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Background: Acute lung injury (ALI) is characterized by suppressed fibrinolytic activity 
in bronchoalveolar lavage fluid (BALF) attributed to elevated plasminogen activator inhib-
itor-1 (PAI-1). Restoring pulmonary fibrinolysis by delivering tissue-type plasminogen 
activator (tPA), urokinase plasminogen activator (uPA), and plasmin could be a promising 
approach.

Objectives: To systematically analyze the overall benefit of fibrinolytic therapy for ALI 
reported in preclinical studies.

methods: We searched PubMed, Embase, Web of Science, and CNKI Chinese data-
bases, and analyzed data retrieved from 22 studies for the beneficial effects of fibrinolytics 
on animal models of ALI.

Results: Both large and small animals were used with five routes for delivering tPA, 
uPA, and plasmin. Fibrinolytics significantly increased the fibrinolytic activity both in the 
plasma and BALF. Fibrin degradation products in BALF had a net increase of 408.41 ng/
ml vs controls (P  <  0.00001). In addition, plasma thrombin–antithrombin complexes 
increased 1.59 ng/ml over controls (P = 0.0001). In sharp contrast, PAI-1 level in BALF 
decreased 21.44 ng/ml compared with controls (P < 0.00001). Arterial oxygen tension 
was improved by a net increase of 15.16 mmHg, while carbon dioxide pressure was 
significantly reduced (11.66 mmHg, P = 0.0001 vs controls). Additionally, fibrinolytics 
improved lung function and alleviated inflammation response: the lung wet/dry ratio 
was decreased 1.49 (P  <  0.0001 vs controls), lung injury score was reduced 1.83 
(P < 0.00001 vs controls), and BALF neutrophils were lesser (3 × 104/ml, P < 0.00001 
vs controls). The mortality decreased significantly within defined study periods (6 h to 
30 days for mortality), as the risk ratio of death was 0.2-fold of controls (P = 0.0008).

conclusion: We conclude that fibrinolytic therapy may be effective pharmaceutic  
strategy for ALI in animal models.
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iNtRODUctiON

Suppressed fibrinolysis is a pathological hallmark of acute lung 
injury (ALI) in addition to pulmonary edema and cytokine/
chemokine “storm” (1, 2). Over the last two decades, the mortality 
of acute respiratory distress syndrome (ARDS), the late stage of 
ALI remains unacceptably high. There are approximately 200,000 
new cases annually in the United States (3, 4). ALI could be 
caused by pulmonary (e.g., pneumonia and smoke inhalation) or 
systemic disorders (e.g., sepsis, hemorrhagic shock, and trauma) 
(5). The heterogeneity of ALI apparently makes it difficult to 
identify the etiology precisely and promptly for designing case-
specific salutary interventions. To date, supportive strategies have 
been shown to be beneficial (5). In addition, some promising 
therapeutic strategies are being evaluated by registered clinical 
trials, including stem cell therapy (6, 7), corticosteroid, interferon 
beta, and tumor necrosis factor-alpha (8).

In injured lungs, alveolar fibrinolytic activity is depressed 
markedly and intravascular and extracellular fibrin is depos-
ited in the air spaces (9, 10). The eliminated fibrinolytic 
activity was predominately attributed to elevated plasmi-
nogen activator inhibitor-1 (PAI-1) in both the plasma and 
bronchoalveolar lavage fluid (BALF). The fibrinolytic system 
is composed of proteases and anti-proteases, including plasmi-
nogen, plasminogen activators (tissue-type plasminogen acti-
vator, tPA; urokinase plasminogen activator, uPA), plasmin, 
PAI-1, and plasmin catalytic antagonists (α2-antiplasmin and 
α2-macroglobulin). Both uPA and tPA proteolytically cleave 
zymogen plasminogen to generate plasmin with catalytic 
activity, which degrades fibrin. To date, the fibrinolytic therapy 
has clinically been applied to pleural effusion/empyema as 
fibrinolysins (11), cardiovascular diseases as thrombolytics 
(12), and obstructive airway diseases as mucolytics (13, 14). 
The benefit of fibrinolytic therapy for ALI, however, is still 
at the earlier stage of preclinical studies. Intravenous delivery 
of either uPA or tPA might be protective for traumatic lung 
injury, as improved survival and gas exchange were observed in 
treated pigs (15). Moreover, tPA attenuated pulmonary abnor-
malities in smoke inhalation injured sheep (16). Interestingly, 
an earlier pilot study reported a potential improvement in lung 
function following administration of either uPA or tPA in 20 
ALI patients (17). Because of inconclusive preclinical studies 
to address optimized dose, routes, and benefit, clinical trials 
have not been conducted to date.

The main purpose of this meta-analysis is, therefore, to assess 
preclinical studies of ALI for the potential effects of fibrinolytic 
therapy. Additionally, we quantified the differences in outcomes 
between large and small animal models, variable fibrinolytic 
regimes, and routes. Our analysis suggests that three fibrinolytic 
regimens may benefit ALI by improving gas exchange, inflamma-
tion, and lung injury.

mateRiaLS aND metHODS

The study was conducted in accordance with the methods recom-
mended in the PRISMA guidelines. Please see Datasheet S1 in 
Supplementary Material for detail search strategies.

Data Sources
Three investigators (CL, ZS, and YM) independently searched 
the published studies indexed by the PubMed, Embase, Web of 
Science, and CNKI on March 2017, using the strategy: (fibrino-
lytics OR plasmin OR fibrinase OR fibrinolysin OR alfimeprase 
OR uPA OR urokinase OR abbokinase OR breokinase OR win-
kase OR kinlytic OR tPA OR activase OR reteplase OR rctPA OR 
retavase OR actilyse OR repilysin OR alteplase OR tenecteplase 
OR TNKase OR TNK tPA OR metalyse OR SK OR streptokinase 
OR streptase OR kabikinase OR actase OR thrombolysin OR 
eminase OR desmoteplase OR pro-urokinase OR staphylokinase 
OR plasminogen activator) AND (lung injury OR ALI OR ARDS 
OR respiratory distress syndrome OR septic OR sepsis OR bac-
teremia OR endotoximia OR multi-organ failure OR respiratory 
failure OR pneumonia OR shock OR pulmonary edema OR 
lung edema OR edematous OR pulmonary edema). The fourth 
investigator (H-LJ) was consulted in case of no consensus on 
inclusion. There was no language restriction in the searching and 
non-English literature was translated into English via a profes-
sional service. We also checked the references of included studies 
for additional publications that were not hit by the searching 
strategy.

inclusion and exclusion criteria
Studies were included in the current meta-analysis if: (1) the 
species of studies were animals; (2) animal models were ALI, 
including Pseudomonas aeruginosa pneumonia, Klebsiella pneu-
monia, fibrotic lung injury, trauma, septic shock, burn and smoke 
inhalation injury, and disseminated intravascular coagulation; 
(3) the animals were treated with three fibrinolytics, genetically 
engineered for overexpressing of plasminogen activators or 
knocking out PAI-1; and (4) results were expressed or could be 
digitized or converted to mean and SD.

