SIRL-1 antibody inhibits MSU-induced 
formation of NET, it is an agonistic antibody. By contrast, the 
anti-CLEC12A antibody does not seem to have agonistic effects 
since it enhances cell activation by binding CLEC12A. Although 
the role of CLE12A and SIRL-1 in gout remains to be fully char-
acterized, these two receptors may regulate neutrophil activation 
in a temporal manner since NET formation is a later response to 
MSU than the mobilization of calcium.

wHeRe SHOULD we gO FROM HeRe?

To develop a more complete picture of the immunopathogenesis 
of gout, the constellation of inhibitory receptors that regulate 
myeloid cell responses toward MSU needs to be identified. 
Moreover, it is essential to identify the ligands for these recep-
tors to better understand their functional and temporal role 
during homeostasis and inflammation as well as their mode of 
action. Pyz et al. (34) reported that CLEC12A binds endogenous 
ligands whose identity remains to be determined. In vivo studies 
will also be informative. With regards to CLEC12A, for instance, 
it may also contribute to the resolution of inflammation in gout 
since the arthritis phenotype in CLEC12A knock-out mice per-
sists for a significantly longer period of time than in wild-type 
mice (42).

ARe inHiBiTORY ReCePTORS A 
CLiniCALLY ReLevAnT, THeRAPeUTiC 
TARgeT FOR gOUT?

The dampening of MSU-induced neutrophil activation by the 
SIRL-1 antibody supports the notion that targeting myeloid 
inhibitory receptors is a promising and new therapeutic option 
for the treatment of gout. Inhibitory receptors could also be 
targeted with compounds that preserve their expression once the 
mechanisms underlying their internalization and degradation 
are characterized. Targeting inhibitory receptors that regulate 
the threshold activation of neutrophils during the early stages 

of a gout attack would be beneficial since there is a therapeutic 
window of opportunity prior to the peak of a gout attack during 
which patients feel a slight pain. Colchicine is one such drug 
that effectively reduces inflammation if administered during the 
early phase of an acute gout attack. A mechanism through which 
colchicine may dampen a gout attack is by preserving the cell-
surface expression of CLEC12A on neutrophils (40).

It is difficult to predict whether targeting endogenous inhibi-
tory pathways will cause less adverse effects than currently used 
drugs. Considering the limited choice of anti-inflammatory drugs 
to treat gout due, in part, to contraindications in many cases, it 
is timely to consider developing additional drugs to treat gout 
attacks (52). A recent drug developed to treat gout, anti-IL-1 is 
efficacious but further cost/benefit and safety studies are required 
prior to widely using it to treat this arthropathy (10).

It is an exciting time for inhibitory receptor research since 
we have better tools to study their biology and a clearer picture 
of how they work facilitating the investigation of their func-
tion and role in disease. At least two other inhibitory pathways 
in lymphocytes are targeted for the treatment of rheumatoid 
arthritis and cancer (53) providing a proof of concept of the 
therapeutic value of targeting inhibitory receptors to treat dis-
ease. Considering that gout is one of the few types of arthritis 
whose causative agent is known, defining the role of inhibitory 
pathways in this disease will serve as a paradigm for understand-
ing the pathogenesis of other types of arthritis and identifying 
novel therapeutic targets.
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