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Precision medicine is designing the medical care by taking into account the individual 
variability for each person. We have tried to address whether the existing data may guide 
precision medicine in primary systemic vasculitides (PSV). We have reviewed genome-
wide association studies (GWAS) data, lessons from monogenic mimics of these 
diseases, and biomarker studies in immunoglobulin A vasculitis/Henoch–Schönlein 
purpura, Kawasaki disease, anti-neutrophil cytoplasmic antibody-associated vasculitis, 
polyarteritis nodosa (PAN), Takayasu arteritis, and Behçet’s disease (BD). GWAS provide 
insights about the pathogenesis of PSV while whole exome sequencing studies lead 
to discovery of monogenic vasculitides, phenotype of which could mimic other types 
of vasculitis such as PAN and BD. Monogenic vasculitides form a subgroup of vascu-
litis which are caused by single gene alterations and discovery of these diseases has 
enabled more specific therapies in these patients. With increasing number of studies 
on biomarkers, new targets for treatment appear and better and structured follow-up of 
PSV patients will become possible. Proteomics and metabolomics studies are required 
to better categorize our patients with PSV so that we can manage them appropriately 
and offer more targeted therapy.

Keywords: systemic vasculitis, genome-wide association studies, monogenic vasculitis, biomarker, precision 
medicine

iNTRODUCTiON

Precision medicine is defined as designing the medical care for each person with optimum efficiency 
in prevention and treatment by considering the individual variability in genes, environment, and 
life style (1). Precision medicine enables to translate benchside knowledge to bedside and provide 
“targeted” treatment for the patient. Genetic or molecular profiling of patients is very important for 
precision medicine; however, there are limited data in primary systemic vasculitides (PSV).

Primary systemic vasculitides are heterogeneous. Since these are mostly rare diseases, we lack 
the vast translational medicine data we have in common diseases such as rheumatoid arthritis. 
Furthermore, controlled studies in PSV might not reflect the real-life scenarios. Thus, it is important 
to tailor treatment according to each patient instead of applying general recommendations which 
are based on controlled studies.

Thanks to improved and cheaper genomic techniques, we have gathered important data that may 
be used on the bedside. Genetic studies including mainly genome-wide association studies (GWAS) 
and whole exome sequencing studies have led to important discoveries in disease pathogenesis of 
PSV. However, we lack pharmacogenomics studies. We are also in need of more biomarker studies to 
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TAble 1 | The GWAS in primary systemic vasculitides.

Disease Number 
of GwAS 

performed

Reference The country of origin Number of 
patientsa

Genes found implications in 
treatment

IgAV/
HSP

1 (2) Spain 285 HLA-DRB1 (potential relevance; not genome-
wide significance)

–

KD 14 (3–16) Taiwan, Korea, and Japan 262–1,182 BCL2L11, KCNN2, TIAM1, NEBL, TUBA3C, 
PELI1, PLCB4/PLCB1 CRP, HLA, CD40, 
BLK, FCGR2A, NMNAT2, HCP5, COPB2, 
ERAP1, NAALADL2, ZFHX3, NFKBIL1, LTA, 
DAB1, IGHV

SLC8A1 (Ca signaling 
pathway): use of 
calcineurin inhibitors in KD

AAV 3 (21–23) European countries and UK 492–1,986 HLA-DQ, HLA-DP, SERPINA1, PTPN22, 
PRTN3, SEMA6A

–

TA 3 (24–26) Turkey, North America, and Japan 379–693 HLA-B/MICA, HLA-DQB1/HLA-DRB1, 
FCGR2A/FCGR3A, IL12B, IL6, RPS9/LILRB3

IL6: use of anti-IL-6 drugs
IL12B: use of therapies 
targeting IL-12/IL-23

BD 9 (27–35) Turkey, UK, China, Korea, Japan, 
Thailand Iran, Afghanistan, Lebanon, 
Cape Verde, Curacao, Dominican 
Republic, Greece, Israel, Jordan, 
Morocco, and Surinam