The following studies were excluded: (1) review articles, 
letters, case reports, posters, or without objective data to be 
evaluated; (2) data were from PAI-1 transgenic, PAI-1 knock-in, 
and tPA- and uPA-deficient animals; (3) insufficient publications 
existed to perform a meta-analysis; (4) the number of control 
group or experimental group was less than three animals; (5) 
the animals were treated with combined heparin, antithrombin, 
activated protein C, and other medicines with potential effects on 
fibrinolysis; and (6) combined regimens and fibrinolytic therapy 
for lung injury.

Data extraction
Data extraction was carried out by three authors (CL, ZS, 
and YM). The following items from the eligible studies were 
extracted: article information (first author name, publication 
date, and country of origin), animal species, gender, method 
of ALI induction, type and dose of fibrinolytics, duration of 
treatment, delivery approach, and number of animals for both 
control and treated groups. Data were extracted as mean and 
SD if available. When only graphic presentations were available, 
values for mean and SD were obtained via calibrating images 
using GetData Graph Digitizer software (version 2.26.0.20) 
(18–20). If raw data were represented by median and interquartile 
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range (20, 21) or range (22), these values were converted to SD 
by the formulas: SD2 = 1/12 [(a − 2 m + b)2/4 + (b − a)2], and 
mean = (a + 2 m + b)/4, where m represents median, a and b 
are lower and upper range (23). If the SE was reported (20), it 
was converted to SD using the function, SD  SE = ×√n, where 
n is the sample size. For one study (24), we combined individual 

data using the formulas, X=ΣX
n

 and SD = √
−
−

Σ( )X
n

X
1

, where x 

represent variance, X  is the mean of the pooled individual data. 
If neither SD nor SEM were found (15, 25), we borrowed SD value 
of similar studies for the same parameter. For parameters reported 
with divergent units, for example, PaO2, PaCO2, and neutrophils, 
the units were converted to the same one. For lung water content 
that shown as weight gain or lung leak index, we converted them 
to W/D ratio following the formulas: W/D ratio = (W0 + W1)/
D0 = lung leak index × 100, where W0 represents normal animal 
lung wet weight, W1 represents weigh gain, and D0 represents 
normal animal lung dry weight. Lung injury scores were analyzed 
as occurrence of at least one of following indices: (1) leukocyte 
and red blood cell infiltration, (2) alveolar epithelium damage, 
(3) interstitial edema, and (4) fibrin deposition and hyaline mem-
brane formation. Extracted raw data are included in Datasheet S2 
in Supplementary Material.

Quality assessment
Risk of biases was assessed using the Cochrane Handbook for 
Systematic Reviews of Interventions (26). All included studies 
were assessed on seven fronts: randomization (selection bias), 
blinding of personnel (performance bias), blinding of outcome 
assessment (detection bias), incomplete outcome data (attrition 
bias), allocation concealment (selection bias), selective outcome 
reporting (reporting bias), and other biases. These assessments 
are included in Table 6. In addition, we examined the quality of 
the included 22 studies with the ARRIVE guidelines specifically 
for animal studies (Table 2).

Statistical analysis
We performed statistical analysis in the preclinical studies using 
Review Manager (RevMan), version 5.3 (Copenhagen: The 
Nordic Cochrane Centre, The Cochrane Collaboration, 2014) 
and STATA V.12 (StataCorp. College Station, TX, USA). The 
mean differences were considered to be statistically significant 
when P ≤ 0.05. If P-value was less than 0.05, or the I2-value was 
greater than 50%, the overall estimate was analyzed in a random 
effects model. Groups within a parameter were included if there 
were ≥3 comparisons. Eleven readouts were selected: PaO2, 
PaCO2, plasma thrombin–antithrombin complexes (TATc), 
plasma PAA, fibrin degradation products (FDP) in BALF, PAA 
in BALF, PAI-1 in BALF, neutrophils in BALF, lung water con-
tent, lung injury score, and mortality. The data were combined 
using inverse variance method and shown as weighted mean 
differences (WMD) with 95% confidence intervals (95% CI) in 
the forest plots in addition to mortality. The measures for the 
parameters (PaO2 and PaCO2) at the same time points were con-
tinuously monitored. If unavailable, we used the data collected 
at an adjacent time point. We pooled dichotomous variables (i.e., 

mortality) using the Mantel–Haenszel method. If the mortality 
was measured within a period, the end time point was used. 
The RR was computed with the random effects model for a 
high heterogeneity. The potential publication bias was assessed 
with funnel plots and the Egger’s regression test (40) (Stata, 
version 12). Heterogeneity among studies was defined with the 
I2-statistic function as an unimportant (I2 < 25%), a moderate 
(25% < I2 < 75%), or a high degree of heterogeneity (I2 > 75%). 
To eliminate heterogeneity, the meta-analyses were further 
performed for data grouped by animal size (small or large ani-
mals), individual fibrinolytics (tPA, uPA, or plasmin), and routes  
(i.v., i.p., i.t., nebulization, or transgenic). Small animals included 
mice, rats, and rabbits. Large animals were comprised of sheep, 
pigs, and dogs. Subgroup analysis was not performed when there 
was only one sample. In addition, the robustness of the results 
was confirmed by sensitivity analysis. If multiple studies with the 
same first author and publication year, they were distinguished 
with an asterisk (*) (19, 20). The same control group was used 
for several comparisons and denoted with superscript letters a, 
b, c, and d (15, 18, 29, 32).

ReSULtS

characteristics of included Studies
Our comprehensive search of the PubMed, the Web of Science, 
the Embase, and the CNKI databases hit 7,624 publications. 
After carefully examining the titles and abstracts, we selected 
73 articles with full texts available for further screening. 
Twenty-two studies were finally included for systematic 
review and meta-analysis (Figure 1). General characteristics 
of these 22 studies were summarized in Table 1. Ten studies 
were performed for tPA (0.098–250 mg) (15, 16, 19, 20, 22, 24, 
27–30), seven for uPA (up to 240 mg or 2,230,000 IU) (18, 21, 
25, 32–35), three for plasmin (0.5 mg or 100,000 IU) (37–39), 
and two in gene therapeutic mice by either over expressing 
uPA (36) or tPA (31). The geological distributions of these 
studies are: 10 from USA (48%) (15, 16, 25, 27–30, 32, 36, 37), 
4 from Netherlands (17%) (19, 20, 24, 31), 4 from China (17%) 
(22, 33–35), 2 from Japan (9%) (38, 39), 1 from Germany (4%) 
(18), and 1 from Denmark (21). Fifteen papers were published 
in small animals. Twelve studies were conducted in rodents: 2 
in mice (31, 36) and 10 in rats (19, 20, 22, 24, 27–30, 38, 39). 
In addition, 3 studies used rabbits (18, 34, 35). Seven studies 
used large animals: 5 in pigs (15, 21, 25, 32, 33), 1 in dogs (37), 
and 1 in sheep (16). Five routes used in the studies included 
intravenous injection/infusion (i.v., n  =  12), nebulization 
(Neb, n = 5), intratracheal inhalation (i.t., n = 2), intraperito-
neal injection (i.p., n = 1), and gene delivery (Tg, n = 2). To 
evaluate the strength of the included 22 studies, we checked 
the adherence to the 20 checklists of the ARRIVE guidelines 
(Table 2). In general, no papers fully reported 20 checklists, 
most of studies partially reported these requests except title, 
objectives, and experimental outcomes. In particular, none of 
22 studies performed sample size calculation and provided 
detailed adverse events. Thus, we examined the quality of the 
included studies for mortality (Table 3). In total, 200 animals 
(112 for control and 88 for treated group) from 10 studies were 
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included for meta-analyzing mortality. There were no animals 
excluded by the original authors due to incident death or severe 
side-effects. Average mortality was 87 and 17%, respectively, 
for controls and treated animals. Correspondingly, 7 animals 
(power  =  80%, alpha  =  0.05) or 10 animals (power  =  95%, 
alpha = 0.05) are requested. Definitely, the animals for both 
groups are sufficient for performing meta-analysis. On the 
other hand, because only 6 of 22 studies simply mentioned 
paucity of hemorrhage descriptively instead of quantitative 
measurements, we could not have high quality primary data 
to analyze this adverse effect.

