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Background: T follicular helper (Tfh) cells are crucial for B cell differentiation and anti-
gen-specific antibody production. Dysregulation of Tfh-mediated B cell help weakens 
B cell responses in HIV infection. Moreover, Tfh cells in the lymph node and peripheral 
blood comprise a significant portion of the latent HIV reservoir. There is limited data on 
the effects of perinatal HIV infection on Tfh cells in children. We examined peripheral Tfh 
(pTfh) cell frequencies and phenotype in HIV-infected children and their associations with 
disease progression, immune activation, and B cell differentiation.

Methods: In a Kenyan cohort of 76 perinatally HIV-infected children, comprised of 43 
treatment-naïve (ART−) and 33 on antiretroviral therapy (ART+), and 42 healthy controls 
(HIV−), we identified memory pTfh cells, T cell activation markers, and B cell differen-
tiation states using multi-parameter flow cytometry. Soluble CD163 and intestinal fatty 
acid-binding protein plasma levels were quantified by ELISA.

results: ART− children had reduced levels of pTfh cells compared with HIV− children 
that increased with antiretroviral therapy. HIV+ children had higher programmed cell 
death protein 1 (PD-1) expression on pTfh cells, regardless of treatment status. Low 
memory pTfh cells with elevated PD-1 levels correlated with advancing HIV disease 
status, indicated by increasing HIV viral loads and T  cell and monocyte activation, 
and decreasing %CD4 and CD4:CD8 ratios. Antiretroviral treatment, particularly when 
started at younger ages, restored pTfh cell frequency and eliminated correlations with 
disease progression, but failed to lower PD-1 levels on pTfh cells and their associations 
with CD4 T cell percentages and activation. Altered B cell subsets, with decreased naïve 
and resting memory B cells and increased activated and tissue-like memory B cells in 
HIV+ children, correlated with low memory pTfh cell frequencies. Last, HIV+ children 
had decreased proportions of CXCR5+ CD8 T cells that associated with low %CD4 and 
CD4:CD8 ratios.
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inTrODUcTiOn

T follicular helper (Tfh) cells are a recently described CD4 T cell 
subset that links the adaptive and humoral immune systems. 
These cells are identified by expression of chemokine receptor 
CXCR5 that directs their migration to B cell follicles in response 
to CXCL13. Once localized in B  cell follicles, Tfh cells form 
germinal centers (GCs) (1). Their differentiation and func-
tions are regulated by B-cell lymphoma 6 (Bcl-6) (2). Tfh cells 
stimulate B cell differentiation to plasma and memory B cells (3) 
and are critical for antigen-specific antibody production, class 
switching, and B cell memory differentiation (4). During natural 
infections or after vaccinations, Tfh cell interactions with B cells 
mediate high affinity class-switched antibody production and 
B  cell memory development (3). Tfh cells exert effector func-
tions by secretion of IL-21 in addition to small levels of Th1 and 
Th2 cytokines IFNγ and IL-4 (4, 5). Dysfunctional Tfh cells can 
result in autoantibodies and have been associated with autoim-
mune diseases such as rheumatoid arthritis and systemic lupus 
erythematosus (6–10).

A small portion of CD4 T  cells closely resembling tissue-
resident Tfh cells are found in the peripheral blood (10–12). 
These peripheral Tfh (pTfh) cells also provide B  cell help, but 
require secondary signals that include CD40L and inducible 
T-cell costimulator (ICOS) interactions and IL-21 secretion from 
B cells (11). Phenotypically, pTfh cells differ from lymphoid Tfh 
cells. Bcl-6 is downregulated in circulating CXCR5+ CD4 T cells, 
and thus fails to identify pTfh cells (10, 11). Second, while pro-
grammed cell death protein 1 (PD-1) is constitutively expressed 
on lymphoid Tfh cells, in the periphery, PD-1 is variably expressed, 
with low levels on resting pTfh cells and high levels on activated 
pTfh cells (12–14).

T follicular helper cells are critical for clearance of acute and 
chronic viral infections and effective virus-specific antibody 
production. In HIV vaccine trials, improved humoral responses 
occurred in subjects with expanded HIV-specific IL-21+ pTfh 
cells (14). Moreover, certain Tfh cell subsets correlate with the 
development of broadly neutralizing HIV antibodies (13, 15). 
Indeed, Tfh cells are being investigated for novel HIV vaccine 
strategies (11, 13, 15). Studies of HIV-infected adults demon-
strate that circulating Tfh cells are decreased while lymphoid 
Tfh cells are paradoxically expanded, functionally impaired, 
and preferentially infected with replication-competent HIV 
(14, 16–20). Most importantly, Tfh cells in peripheral blood 
and lymph nodes (LNs) comprise a major compartment of the 
latent HIV reservoir (14, 21). Thus, Tfh cells may have both 

beneficial and pathologic roles during HIV infection—they 
are critical for HIV-specific humoral responses yet are also 
selective targets of HIV infection and enable HIV persistence 
in latent reservoirs.

Both lymphoid and circulating Tfh cells have impaired 
function in HIV+ adults, which may contribute to weakened 
responses to vaccines (16, 20, 22, 23). The potential conse-
quences of muted antibody responses are magnified in children 
with perinatal HIV infection during routine childhood vaccina-
tions. However, few studies have examined pTfh cells in children 
(18–20, 24). We evaluated pTfh cell frequencies and phenotype 
in children with perinatal HIV infection and their associations 
with HIV disease progression and B  cell subsets. We found 
decreased pTfh cell levels in untreated HIV+ children compared 
with HIV negative children, which failed to normalize within 
1 year of antiretroviral treatment. pTfh cells had elevated PD-1 
expression in HIV+ children regardless of treatment status. Low 
pTfh cell frequencies with high PD-1 expression correlated with 
HIV disease progression and an activate/differentiated B cell dis-
tribution. Finally, CXCR5+ memory CD8 T cells were depleted 
in HIV+ children.