152–3,645 HLA class I (especially HLA-B51), IL10, 
IL23R-IL12RB2, ERAP1, STAT4, GIMAP, 
CCR1, KLRC4, FUT2, IL12A, NAALADL2, 
YIPF7, KIAA1529, CPVL, UBAC2, 
LOC100129342, UBASH3B

IL12A, IL23R-IL12RB2: 
use of therapies targeting 
IL-12/IL-23

AAV, ANCA-associated vasculitis; BD, Behçet’s disease; GWAS, genome-wide association studies; IgAV/HSP, immunoglobulin A vasculitis/Henoch–Schönlein purpura; KD, 
Kawasaki disease; TA, Takayasu arteritis; IL, interleukin; CRP, C-reactive protein.
aThe minimum and maximum number of patients were shown when there are more than one GWAS.
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provide novel candidate targets for therapy and help us to predict 
prognosis. Predicting poor prognosis or high relapse rate through 
biomarkers could guide physicians to tailor treatment according 
to the patient. More intensified immunosuppressive therapy 
could be required in patients with poor prognosis while longer 
maintenance therapy could prevent relapses in patients with high 
relapse risk.

In this article, we review the GWAS results, monogenic 
vasculitis, and existing biomarkers, which have implications on 
precision medicine in treatment of PSV. We have mainly focused 
on immunoglobulin A vasculitis/Henoch–Schönlein purpura 
(IgAV/HSP), Kawasaki disease (KD), polyarteritis nodosa (PAN), 
anti-neutrophil cytoplasmic antibody (ANCA)-associated vascu-
litis (AAV), Takayasu arteritis (TA), and Behçet’s disease (BD).

wHAT we HAve leARNeD FROM GwAS 
iN PSv

Genome-wide association studies provide an important step for-
ward in our understanding of vasculitis pathogenesis. Focusing 
on subgroups of patients with PSV will provide further insight 
while profiling patients to tailor treatment individually. There 
are several GWAS in patients with different types of PSV such as 
IgAV/HSP, KD, AAV, TA, and BD (Table 1). There is no GWAS 
in PAN patients at present.

immunoglobulin A vasculitis/Henoch–
Schönlein Purpura
In the GWAS of 285 Spanish patients with IgAV/HSP, Lopez-
Mejias et  al. observed p values of potential relevance (below 
genome-wide significance) for the positions 11 and 13 of HLA-
DRB1 (2). This study implicated HLA Class II in the pathogenesis 

of the disease. Larger multinational studies may be needed to 
confirm this association and look for associations with certain 
cytokines and aberrant glycosylation of IgA1. Investigation of the 
association of the IgAV/HSP kidney disease with IgA nephropa-
thy in a combined study will also be of major interest, since the 
IgA nephropathy has been claimed to be in the spectrum of the 
disease, lacking systemic features. So far, the GWAS in IgAV/HSP 
has not had a substantial offer to precision medicine.

Kawasaki Disease
There are more than 10 GWAS performed in KD (3–16). The 
results of these GWAS may affect our medical practice since 
these help us to define KD patients who are at risk of developing 
intravenous immunoglobulin (IVIG) resistance and/or coronary 
involvement. The susceptibility genes associated with the develop-
ment and severity of coronary involvement were mainly identified 
as KCNN2, TIAM1, NEBL, TUBA3C, PELI1, and PLCB4/PLCB1 
(3, 6, 7, 13, 14). Shimizu et al. performed a pathway-based asso-
ciation analysis on a GWAS data set to identify risk alleles for 
coronary artery abnormalities in KD (17). They demonstrated 
susceptibility variants in the SLC8A1 calcium signaling pathway 
which were associated with development of KD and coronary 
artery abnormalities (17). Their results suggested this pathway as 
a therapeutic target supporting the use of calcineurin inhibitors 
in acute KD.

Recently, Kwon et  al. have performed an IVIG-response 
stratified GWAS to search for IVIG-response-specific genetic 
variants associated with KD (11). They have identified an intronic 
single-nucleotide polymorphism (SNP) in BCL2L11 which was 
significantly associated with KD in IVIG responders but not in 
non-responders (11). In the first weighted genetic risk score study 
based on a GWAS in KD, Kuo et al. have presented the predictive 
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model integrating the additive effects of 11 SNPs to provide a 
prediction for IVIG responsiveness (18). Thus these studies may 
be regarded to have an effect on precision medicine since they 
may define how we treat these patients in the coming days.