mortality within Defined Follow-Up 
Periods
The mortality associated with fibrinolytic therapy was 
evaluated (Figure  2). Compared with controls, fibrinolytics 
significantly reduced the deaths of treated animals, as shown 
by the overall risk ratio (RR) (0.21, 95% CI: 0.08 to 0.52, 
P = 0.0008). Furthermore, we analyzed mortality of small and 
large animals separately (Table 4). The mortality was reduced 
significantly in both large and small animals, as shown by RR 

values of 0.24 (P  =  0.02) and 0.17 (P  =  0.01), respectively. 
The mortality associated with three fibrinolytics was evaluated 
individually for tPA (38 controls, 38 treated from 5 studies), 
uPA (40 controls, 37 treated from 5 studies), and plasmin (34 
controls, 13 treated from 1 study). The mortality was reduced 
in a treatment-dependent manner; the RR values were 0.13 for 
tPA (P = 0.01), 0.18 for uPA (P = 0.13), and 0.42 for plasmin 
(P = 0.02). The mortality was further analyzed by three routes: 
i.v. (73 controls, 44 treated from 6 studies), i.t. (17 controls, 
21 treated from 2 studies), and gene delivery (22 controls, 23 
treated from 2 studies). The RR values were 0.24 for i.v. (95% 
CI: 0.07 to 0.82, P = 0.02), 0.05 for i.t. (95% CI: 0.01 to 0.32, 
P = 0.002), and 0.38 for gene delivery (95% CI: 0.17 to 0.85, 
P = 0.02). The defined follow-up periods for counting mortal-
ity of 10 studies are included in Table 3.

Levels of PaO2 and PacO2
Eighteen studies examined the effects of fibrinolytic therapy 
on blood oxygen concentration. Compared with controls, an 
increment of 15 mmHg (95% CI: 8 to 23 mmHg, P < 0.0001) 
in arterial oxygen tension (PaO2) was observed (Figure  3A). 
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taBLe 1 | General characteristics of included studies.

author (year), country Species, gender 
control/treated

insult total dose Route medicine, vehicle time

Enkhbaatar et al., (16), USA Sheep, F (6/6) Burn and smoke 
inhalation

22 mg (2 mg every 4 h, beginning 4 h after injury) Neb rhtPA, saline 48 h

Choi et al., (19, 20) a,b, Netherlands Rat, M (11/8 or 12/8) LPS 0.281 mg, 0.84 mg (1.25 mg/kg, 30 min before injection of LPS; at 6 and 12 h for 
group b)

i.v. rtPA, saline 4 or 16 h

Choi et al., (19, 20)*,a,b, Netherlands Rat, M (8/8) Pseudomonas 
aeruginosa

0.31 mg, 0.94 mg (1.25 mg/kg, 30 min before induction of pneumonia; at 6 and 12 h 
for group b)

rtPA, saline 6 or 16 h

Huang et al., (22), China Rat, M (7/7) Ventilation 0.34 mg (1.25 mg/kg in 0.5 ml saline, 15 min before ventilation) tPA, saline 2 h
Stringer et al., (27), USA Rat, M (10/6) IL-1 4.2 mg (6 mg/kg, 10 min before IL-1, 6 mg/kg after 2.5 h) i.p. tPA, saline 5 h
Hofstra et al., (24) a,b, Netherlands Rat, M (7/7) P. aeruginosa or LPS 0.84 mg (1.25 mg/kg, 30 min before induction of pneumonia or injection of LPS;  

at 6 and 12 h)
Neb rtPA, saline 16 h

Conhaim et al., (28), USA Rat, M (6/6) Acute blood loss 0.136 mg (320 μg/kg × 0.325 kg × 1) Neb tPA, ipratropium 
bromide

24 h

Veress et al., (29) a,b,c,d, USA Rat, M (4/12) Sulfur mustard 
Inhalation

0.098, 0.195, 0.325, or 0.455 mg (0.15, 0.30, 0.50, or 0.70 mg/kg × 0.325 kg × 2, 
at 5.5 and 6.5 h)

i.t. tPA, PBS 48 h

Veress et al., (30), USA Rat, M (13/9) 2.06 mg (0.70 mg/kg × 0.245 kg × 12, every 4 h) tPA, PBS
Renckens et al., (31), Netherlands Mice, F (12/12) K. pneumoniae NR Tg htPA DNA, control Ad. 30 days
Hardaway et al., (15) b,a, USA Pig, NR (9/5) Trauma 250 mg (initially 50 mg, then 200 mg, beginning 4 h after injury) i.v. tPA, NT 48 h

250,000 IU (250,000 IU in 500 ml 5% glucose solution and administered at  
15 drops/min, beginning 4 h after injury)

uPA, NT

Hardaway et al., (25), USA Pig, NR (8/8) E. coli 250,000 IU (250,000 IU in 20 ml saline and inject over a 20-min period) uPA, saline 24 h
Vasquez et al., (32) a,b, USA Pig, NR (6/6 or 7/7) E. coli 2,230,000 IU (initially 250,000 IU, then 2,000 IU/pound/h for12 h) uPA, NT

250,000 IU (250,000 IU in 20 ml saline over a 20-min period 1 h after  
E. coli infusion)

Munster et al., (21), Denmark Pig, NR (14/14) Trauma 240 mg (5 mg/ml × 4 ml × 12, 5 mg/ml as 12 consecutive nebulizations of 4 ml) Neb scuPA, saline
Chen et al., (33), China Pig, NR (6/6) LPS 74,184 IU (initially 4,400 IU/kg in 10 min, then 4,400 IU/kg/h for 2 h) i.v. uPA, NT 6 h
Gunther et al., (18) a,b, Germany Rabbit, NR (9/5 or 9/7) Bleomycin 6,319 ± 26.5 IU (6,319 ± 26.5 IU × 1) or 6,889 ± 12.3 IU (6,889 ± 12.3 IU × 1) Neb rhuPA, NT 28 days
Yu et al., (34), China Rabbit, M (18/18) Embolism 45,000 IU (20,000 U/kg × 2.25 kg) i.v. uPA, saline 14 days
Chen et al., (35), China Rabbit, NR (6/6) Embolism 55,000 IU (18,333 IU in 3 ml saline, 36,667 IU in 5 ml saline) uPA, saline 12 h
Sisson et al., (36), USA Mice, NR (10/11) Bleomycin NR Tg muPA DNA, plasmid 28 days
Hardaway et al., (37), USA Dog, NR (34/13) Hemorrhagic shock 100,000 IU i.v. Plasmin, NT 48 h
Motoyama et al., (38), Japan Rat, M (7/7) Hypoxia reperfusion 0.5 mg 1 h
Motoyama et al., (39), Japan Rat, M (7/7) 3.5 h

tPA, tissue-type plasminogen activator; uPA, urokinase plasminogen activator; rhtPA/rhuPA, recombinant human tPA/uPA; scuPA, single-chain uPA; i.v., intravenous injection/infusion; i.p., intraperitoneal injection; i.t., intratracheal 
inhalation; Neb, nebulization; Tg, transgenic; LPS, lipopolysaccharide; E. coli, Escherichia coli; IL-1, interleukin 1; PBS, phosphate buffered saline; F/M, female/male; Ad., adenoviral vector; NT, not treated; NR, not reported.
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taBLe 3 | Data quality included for analyzing mortality.

Study total 
number 
(control/
treated)

included 
number 
(control/
treated)

Death 
incidence 
(control/
treated)

Follow-up time 
(hour or day)

Vasquez et al., (32)a 6/6 6/6 6/5  6–8 h
Vasquez et al., (32)b 7/7 7/7 4/0 23 h
Hardaway et al., (37) 34/13 34/13 31/5 48 h
Renckens et al., (31) 12/12 12/12 9/4 30 days
Sisson et al., (36) 10/11 10/11 5/1 21 days
Hardaway et al., (25) 8/8 8/8 7/0 24 h
Veress et al., (30) 13/9 13/9 13/0 41.5 h
Hardaway et al., (15)a 9/5 9/5 9/0 44 h
Hardaway et al., (15)b 9/5 9/5 9/0 44 h
Veress et al., (29) 4/12 4/12 4/0 41.5 h
Total 112/88 112/88 97/15  6 h–30 days

None of the animals were excluded during the experiments due to severe adverse 
events. Sample size for both control and treated groups was computed by the online 
server, the Clincalc (www.clincalc.com/stats/samplesize.aspx) with the settings for 
two independent study groups for “Study Group Design,” dichotomous for “Primary 
Endpoint,” 87% mortality for control (group 1), 17% mortality for treated group 
(group 2), alpha = 0.05, and meta (power) = 80 or 95%. Calculated sample size for 
both groups is 7 animals (power = 80%) or 10 animals (power = 95%).

taBLe 2 | ARRIVE checklists of included studies.

20 aRRive checklists Fully  
reported n/N 
(% reported)

Partially 
reported n/N 
(% reported)

Not  
reported n/N 
(% reported)

1 Title 22/22 (100) 0/22 (0) 0/22 (0)
2 Abstract 12/22 (54.5) 10/22 (45.5) 0/22 (0)
3 Background 0/22 (0) 21/22 (95.5) 1/22 (4.5)
4 Objectives 21/22 (95.5) 0/22 (0) 1/22 (4.5)
5 Ethical statement 16/22 (72.7) 0/22 (0) 6/22 (27.3)
6 Study design 1/22 (4.5) 20/22 (91) 1/22 (4.5)
7 Experimental 

procedure
0/22 (0) 22/22 (100) 0/22 (0)

8 Experimental 
animals

2/22 (9.1) 19/22 (86.4) 1/22 (4.5)

9 Housing and 
husbandry

0/22 (0) 4/22 (18.2) 18/22 (81.8)

10 Sample size 0/22 (0) 0/22 (0) 22/22 (100)
11 Allocating animals 0/22 (0) 10/22 (45.5) 12/22 (54.5)
12 Experimental 

outcomes
22/22 (100) 0/22 (0) 0/22 (0)

13 Statistical 
methods

0/22 (0) 20/22 (90.9) 2/22 (9.1)

14 Baseline data 10/22 (45.5) 0/22 (0) 12/22 (54.5)
15 Numbers 

analyzed
2/22 (9.1) 1/22 (4.5) 19/22 (86.4)

16 Outcomes and 
estimation

7/22 (31.8) 14/22 (63.7) 1/22 (4.5)

17 Adverse events 6/22 (27.3) 0/22 (0) 16/22 (72.7)
17a Details of adverse 

events
0/22 (0) 0/22 (0) 22/22 (100)

18 Interpretation/
scientific 
implications

0/22 (0) 22/22 (100) 0/22 (0)

19 Generalizability/
translation

0/22 (0) 0/22 (0) 22/22 (100)

20 Funding 11/22 (50) 0/22 (0) 11/22 (50)

N, total number of papers where the item was applicable; n, total number of papers 
reporting the item.
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Because the heterogeneity between these studies was significant 
(I2 = 87%), we, therefore, analyzed the beneficial effects of each 
individual fibrinolysin. As a result, tPA, uPA, and plasmin ele-
vated PaO2 with a net value of 23 mmHg (95% CI: 6 to 41 mmHg, 
P = 0.008), 8 mmHg (95% CI: 2 to 13 mmHg, P = 0.005), and 
23  mmHg (95% CI: −6 to 51  mmHg, P  =  0.12), respectively 
(Table 4). Next, the contribution of three routes to the efficacy 
of fibrinolytics on PaO2 was assessed. 5 of 10 studies delivered 
intravenously showed an increase of 15 mmHg in PaO2 (95% 
CI: 4 to 27 mmHg, P = 0.01) in treated animals. Intratracheal 
administration showed a beneficial effect (30 mmHg, 95% CI: 
24 to 37  mmHg, P  <  0.00001), whereas nebulization did not 
(3 mmHg, 95% CI: −2.0 to 8 mmHg, P = 0.18) (Table 4). Finally, 
we analyzed this benefit in small and large animals separately. 
Twelve small animal studies (85 animals for controls, 77 animals 
for treated group) were analyzed. Six studies favored fibrinolytic 
therapy, while another half did not. Ultimately, there was an 
improvement of 14 mmHg in PaO2 in small animals compared 
with controls (95% CI: 7 to 23 mmHg, P = 0.0007). In contrast, 
the improvement in large animals was statistically insignificant 
due to a large variance (21 mmHg, 95% CI: −26 to 68 mmHg, 
P = 0.38) (Table 4).