On the other hand, other GWAS have identified susceptibility 
genes associated with KD (mainly HLA, CD40, BLK, FCGR2A, 
NMNAT2, HCP5, COPB2, ERAP1, NAALADL2, ZFHX3, 
NFKBIL1, LTA, DAB1, IGHV) (4, 5, 9, 10, 12, 15, 16).

In a study of replication and meta-analysis of GWAS in KD, 
Chang et  al. identified risk alleles confirming the importance 
of B lymphoid tyrosine kinase (BLK) which suggested a role 
for B-cell-mediated therapies in KD (19). Lv et al. reviewed the 
genes which had statistically significant associations with KD, 
from candidate gene studies and GWAS (20). They showed that 
cellular calcium ion hemostasis, immune and inflammatory 
responses were the main functional categories representing 
associated genes (20).

ANCA-Associated vasculitis
The GWAS of AAV has indeed provided quite important data on 
the genetic disparities of these diseases. In the first GWAS in AAV, 
Lyons et al. demonstrated that granulomatous polyangiitis (GPA, 
Wegener’s) and microscopic polyangiitis were genetically distinct 
diseases and anti-myeloperoxidase ANCA was associated with 
HLA-DQ while anti-proteinase 3 (anti-PR3) ANCA was associ-
ated with HLA-DP, SERPINA1, and PRTN3 (21). This study has 
revealed the antigenic specificity of ANCA forms the strongest 
associations in AAV. Xie et  al. identified risk variants for GPA 
in SEMA6A and HLADP (22). Thus, these GWAS have not only 
had an impact on our vasculitis classification but also provided us 
data on how to predict the course in these patients.

On the other hand, Merkel et  al. identified genome-wide 
significant associations for AAV at the HLA-DPB1, SERPINA1, 
PTPN22, and PRTN3 loci with the largest effect coming from 
HLA-DPB1 polymorphisms (23).

Takayasu Arteritis
In a GWAS of TA patients from Turkey and North America, 
Saruhan-Direskeneli et al. identified susceptibility loci as HLA-B/
MICA, HLA-DQB1/HLA-DRB1, and FCGR2A/FCGR3A (24). 
They also identified additional association effects of PSMG1, 
IL12, and IL23 that could not reach genome-wide significance. 
The association with IL12B variants were confirmed in Japanese 
TA patients in a genome scanning study (25). In the most recent 
GWAS of TA, Renauer et  al. identified susceptibility variations 
for TA at IL6, RPS9/LILRB3, and an intergenic locus on chromo-
some 21q22 (26). Two of these loci, IL6 and RPS9/LILRB3 have 
roles in immunoregulatory pathways which could enlighten the 
immunopathogenesis of TA. This may be reflecting our bedside 
experience for the use of anti-interleukin-6 (IL-6) in TA patients 
and thus serve as an example for precision medicine if we could 
have genotyped all these patients. On the other hand, blocking 
IL-12/IL-23 pathway may also be an option for selected patients.

behçet’s Disease
There are nine GWAS performed in BD patients that have 
indeed served us to understand the pathogenesis of the disease 