Overall arterial carbon dioxide pressure (PaCO2), another 
physiological parameter for gas exchange capacity of the lung, 
showed a significant reduction of 12  mmHg (95% CI: −18 
to −5  mmHg, P  =  0.0001) in treated animals (Figure  3B). 
Moreover, five of seven tPA studies (42 controls, 36 treated 
animals) favored fibrinolytic therapy with a decrease of 
21 mmHg (95% CI: −34 to −8 mmHg, P = 0.002) in PaCO2, 
whereas the other two studies did not. In contrast, uPA did 
not significantly alter PaCO2 (0.3  mmHg, 95% CI: −2 to 
2  mmHg, P  =  0.79) in three studies (Table  4). Regarding 
routes of administration, all of the five studies investigating 
i.t. treatment (29 controls, 23 treated animals) demonstrated 
a favor, as there was a 31 mmHg reduction in PaCO2 (95% CI: 
−45 to −18 mmHg, P < 0.00001). In contrast, i.v. (3 studies) 
and nebulization (2 studies) did not exhibit significant effects 
on PaCO2 with a change of 1 mmHg (Table 4). Nine studies 
in small animals (66 controls, 60 treated animals) were evalu-
ated for the efficacy of fibrinolytic therapy in the reduction 
of PaCO2. Five studies favored fibrinolytic therapy, and four 
studies did not. Taken together, the overall PaCO2 showed 
a reduction of 15  mmHg in small animals (95% CI: −23 to 
−7 mmHg, P = 0.0005). However, fibrinolytics did not reduce 
PaCO2 significantly in large animals (Table  4). In addition, 
the overall benefit of fibrinolytics on PO2 and PaCO2 levels at 
the same time point were confirmed by analyzing data at the 
endpoint of each study (Table 4, data with *).

Fibrinolytic activity
Fibrinolytic therapy significantly increased the fibrinolytic activ-
ity both in the plasma and BALF, as measured by the alterations 
in plasminogen activator activity (PAA), PAI-1, and FDP. Overall, 
fibrinolytics significantly increased 39% (95% CI: 25 to 52%, 
P < 0.00001) for PAA in the plasma, 51% (95% CI: 45 to 56%, 
P < 0.00001) for PAA in BALF, and 408 ng/ml (95% CI: 352 to 
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FiGURe 2 | Forest plot summarizing the effect of fibrinolytic therapy on overall mortality of acute lung injury animals. Squares and their sizes represent the risk ratio 
(RR) and corresponding contributions to overall effect (diamond), respectively. Horizontal lines through each square represent 95% confidence intervals (95% CI). I2 
depicts heterogeneity.
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465 ng/ml, P < 0.00001) for FDP in BALF, respectively. In sharp 
contrast, PAI-1 in BALF was decreased significantly in treated 
animals (−21 ng/ml, 95% CI: −24 to −19 ng/ml, P < 0.00001) 
(Figure 4).

The effects of fibrinolytics on fibrinolytic activity were further 
analyzed with the data grouped by delivering routes. For PAA 
in the plasma, intravenous delivery was used in two studies (39 
controls, 32 treated animals), and nebulization was applied in 
one publication (14 controls, 14 treated animals). Both systemic 
(i.v.) and local (nebulization) routes were effective in augment-
ing plasma PAA: an increase of 35% of basal level for i.v. (95% 
CI: 16 to 55%, P = 0.0003) and 44% for nebulization (95% CI: 
42 to 47%, P < 0.00001), respectively, were observed (Table 4). 
Similarly, fibrinolytic activity in BALF was improved signifi-
cantly. PAA in BALF was increased by 48% (95% CI: 43 to 53%, 
P < 0.00001) for i.v. and 58% (95% CI: 32 to 84%, P < 0.0001) 
for nebulization, respectively (Table  4); FDP in BALF were 
also elevated: 392  ng/ml for i.v. (95% CI: 331 to 453  ng/ml, 
P  <  0.00001) and 549  ng/ml for nebulization (95% CI: 48 to 
1,050 ng/ml, P = 0.03), respectively. With regards to individual 
fibrinolytic regimen, six tPA (53 controls, 46 treated animals) 
and two plasmin studies (14 controls, 14 treated animals) dem-
onstrated an increment of 591 ng/ml (95% CI: 442 to 739 ng/ml, 
P < 0.00001) and 5 ng/ml (95% CI: 3 to 7 ng/ml, P < 0.00001) 
in FDP, respectively (Table 4). In contrast, PAI-1 in BALF was 
decreased significantly by fibrinolytics delivered via either i.v. 
(−21 ng/ml, 95% CI: −25 to −18 ng/ml, P < 0.00001) or nebu-
lization (−22 ng/ml, 95% CI: −24 to −21 ng/ml, P <  0.00001) 
(Table 4).

coagulative activity
Coagulation was analyzed as TATc. Overall, fibrinolytics signifi-
cantly increased plasma TATc (1.6 ng/ml, 95% CI: 0.8 to 2.4 ng/ml, 
P = 0.0001) (Figure 5). Plasma TATc was measured in six studies: 
four studies via i.v. (39 controls, 32 treated animals) and two 

studies via nebulization (14 controls, 14 treated animals). Both 
nebulization (3.7 ng/ml, 95% CI: 1.6 to 5.9 ng/ml, P = 0.0007) 
and i.v. (1.2 ng/ml, 95% CI: 0.4 to 2.1 ng/ml, P = 0.005) increased 
plasma TATc (Table 4).

Neutrophil infiltration
We evaluated potential effects of fibrinolytic administration on 
neutrophils in BALF for lung inflammation. First, we adopted 
the fixed effect model (I2 = 34%) to analyze BALF neutrophils. 
An overall reduction of 3 × 104 cells/ml in neutrophils was seen 
(95% CI: −5 to −2 ×  104 cells/ml, P <  0.00001) (Figure 6A). 
Six tPA (50 controls, 48 treated animals) and two uPA stud-
ies (18 controls, 12 treated animals) were analyzed separately. 
Only one tPA study showed lesser neutrophils (8  ×  104 cells/
ml, 95% CI: −16 to −0 ×  104 cells/ml, P =  0.04) over that of 
controls. The other 5 tPA studies, however, did not exhibit sig-
nificant changes in neutrophils compared with controls. UPA 
suppressed the infiltration of neutrophils into alveoli (−3 × 104 
cells/ml, 95% CI: −5 to −2 × 104 cells/ml, P < 0.00001) in two 
studies. Nebulization of fibrinolytics was effective in reducing 
alveolar neutrophils (−4 × 104 cells/ml, 95% CI: −6 to −2 × 104 
cells/ml, P  =  0.0003). In contrast, neither intravenous nor 
intraperitoneal administration reduced alveolar neutrophils 
significantly: −1 × 105 cells/ml for i.v. (95% CI: −26 to 7 × 104 
cells/ml, P = 0.26) and −2 × 105 cells/ml for i. P. (95% CI: −1 to 
1 × 106 cells/ml, P = 0.71), respectively (Table 4). Apparently, 
fibrinolytic therapy decreased alveolar neutrophils in a route-
dependent manner.

Lung edema
The random effect model was used to assess the efficacy of 
fibrinolytics on the resolution of edema fluid in injured 
lungs (Figure 6B). Total gravimetric lung wet/dry ratios were 
analyzed in two studies for plasmin (14 controls, 14 treated 
animals), two for tPA (16 controls, 12 treated animals), and 
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taBLe 4 | Summary of analyzed parameters.