(27–35). These studies have shown genome-wide significant 
associations with HLA class I (especially HLA-B51), IL10, 
IL23R-IL12RB2, ERAP1, STAT4, GIMAP, CCR1, KLRC4, FUT2, 
IL12A, NAALADL2, YIPF7, KIAA1529, CPVL, LOC100129342, 
UBASH3B, and UBAC2 regions in BD (27–35). It is important to 
note that endoplasmic reticulum aminopeptidase 1 (ERAP1) is 
an endoplasmic reticulum protein functioning as an aminopepti-
dase trimming peptides for loading onto MHC Class I (36). It has 
been demonstrated that ERAP1 contributed to the risk for BD 
in HLA-B51 positive individuals (31). The variants identified in 
BD GWAS suggest defects in pathways of adaptive and innate 
immune responses, sensing/processing of microbial and danger 
signals, and inflammatory pathways shared with spondyloar-
thropathies (37). These studies have suggested that the improper 
folding of HLA-B51 is to trigger endoplasmic reticulum stress 
leading to the IL-12/IL-23 pathway activation. Bakir-Gungor 
et al. performed a pathway analysis using BD GWAS data from 
two populations and demonstrated that shared pathways were 
mitogen-activated protein kinase signaling, transforming growth 
factor β signaling, focal adhesion, extracellular matrix–receptor 
interaction, complement and coagulation cascades, and protea-
some pathways (38). Thus, GWAS in BD have mainly provided 
us answers for the pathogenesis of the disease. However, block-
ing IL-12/IL-23 pathway is being considered in light of these 
findings. Whether the benchside will hold true in vivo remains 
to be seen.

All these GWAS performed in PSV patients points to cer-
tain mechanisms in the pathogenesis. We clearly lack data on 
pharmacogenomics. And we need larger cohort of patients who 
are profiled genetically and phenotypically, to identify the patho-
genesis and possibly the disease course and highlight treatment 
options.

CAN MONOGeNiC vASCUliTiDeS TeACH 
US ANYTHiNG?

Most of our common rheumatic diseases are multifactorial 
diseases with the contribution of certain SNPs (as described 
above) for disease risk. These SNPs have a rather small impact or 
introduce a small risk factor for the occurrence of that vasculitis. 
However, in recent years we have become aware of single gene 
defects that have a major impact in the inflammatory pathway, 
causing a phenotype often mimicking a well-known vasculitis 
(39). Description of monogenic vasculitides has provided novel 
insights into disease pathogenesis and pathways of inflamma-
tion in general. On the other hand, they have enabled targeted 
therapies in these single-gene disorders. Deficiency of adenosine 
deaminase 2 (DADA2), stimulator of interferon genes (STING)-
associated vasculopathy with onset in infancy (SAVI), and haplo-
insufficiency of A20 (HA20) are the recently defined monogenic 
vasculitides. Indeed, the association of monogenic complement 
deficiencies with systemic lupus erythematosus had taught us the 
role of complement in lupus pathogenesis. Similarly, the affected 
pathways in these diseases may enable us to design more targeted 
therapies in vasculitides. For example, one may need to concen-
trate more on the nuclear factor-κB (NF-κB) pathway or the role 
of macrophages.
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Deficiency of Adenosine Deaminase 2
Deficiency of adenosine deaminase 2 is associated with CECR1 
mutations and causes a PAN-like vasculopathy and autoinflam-
matory features (40). ADA2 is thought to trigger the macrophages 
to have an inflammatory phenotype and endothelial integrity is 
compromised in DADA2 (41). As a result of these, vasculopathy 
and inflammation occur.

The phenotype mimics PAN with the presence of aneurysms 
in visceral arteries. Clinical presentation is a spectrum from 
only cutaneous lesions to full blown systemic disease (40–42). 
DADA2 patients may also present with only hematological 
features such as pure red cell anemia (43). Anti-tumor necrosis 
factor (anti-TNF) drugs are effective in the treatment of patients 
with vasculitis whereas response to conventional treatment is 
poor. Hematopoietic stem cell transplantation is needed in 
severe cases (40, 44, 45). Hematopoietic stem cell transplanta-
tion should be especially considered in DADA2 patients with 
bone marrow failure who display predominant hematological 
features (46).

STiNG-Associated vasculopathy with 
Onset in infancy
Stimulator of interferon genes-associated vasculopathy with 
onset in infancy is a type I interferonopathy caused by gain-
of-function mutations in TMEM173 encoding for STING (47). 
STING hyperfunction results in constitutive transcription of type 
I interferons (IFNs) which bind to type I IFN receptors and signal 
through Janus activating kinase/signal transducer and activator 
of transcription (JAK/STAT) pathway (47, 48).

Phenotype of SAVI patients could resemble GPA with severe 
cutaneous vasculopathy, pulmonary involvement, and ANCA 
positivity in some patients (49). Recently, Sanchez et  al. have 
shown improvement in SAVI patients with baricitinib which is a 
selective JAK1 and JAK2 inhibitor (50).

Haploinsufficiency of A20
Haploinsufficiency of A20 is a recently defined autosomal 
dominant autoinflammatory syndrome resembling BD, caused 
by loss-of-function mutations in TNFAIP3 encoding for A20 
protein (51). Restriction of A20 function augments NF-κB signal-
ing which makes NF-κB-dependent proinflammatory cytokines 
such as TNF-α, IFN-γ, IL-17, IL-1β potential targets for treatment 
in these patients. Around 50 HA20 patients have been reported 
so far with early-onset recurrent mucosal ulcers resembling BD 
being the hallmark feature in most (51–61). HA20 is classified 
as a monogenic vasculitis here since it resembles BD; however, 
it is important to note that the phenotype is very heterogeneous 
and it may mimic autoimmune diseases such as systemic lupus 
erythematosus and autoimmune lymphoproliferative syndrome. 
Furthermore, the evidence for vasculitis in tissue samples is 
deficient in most patients (52).

Familial Mediterranean Fever  
(FMF)-Associated vasculitides
Familial Mediterranean fever is the most common autoinflam-
matory disease characterized by fever and polyserositis attacks 

and caused by MEFV mutations (62). The mutations in this gene 
are associated with increased IL-1 production. Colchicine is the 
mainstay of FMF treatment (62). Certain vasculitides are more 
frequent in FMF patients than normal population (63). The most 
common vasculitis associated with FMF is IgAV/HSP, present 
in around 3% of FMF patients (63, 64). Another form of vascu-
litis is PAN which is also more common among FMF patients 
when compared to the expected frequency: almost 1% of FMF 
patients had PAN with distinctive features such as perinephric 
hematoma, severe myalgia, markedly high acute phase reactants, 
younger age, and better survival than classic PAN (39, 63, 65). 
In the eastern Mediterranean where the disease is frequent, 
physicians should ask for symptoms of FMF in patients with 
IgAV/HSP and possibly PAN. Concomitant occurrence of BD 
and FMF was also much higher than expected in several studies 
and a high frequency of MEFV mutations was reported in BD 
patients (66–68). In addition, a meta-analysis has confirmed 
the association between MEFV mutations M694V and M680I 
with BD (69). Other PSV such as AAV and TA may accompany 
FMF, as well; however, their association is not as apparent as the 
aforementioned diseases.

The association of PSV with this monogenic disease affects 
the way we treat these patients: colchicine needs to be initiated 
for FMF in addition to the conventional treatment of vasculitis 
in these patients. Anti-IL-1 therapies could be considered in 
resistant cases (62).

biOMARKeRS iN PSv

A biomarker is defined as an objectively measured characteristic 
marker which is evaluated as an indicator of normal biological 
or pathogenic processes or pharmacological responses to a 
therapeutic intervention (70). Biomarkers may be important for 
predicting the tendency to have the disease, disease activity, 
therapeutic options, disease flare, and disease course. For preci-
sion medicine, important biomarkers are the ones which guide 
us through choosing therapeutic options or determining patients 
with poor prognosis who need more aggressive treatment. 
Although there are recent studies addressing novel biomarkers, 
biomarker-driven treatment algorithms are not available in PSV. 
Furthermore, it is important to note that most of the existing 
biomarker studies in PSV involve mainly adult patients. Thus, 
the rheumatology community needs sophisticated work of 
proteomics and metabolomics to define the important pathways 
and biomarkers for our management of the patients. The main 
biomarkers that serve therapeutic targets in PSV are summarized 
in Table 2.

immunoglobulin A vasculitis/Henoch–
Schönlein Purpura
Biomarker studies in IgAV/HSP have generally focused on find-
ing non-invasive markers for diagnosis/prediction of nephritis 
and renal prognosis. A few studies are present on biomarkers 
of prognosis for gastrointestinal involvement, as well. Sun et al. 
have recently identified biomarkers by a combined clinical and 
metabolomics analysis in children with IgAV/HSP (71). They 
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TAble 2 | The main biomarkers that serve targets for treatment in primary 
systemic vasculitides.