Overall effect Small animal Large 
animal

tPa uPa Plasmin i.v. Nebulization i.t. i.p. transgenic

Mortality (RR) 0.21 (0.08, 0.52)
0.0008, 88/112

0.17 (0.04, 
0.65)

0.01, 44/39

0.24 (0.07, 
0.82)

0.02, 44/73

0.13 (0.03, 0.66)
0.01, 38/38

0.18 (0.02, 
1.70)

0.13, 37/40

0.42 (0.21, 
0.85)

0.02, 13/34

0.24 (0.07,0.82)
0.02, 44/73

– 0.05 
(0.01,0.32)

0.002, 
21/17

– 0.38 (0.17, 
0.85)

0.02, 23/22

PaO2, mmHg 15.16 (7.78, 22.55)
<0.0001, 119/138

14.79 (6.28, 
23.30)

0.0007, 
77/85

21.01 
(−25.54, 
67.55)

0.38, 42/53

23.41 (6.06, 
40.76)

0.008, 32/38

7.68 (2.23, 
13.03)

0.005, 73/86

22.74 (−5.72, 
51.21)

0.12, 14/14

15.18 (3.59, 26.76)
0.01, 76/84

3.17 (−1.50, 7.83)
0.18, 29/38

30.31 
(23.74, 
36.89)

<0.00001, 
14/16

– –

PaO2, mmHga 15.03 (5.63, 24.42)
0.002, 116/104

– – – – – – – – – –

PaCO2, 
mmHg

−11.66 (−17.58, −5.73)
0.0001, 71/80

−14.82 
(−23.11, 
−6.52)
0.0005, 
60/66

−0.38 
(−1.92, 
1.16)

0.63, 11/14

−21.23 (−34.40, 
−8.05)

0.002, 36/42

0.29 (−1.84, 
2.42)

0.79, 35/38

– 0.89 (−1.71, 3.48)
0.50, 31/31

1.36 (−2.60, 5.31)
0.50, 17/20

−31.39 
(−44.66, 
−18.12)

<0.00001, 
23/29

− –

PaCO2, 
mmHga

−13.65 (−22.39, −4.92)
0.002, 58/49

– – – – – – – – – –

Plasma 
PAA,%

38.84 (25.36, 52.31)
<0.00001, 46/53

– – – – – 35.80 (16.40, 55.19)
0.0003, 32/39

44.48 (41.99, 46.98)
<0.00001, 14/14

– – –

BALF PAA,% 50.53 (45.33, 55.73)
<0.00001, 46/53

– – – – – 48.04 (43.04, 53.04)
<0.00001, 32/39

58.27 (32.38, 84.15)
<0.0001, 14/14

– – –

BALF FDP, 
ng/ml

408.41 (351.65, 465.16)
<0.00001, 60/67

– – 590.58 (441.78, 
739.38)

<0.00001, 46/53

– 4.90 (3.12, 
6.68)

<0.00001, 
14/14

392.22 (331.41, 453.02)
<0.00001, 46/53

549.03 (48.10, 
1049.96)

0.03, 14/14

– – –

BALF PAI-1, 
ng/ml

−21.44 (−23.78, −19.09)
<0.00001, 46/53

– – – – – −21.12 (−24.54, −17.69)
<0.00001

−22.46 (−24.10, 
−20.82)

<0.00001

– – –

Plasma TATc, 
ng/ml

1.59 (0.78, 2.40)
0.0001, 46/53

– – – – – 1.24 (0.37, 2.12)
0.005, 32/39

3.73 (1.56, 5.89)
0.0007, 14/14

– – –

Neutrophil, 
106 cells/ml

−0.03 (−0.05, −0.02)
<0.00001, 60/68

– – −0.08 (−0.16, 
−0.00)

0.04, 48/50

−0.03 (−0.05, 
−0.02)

<0.00001, 
12/18

– −0.10 (−0.26, 0.07)
0.26, 24/28

−0.04 (−0.06, −0.02)
0.0003, 26/32

– −0.20 
(−1.26, 
0.86)

0.71, 10/8

–

Lung water 
content

−1.49 (−2.15, −0.83)
<0.00001, 32/36

−2.09 (−2.72, 
−1.45)

<0.00001, 
20/24

−0.60 
(−1.26, 
0.06)

0.07, 12/12

−2.75 (−6.64, 
1.14)

0.17, 12/16

−0.22 (−0.75, 
0.31)

0.41, 6/6

−1.84 
(−2.38, 
−1.30)

<0.00001, 
14/14

−1.35 (−2.10, −0.61)
0.0004, 20/20

−0.90 (−1.13, −0.67)
<0.00001, 6/6

– −4.88 
(−6.94, 
−2.82)

<0.00001, 
6/10

–

Lung injury 
score

−1.83 (−2.55, −1.12)
<0.00001, 64/64

−1.94 (−2.69, 
−1.19)

<0.00001, 
58/58

−1.16 
(−1.96, 
−0.36)

0.004, 6/6

−0.64 (−2.83, 
1.55)

0.55, 38/38

−1.67 (−2.48, 
−0.87)

<0.0001, 
12/12

−3.50 
(−3.61, 
−3.39)

<0.00001, 
14/14

−1.92 (−2.65, −1.19)
<0.00001, 55/55

– – – −0.36 
(−2.81, 
2.09)

0.77, 9/9

RR, risk ratio; tPA, tissue-type plasminogen activator; uPA, urokinase-type plasminogen activator; i.v., intravenous injection/infusion; i.t., intratracheal inhalation; i.p., intraperitoneal injection; PaO2, arterial oxygen tension; PaCO2, arterial carbon 
dioxide pressure; PAA, plasminogen activator activity; PAI-1, plasminogen activator inhibitor-1; BALF, bronchoalveolar lavage fluid; FDP, fibrin degradation products; TATc, thrombin–antithrombin complexes. Weighted mean differences, 95% CI in 
brackets, and p values and animal numbers for treated/control groups are listed on three rows for each parameter. Analyzed results from grouped data are filled with blue, orange, and green for animal size, fibrinolytics, and routes, respectively.
aAnalyzed with endpoint data.
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FiGURe 3 | Effect of fibrinolytic therapy on PaO2 (a) and PaCO2 (B). Weighted mean difference (WMD, square) and overall effect (diamond) are depicted.
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one for uPA (6 controls, 6 treated animals). Our results 
showed that plasmin reduced lung water content (wet/dry 
ratio) significantly (−1.8, 95% CI: −2.4 to −1.3, P < 0.00001). 
However, the effects of tPA and uPA on edema resolution were 
insignificant statistically, albeit a greater extent than plasmin 
was reduced by tPA (−2.8, 95% CI: −6.6 to 1.1, P = 0.17) but 
not uPA (−0.2, 95% CI: −0.8 to 0.3, P  =  0.41). Fibrinolytic 
effects on the resolution of edema fluid were examined by 
routes in five studies: three via i.v., one via nebulization, and 
one via i.p. A significant improvement in edema fluid clear-
ance was seen when delivered via i.v. (−1.4, 95% CI: −2.1 to 
−0.6, P = 0.0004), nebulization (−0.9, 95% CI: −1.1 to −0.7, 
P < 0.00001), and i.p. (−5, 95% CI: −7 to −3, P < 0.00001). The 
effects of fibrinolytics on lung water content were analyzed 
by grouping data per animal sizes: three studies in small (20 
controls, 24 treated animals) and two in large animals (12 
controls, 12 treated animals). Lung water content was reduced 
to a greater extent by fibrinolytics in small animals (−2.1, 95% 
CI: −2.7 to −1.5, P < 0.00001) than that in large animals (−0.6, 
95% CI: −1.3 to 0.1, P = 0.07) (Table 4).