Disease biomarker Treatment Reference

IgAV/HSP Factor XIII Factor XIII concentrate to improve 
gastrointestinal complaints

(79, 80)

AAV Neutrophil 
microparticles

Plasma exchange treatment (103)

Endothelial 
microparticles

AAV Complement 
pathway proteins

Selective C5a receptor inhibitor in 
replacing high-dose corticosteroids

(107, 108)

TA IL-6 Anti-IL-6 treatment (117, 120, 
121, 123)

TA TNF-α Anti-TNF treatment (121, 124)
BD JAK/STAT JAK inhibitors (129)
BD A variety of 

cytokines (TNF, 
IL-1, IL-6, IL-12/
IL-23)

Cytokine targeting therapies (anti-
TNF, anti-IL-1, anti-IL-6, anti-IL-17/
IL-23)

(131–138)

AAV, ANCA-associated vasculitis; BD, Behçet’s disease; IgAV/HSP, immunoglobulin A 
vasculitis/Henoch–Schönlein purpura; IL, interleukin; JAK, janus kinase; KD, Kawasaki 
disease; STAT, signal transducer and activator of transcription; TA, Takayasu arteritis; 
TNF, tumor necrosis factor.
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have shown that (s)-3-hydroxyisobutyric acid, p-Cresol sulfate, 
and 3-carboxy-4-methyl-5-pentyl-2-furanpropanoic acid were 
associated with kidney involvement in IgAV/HSP. These bio-
markers allowed prediction of IgAV/HSP nephritis with high 
sensitivity (94.7%) and specificity (80.8%) when combined with 
D-dimer (71). Berthelot et al. have studied the value of biomark-
ers for predicting the outcome of IgAV/HSP nephritis in an 
adult prospective cohort (72). They have demonstrated that 
serum Gd-IgG1, urinary IgA, IgG, IgM, neutrophil gelatinase-
associated lipocalin, IL-1β, IL-6, IL-8, IL-10, IgA-IgG, and IgA-
sCD89 complexes were associated with nephritis while urine 
IgA at disease onset could predict poor renal outcome in IgAV/
HSP patients (72). Other biomarkers such as matrix metallopro-
teinase 9 (MMP-9), red blood cell distribution width, pentraxin 
3, alpha-smooth muscle actin, and c-Met were also reported to 
be associated with the risk of nephritis in IgAV/HSP (73–76). 
As to the genetic factors, two recent studies have shown the 
association of inducible nitric oxide synthase (iNOS) gene and 
IL1β gene polymorphisms with kidney involvement in IgAV/
HSP (77, 78). Thus, these biomarkers may guide us in how we 
manage these patients in the coming days.

Decreased factor XIII activity was suggested as a prognostic 
biomarker for severe gastrointestinal system involvement in 
IgAV/HSP patients (79, 80). Administration of factor XIII con-
centrate lead to improvement of gastrointestinal complaints in 
anecdotal case reports (80).

Kawasaki Disease
Biomarker studies in KD are mainly focused on predicting patients 
who will not respond to IVIG treatment. A more intensified treat-
ment with corticosteroids along with IVIG could be administered 
to the patients with high risk of IVIG unresponsiveness. Early 
use of biologics may also be indicated in selected cases. Elevated 
levels of IL-17A, IL-10 (81), ferritin (82), tenascin C (83), IL-6, 

C-reactive protein (CRP), percentage of circulating neutrophils 
(84), increased QT interval dispersion (85), and increased ratio 
of CD8+ HLA-DR+ T cells/CD8+ CD69+ T cells (86) are main 
biomarkers reported to be used for predicting IVIG resistance in 
KD. Validation studies are required to use these biomarkers in 
daily clinical practice.

Polyarteritis Nodosa
There have been few studies on biomarkers related to disease 
activity in PAN. Several biomarkers such as D-dimer, anti-moesin 
antibody, and anti-endothelial antibodies have been associated 
with disease activity (87–89). However, none of these are cur-
rently being used in routine medical practice in the management 
of patients with PAN.