Histologic Lung injury Score
The random effect model was utilized to examine the efficacy 
of fibrinolytics on histological lung injury score (Figure  6C) 
for the substantial heterogeneity existed among nine studies: 
five for tPA (38 controls, 38 treated animals), two for uPA (12 
controls, 12 treated animals), and two for plasmin (14 controls, 
14 treated animals). Both uPA and plasmin improved lung injury 
score, respectively, by a decrease of 1.7 for uPA (95% CI: −2.5 
to −0.9, P < 0.0001) and 3.5 for plasmin (95% CI: −3.6 to −3.4, 
P < 0.00001). By comparison, tPA reduced lung injury score to a 
lesser extent (−0.6, 95% CI: −2.8 to 1.6, P = 0.55) insignificantly. 
Further, we analyzed potential differences between two routes, 
eight for i.v. (55 animals for both control and treated groups) 
and one for gene therapy (9 animals for both control and treated 
groups). Fibrinolytics delivered via i.v. reduced lung injury score 
significantly (−1.9 via i.v., 95% CI: −2.7 to −1.2, P < 0.00001), but 
not via gene therapy (−0.4, 95% CI: −2.8 to 2.1, P = 0.77). Finally, 
we assessed the data from nine studies grouped per animal sizes: 
eight in small (58 controls, 58 treated animals) and one in large 
animal (6 controls, 6 treated animals). A significant reduction in 
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FiGURe 4 | Effects of fibrinolytic treatment on the fibrinolysis in the plasma and bronchoalveolar lavage fluid (BALF). (a) Plasma plasminogen activator activity (PAA).  
(B) BALF PAA. (c) BALF fibrin degradation products (FDP). (D) BALF plasminogen activator inhibitor type 1 (PAI-1).
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FiGURe 5 | Effect of fibrinolytic therapy on plasma thrombin–antithrombin complexes.
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FiGURe 6 | Effects of fibrinolytic therapy on lung neutrophils (a), lung water content (B), and lung injury score (c).
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taBLe 5 | Effects of preventive strategies vs treatment strategies only.

endpoints Preventive strategies treatment strategies

Mortality 0.41 (0.24, 0.68) 0.0007 0.11 (0.01, 1.10) 0.06

PaO2 8.09 (−11.49, 27.67) 0.42 18.53 (7.15, 29.91) 0.001

Lung water content −2.09 (−2.72, −1.45) 
<0.00001

−0.60 (−1.26, 0.06) 0.07

Lung injury score −2.14 (−2.80, −1.48) 
<0.00001

−1.67 (−2.48, −0.87) 
<0.0001
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lung injury score was found in both small (−1.9, 95% CI: −2.7 to 
−1.2, P < 0.00001) and large animals (−1.2, 95% CI: −2.0 to −0.4, 
P = 0.004) treated with fibrinolytics (Table 4).

Preventive and therapeutic intervention 
on effects of Fibrinolysis
The mortality, PaO2, lung water content, and lung injury score 
of preventive and therapeutic intervention was analyzed. As to 
mortality, preventive strategy showed a beneficial effect (0.41, 
95% CI: 0.24 to 0.68, P = 0.0007), whereas treatment strategy did 
not (0.11, 95% CI: 0.01 to 1.10, P = 0.06) (Table 5). Treatment 
strategy showed a beneficial effect (18.53 mmHg, 95% CI: 7.2 to 
29.9  mmHg, P  =  0.001) (Table  5) on PaO2, but not preventive 
strategy (8.09 mmHg, 95% CI: −11.5 to 27.7 mmHg, P = 0.42). 
With regards to lung water content, there was a significant 
decrease of 2.1 (95% CI: −2.7 to −1.5, P < 0.00001) compared with 
control groups in preventive maneuvers, but this decrease was not 
significant in therapeutic maneuver (−0.6, 95% CI: −1.3 to 0.06, 
P = 0.07). Compared with control group, the lung injury score was 
reduced by 2.1 for preventive maneuver (95% CI: −2.8 to −1.5), 
1.7 for therapeutic maneuver (95% CI: −2.5 to −0.9) (Table 5).

assessment of Bias and Sensitivity 
analysis
To determine if potential threats to internal validity influenced 
our findings, we evaluated the quality of included 22 studies in 
addition to the checklists of the ARRIVE guidelines (Table 2). 
Incomplete outcome data and selective outcome reporting in 
all studies were low risk. Randomization, blinding of personnel, 
allocation concealment, and blinding outcome assessment in 11 
projects were low risk, whereas the risk in remaining projects was 
unclear (Table 6).

Funnel plot found no asymmetrical distribution for PaO2 
(Figure  7A), which was confirmed by the Egger regression 
(Figure 7B; P = 0.199 for PaO2). Without imputing any missing 
studies for PaO2, the Trim and Fill analysis exhibited a symmetri-
cal funnel plot too (data not shown).

To test the stability and dependability of the results, we omit-
ted one study (34), which had a relative large sample size. The 
combined WMD of PaO2 for remaining 17 studies was estimated 
by the sensitivity plot again, yielding a value of 15 (95% CI: 7 to 
24) (Figure  8), which is same as the estimate of overall effect. 
These results indicated that the reliability of our meta-analysis 
was considerably strong.

DiScUSSiON

Fibrinolytic therapy for ALI has been emerging during the last 
decade (41). Comparing with systematic evaluation (including 
systematic review and meta-analysis) of the efficacy of anti-
coagulants in clinical and preclinical studies of ALI (42), the 
potential benefit of fibrinolytics for ALI patients has not been 
tested by well-designed clinical trials yet. In this analysis, we 

taBLe 6 | Risk of bias assessments.

Study Randomization Blinding of 
personnel

allocation 
concealment

Blinding of outcome 
assessment

incomplete 
outcome data

Selective outcome 
reporting

Other bias

Hardaway et al., (37) U U U U L L U
Hardaway et al., (15) U U U U L L U
Hardaway et al., (25) U U U U L L U
Stringer et al., (27) U U U U L L U
Vasquez et al., (32) U U U U L L U
Munster et al., (21) L L L L L L U
Sisson et al., (36) U U U U L L U
Gunther et al., (18) U U U U L L U
Enkhbaatar et al., (16) L L L L L L U
Chen et al., (33) L L L L L L U
Choi et al., (20) L L L L L L U
Choi et al., (19)* L L L L L L U
Renckens et al., (31) U U U U L L U
Chen et al., (35) L L L L L L U
Huang et al., (22) L L L L L L U
Hofstra et al., (24) L L L L L L U
Motoyama et al., (38) L L L L L L U
Veress et al., (29) U U U U L L U
Conhaim et al., (28) U U U U L L U
Motoyama et al., (39) L L L L L L U
Yu et al., (34) L L L L L L U
Veress et al., (30) U U U U L L U

L, low risk of bias; U, unclear risk of bias.
*Second publication from the same author.
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have performed meta-analysis and systematic review, focus-
ing on efficacy in 22 published preclinical studies of ALI. 
Our results suggest that fibrinolytic therapy significantly 
improves gas exchange, reduces alveolar neutrophils, increases 
fibrinolytic activity, reduces the quantity of pulmonary edema 
fluid, and suppresses the histologic severity of lung injury 
in a fibrinolysin-, route-, and species-dependent manners. 
The overall effects of fibrinolytics on death toll, oxygenation, 
fibrinolysis, and lung function were corroborated by analyzing 
subgrouped data and sensitivity. To our knowledge, this is the 
first meta-analysis to summarize previous preclinical studies 

aiming to provide evidence for further animal studies and 
clinical trials.