ANCA-Associated vasculitis
In AAV, ANCAs are the most commonly studied biomarkers. 
These are mainly diagnostic biomarkers and their use for moni-
toring disease activity is controversial. However, recent studies 
have suggested that especially PR3-ANCAs could be used to pre-
dict relapse in AAV (90–94). Besides ANCA, Kemna et al. have 
demonstrated that galactosylation and sialylation levels of IgG 
could predict relapse in PR3-AAV patients (95). In the recent 
targeted proteomics study, Ishizaki et al. have demonstrated the 
effectiveness of tissue inhibitor of metalloproteinase (TIMP1) 
as a disease activity marker for AAV and they have identified 
transketolase and CD92 as novel markers for evaluation of 
renal involvement and renal outcome in AAV (96). These may 
serve as valuable markers in our clinical practice. Two different 
proteomics studies demonstrated that serum proteomic profile 
differed between active systemic versus remitting patients with 
GPA (97, 98).

McKinney et  al. studied gene-expression-based biomarkers 
in AAV and demonstrated that the poor diagnostic group were 
defined mainly by the IL7R pathway and T  cell receptor sign-
aling genes which were expressed by T cells (99). Their results 
also suggested that measuring the expression of only three 
genes; ITGA2, NOTCH1, and PTPN22 could be used to define 
prognostic subgroups in AAV. These results raise the prospect of 
precision medicine in AAV, as the authors have concluded. In 
another study of the same group on gene-expression biomarkers, 
they demonstrated an association between T cell exhaustion and 
poor prognosis in AAV and suggested that this process could be 
targeted in AAV treatment (100).

As to biomarkers for response to treatment in AAV, Unizony 
et al. demonstrated that patients with PR3-AAV responded better 
to rituximab than to traditional induction/maintenance treatment 
with cyclophosphamide and azathioprine and suggested that an 
ANCA-based classification might guide immunosuppressive 
treatment in AAV (101). Haubitz et al. showed that immunosup-
pressive treatment in AAV changes the urine proteome toward 
remission (102).

Neutrophil microparticles (NMPs) and neutrophil extracel-
lular traps (NETs) are biomarkers that could be targets for 
treatment in AAV and maybe other vasculitides as well. NMPs 
are membrane vesicles that induce endothelial damage in AAV, 
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released from neutrophils upon activation by ANCA (103). 
Hong et  al. have demonstrated more NMPs in the plasma of 
children with AAV than patients with inactive vasculitis and 
healthy controls (103). AAV patients with increased NMPs might 
benefit from plasma exchange therapy (103). In the same lines, 
endothelial MPs, important biomarkers of endothelial injury, 
may be important targets to be removed by plasma exchange in 
AAV (103).

Neutrophil extracellular traps, composed of DNA, histones, 
and neutrophil proteins, are released by neutrophils under the 
influence of inflammatory stimuli (104). Kessenbrock et  al. 
reported NET deposition in inflamed kidneys of AAV patients 
(105) while Wang et  al. showed that circulating NETs did not 
differ between patients with active vasculitis and patients in 
remission (106). NETs could represent a novel target for therapy 
in AAV; however, further studies are required to determine the 
exact role of NETs in AAV pathogenesis.

Recent studies have highlighted the role of complement 
alternative pathway activation in AAV pathogenesis (107). In 
a recent randomized trial, Jayne et  al. have demonstrated that 
avacopan, an orally administered selective C5a receptor inhibitor 
was effective in replacing high-dose corticosteroid treatment in 
AAV (108).

There are other biomarkers such as macrophage migration 
inhibitory factor, delta neutrophil index, mean platelet volume, 
rheumatoid factor, and serum ferritin most of which have been 
recently reported to be associated with disease activity in AAV 
(109–113). However, further validation studies are required for 
these biomarkers to be commonly used while profiling AAV 
patients with regards to disease course and prognosis.

Takayasu Arteritis
Biomarker studies in TA are mainly focused on differentiating 
active disease from inactive disease. Different biomarkers such 
as erythrocyte sedimentation rate (ESR), CRP, IL-2, IL-3, IL-4, 
IL-6, IL-8, TNF-α, IFN-γ, MMPs, TIMP1, vascular cell adhe-
sion molecules, RANTES (Regulated on Activation, Normal T 
Cell Expressed and Secreted), and pentraxin 3 were associated 
with TA disease activity (114–122); however, none of them is 
validated for predicting outcome and only ESR and CRP are 
available in routine clinical practice. Some of the aforemen-
tioned biomarkers such as IL-6 and TNF-α serve targets for 
effective therapies in TA (123, 124). Goel et  al. have recently 
demonstrated that myeloid-related protein 8/14 (MRP8/14) 
(S100A8/S100A9) levels were higher in patients with active 
disease than those with stable disease and change in MRP8/14 
levels was significantly associated with the disease activity 
assessed by Indian TA Activity Score (125). Furthermore, 
MRP8/14 levels decreased significantly in responders during 
follow-up. They also showed that MRP8/14 was a better disease 
activity biomarker than ESR and nearly similar to CRP in this 
aspect in TA (125).

As genetic factors, a recently studied biomarker in TA, is 
human leukocyte antigen E (126). Goel et al. demonstrated that 
soluble HLA-E levels increased more frequently in TA patients 
with a persistently active, relapsing course than those with a 

persistent stable course (126). HLA-Bw52 was previously shown 
to be associated with higher incidence of cardiovascular events 
and poorer prognosis in TA patients (127). Terao et al. showed 
that combination of SNPs on IL12B and HLA-B52:01 was sig-
nificantly associated with severity of aortic regurgitation, a severe 
complication of TA (25).

Imaging modalities such as computed tomography, magnetic 
resonance imaging, and positron emission tomography are 
important to detect vasculitic lesions in large vessel vasculitis and 
in practice are used as outcome tools.

behçet’s Disease
Lots of disease activity biomarkers have been reported in BD. 
None of these (except ESR and CRP as acute phase reactants) are 
currently being used in routine clinical practice to profile BD 
patients. However, several of these biomarkers may be targeted 
in BD treatment. Sadeghi et al. have recently studied the serum 
profiles of cytokines in BD patients and demonstrated sig-
nificant elevation of IL-2 in patients with uveitis (compared to 
recovered patients or those without uveitis) (128). The authors 
have thus concluded that IL-2 may be a new target for treatment 
of refractory BD uveitis. Tulunay et al. demonstrated that JAK1/
STAT3 signaling pathway was activated in BD, possibly through 
activation of Th1/Th17-type cytokines such as IL-2, IL-6, IL-17, 
IL-23, and IFN-γ (129). They suggested that ustekinumab 
(anti-IL-12/IL-23) and tofacitinib (inhibiting JAK1/3) could be 
novel therapeutic options for BD. On the other hand, several 
genetic associations have also been identified in BD, including 
mainly the genes encoding for HLA-B51, IL-6, IL-10, IL-1β, 
IL-12R/IL-23R, intracellular adhesion molecule, nitric oxide, 
chemokine receptor type 5, toll-like receptors, and fucosyltrans-
ferase 2 (130). In the same lines, elevated levels of several pro-
inflammatory cytokines including IL-1, IL-6, IL-17, and IL-23 
have been demonstrated in patients with BD (131–137). Some 
of the pathways including these cytokines have been targeted 
successfully with biologic drugs such as etanercept (anti-TNF), 
infliximab (anti-TNF), tocilizumab (anti-IL-6), secukinumab 
(targeting IL-23/IL-17 pathway), and canakinumab (anti-IL-1) 
(130, 138).

CONClUSiON

Precision medicine is our new aim in clinics and translational 
medicine will surely guide this practice. With the recent genetic 
studies and promising biomarker discoveries, precision medicine 
will be possible in PSV. The existing data needs to be confirmed in 
large, multicenter studies. Further proteomics and metabolomics 
data enlightening the involved pathways are needed. These fur-
ther studies are required to profile vasculitis patients better to 
tailor treatment individually.
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