Fibrinolytic therapy for aLi is Feasible and 
tolerant
All of three fibrinolytic reagents, tPA, uPA, and plasmin were 
administered for 14 animal models of ALI in the included stud-
ies. The large range of applied doses demonstrates feasibility 
and tolerance. In addition, tolerability of tPA was confirmed 
in mice by a classic study (43). Airway bleeding was observed 
only where treatment was given locally with a large dose of 

FiGURe 7 | Bias assessment of PaO2 from 18 studies. (a) Funnel plots of precision (1/SE) as a function of weighted mean differences (WMD) showing the 
distribution of published study outcomes (filled circles). Vertical gray line is a global estimate of efficacy. (B) Egger regression of PaO2 precision (1/SE) against 
WMD/SE.

FiGURe 8 | Sensitivity analysis of PaO2.
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tPA (≥1 mg/kg/d). Although the scarcity of gross hemorrhage 
and other severe adverse events applied via five routes were 
reported in 6 of 22 studies, considering the non-adherence to 
the ARRIVE guidelines (44) and informal systematic measure-
ments of local and systemic hemorrhage quantitatively, the 
potential risk for bleeding associated with fibrinolytic therapy 
could not be ruled out.

mortality improved by Fibrinolytic therapy
Overall mortality was improved during the defined follow-up 
period from 1 h to 28 days. The most effective route to reduce 
mortality is intratracheal administration, and plasmin is the 
least effective lytic to improve survival rate. It is note worthy 
that only two of 10 studies followed mortality 48 h to 30 days. 
Other eight studies determined death toll within 2 days. Given 
the inconsistent follow-up time that differs from clinical studies, 
the overall improvement of mortality by fibrinolytic therapy 
shall be confirmed by further studies designed per the ARRIVE 
guidelines (44) and with extended follow-up periods identical to 
that for ALI/ARDS clinical studies.

Fibrinolytic therapy improves Gas 
exchange
Intriguingly, fibrinolytics increase gas exchange based on data 
at the same time-point, and to the most extent when delivered 
via intratracheal route. Fibrinolytics benefited gas exchange 
differently between small and large animals. It is probably due 
to divergent dose applied between species. Furthermore, the 
structure of the respiratory tract, lung function, inner surface 
of the lung for gas exchange, and oxygen consumption are 
body size dependent. Additionally, inconclusive results of 
oxygenation are seen for plasmin due to insufficient samples 
for meta-analysis. Hypoxia is correlated with the mortality 
of ALI (45). This notion is supported by the benefit of both 
gas exchange and survival rate by intratracheal delivery of 
fibrinolytic regimens.

Fibrinolytic therapy alleviates Lung injury
Our meta-analysis demonstrates that fibrinolytic therapy 
restores the dysfunctional fibrinolysis and coagulation in 
ALI. This benefit does not depend on routes and fibrinolytic 
regimens. Alveolar fibrin deposition attracted neutrophils and 
fibroblasts, and decreased lung edema fluid clearance (46). 
We identify that fibrinolysin tPA and i.v. route are the most 
potent for reducing neutrophil infiltration. We also find that 
fibrinolytics facilitate edema fluid resolution in small animals 
to a greater extent than in large animals. Our previous stud-
ies proved that uPA and plasmin but not tPA could activate 
apically located epithelial sodium channels, a predominate 
pathway to remove edema fluid (47, 48). Considering that 
tPA competitively binds to PAI-1 with a greater affinity 
than uPA, delivered tPA may form complexes with elevated 
PAI-1 and serve as a “cage” to separate endogenous uPA 
from PAI-1 (49). Under this situation, freed uPA is able to 
activate epithelial sodium channels and resolve edema fluid. 
It is unclear why intraperitoneal administration eliminates 

lung edema to the most extent. At least, this is the only way 
to get rid of direct addition of extra fluid to the flooded air 
spaces intratracheally or indirectly leaking to the alveoli 
through the impaired blood–gas barrier post intravenously 
fluid infusion. In addition, we find that plasmin may be the 
best fibrinolysin to improve lung injury score. Plasmin may 
defragment deposited fibrin. However, this is not supported 
by FDP content in BALF. It is probably due to the cleavage 
of epithelial sodium channels by plasmin proteolytically to 
expedite transalveolar fluid re-absorption (unpublished data). 
Exogenously applied tPA displayed anti-inflammatory effects 
(50). Therefore, anti-inflammatory properties of three fibrino-
lytic agents could be a mechanism for alleviating ALI. Taken 
together, fibrinolytic regimens may suppress the mortality 
in preclinical models of ALI through multifaceted mecha-
nisms in a route- and model-dependent manner. ALI animal 
models may not be representative of human ALI, because of 
the timing and severity of ALI induction, the dose and tim-
ing of the treatment in relation to ALI induction, the use of 
small/young animals without comorbid illnesses, and lack 
of administration of standard of care co-interventions, such 
as fluids and antibiotics during the study period. How well 
animal models of ALI mimic the pathophysiology of human 
ALI has also been a contentious issue. Thus, the effect of 
construct validity on fibrinolytic therapy of ALI remains to be  
determined.

Limitations of Our analysis
Our review has some limitations. First, the duration of delivery 
of fibrinolytic agents and the period of observation were not 
consistent. More than half of the included studies do not adhere 
to the ARRIVE guidelines. Second, although subgroups and 
sensitivity analyses were conducted, we could not completely 
explain the substantial heterogeneity and some diverse effects 
in experimental ALI. Third, uncertainty of the potential 
benefits of fibrinolytics in ALI may be improved by future 
preclinical studies with larger numbers of animal studies. For 
example, we could not perform dose-effect analysis because of 
a paucity of sufficient data. Finally, the effects of fibrinolytics 
on ALI animal models provide basic information for further 
preclinical studies. Considering the difference between relative 
homogeneous animals (e.g., healthy young or adult animals 
without comorbidity and extremely heterogeneous patients), 
it shall be cautious to link the findings in preclinical studies to 
ALI patients.

cONcLUSiON

Our results identify that the best route is intratracheal deliv-
ery, and the most efficacious regimen is tPA. FDA approved 
fibrinolytic therapies for cardiovascular and pleural diseases, 
including hypertensive intraventricular hemorrhage (51), 
loculated pleural effusions, parapneumonic effusions, pleural 
empyema, malignant effusions, hemothorax, and myocardial 
infarction (52–55), demonstrate the tolerance and feasibility 
of this treatment. This meta-analysis, however, did not provide 
data on the optimized dose of each therapy, the optimal time 
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