MaTerials anD MeThODs

Participants
Ethical approval for this study was obtained from New York 
University (10-02586) and Kenyatta National Hospital/University 
of Nairobi (P283/07/2011). Written informed consent and verbal 
assent when appropriate were obtained from all participants and/
or parents. We enrolled a total of 76 perinatally infected HIV+ and 
42 HIV negative-unexposed children (HIV−) aged 5–18 years old 
from Bomu Hospital in Mombasa, Kenya between 2011 and 2012. 
HIV+ children included 43 antiretroviral therapy naïve (ART−) 
and 33 HIV+ children on antiretroviral treatment for at least 
6 months with viral load less than or equal to 5,000 copies/mL 
(ART+). Treatment timing and duration for ART+ subjects is 
shown in Table S1 in Supplementary Material. Individuals with a 
recent acute illness, active Mycobacterium tuberculosis or malaria 
infection, or pregnancy within one year were ineligible for study 
entry.

Plasma and peripheral blood mononuclear cells (PBMCs) 
were isolated from peripheral blood by centrifugation and Ficoll-
Hypaque (GE Healthcare) density gradient centrifugation then 
cryopreserved in −80°C and liquid nitrogen, respectively. HIV 
RNA PCR was performed on diluted plasma samples with Roche, 

conclusion: Low memory pTfh cell frequencies with high PD-1 expression in HIV+ chil-
dren correlate with worsening disease status and an activated and differentiated B cell 
profile. This perturbed memory pTfh cell population may contribute to weak vaccine and 
HIV-specific antibody responses in HIV+ children. Restoring Tfh cell capacity may be 
important for novel pediatric HIV cure and vaccine strategies.
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TaBle 1 | Subject characteristics.

hiV− arT− arT+ p

n 42 43 33
Age (years)d 11 (9–13) 11 (8–14) 12 (8–13) NSa

Female 17 (41%) 23 (54%) 19 (58%) NSb

%CD4d 38 (33–42) 24 (13–28) 32 (27–41) p < 0.0001a

Absolute CD4 
countd

923 
(739–1,247)

583  
(352–812)

962 
(750–1,228)

p < 0.0001a

HIV log  
copies/mLd

4.8 (4.2–5.2) 2 (2–2) p < 0.0001c

aKruskal–Wallis test.
bChi squared test.
cMann–Whitney test.
dMedian values with upper and lower quartile range.
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COBAS® AmpliPrep/COBAS® TaqMan®HIV-1 Test, version 2.0 
(limit of detection 110 copies/mL).

HIV−, ART−, and ART+ were matched for age and sex 
(Table 1). Median CD4% in HIV− children was 38 (IQR 33–42). 
ART− had median CD4% of 24 (IQR 13–28) and HIV viral load 
of 4.8 (IQR 4.2–5.2) log copies/mL. ART+ had median CD4% 
and HIV viral load of 32 (IQR 27–41) and 2 (IQR 2–2) log copies/
mL, respectively (Table 1).

Flow cytometric studies
Cryopreserved PBMCs were evaluated by flow cytometry with 
fluorescent-conjugated antibodies to CD3, CD4, CD8, CD45RO, 
CCR7, CXCR5, PD-1, CD38, HLA-DR, CD19, CD21, CD27, and 
β7. Cells were stained at 4°C for 30 min in PBS buffer containing 
2% FCS and 0.1% sodium azide. Stained cells were analyzed using 
LSRII flow cytometer (BD Bioscience) and Flow Jo software (Tree 
Star). Singlet lymphocytes were gated based on forward and side 
scatter properties.

Plasma scD163 and intestinal Fatty  
acid-Binding Protein (i-FaBP)
Plasma levels of sCD163 and I-FABP were quantified by ELISA 
assay using Human sCD163 and I-FABP Duoset kits (R&D 
Systems) per the manufacturer’s instructions. Plasma samples 
were diluted 1:100 for sCD163 and 1:1,500 for I-FABP assays 
based on plasma titration studies to achieve levels within the 
range of the standard curve concentrations provided in the com-
mercial ELISA kit according to the manufacturer’s recommenda-
tion. Each test was performed in duplicate with results reported 
as the average of duplicate results.

statistics
All statistical analyses were performed using GraphPad Prism 
software. For comparison of multiple groups of subjects, the 
Kruskal–Wallis test was performed, followed by the two-stage 
linear step-up procedure of Benjamini, Krieger, and Yekutieli 
to correct for multiple comparisons by controlling the false dis-
covery rate. Multiple time points were evaluated with Wilcoxon 
matched-pairs signed-rank test. Correlations were assessed with 
the Spearman rank test. Threshold of significance for all tests was 
less than 0.05.

resUlTs

Memory pTfh cells are Decreased in 
Untreated hiV+ children and correlate 
With Disease Progression
We identified pTfh cells by CXCR5 co-expressed with LN homing 
receptor CCR7 within memory CD4 T  cells as described (25). 
Memory CD4 T cells (TM) were identified as the sum of central 
(TCM, CD45RO+CCR7+), effector (TEM, CD45RO+ CCR7−), and 
RA+ effector (TEMRA, CD45RO−CCR7−) subsets (Figure  1A). 
CXCR5+CCR7+ CD4 TM (memory pTfh) levels were lower in 
ART− children compared with HIV− and ART+ (p <  0.0001; 
Figure 1B), even when adjusted for age as a potential confounder 
(Table S2 in Supplementary Material).

In a subset of ART− children who began antiretroviral therapy 
memory pTfh cell frequencies increased after ~12  months of 
treatment (p = 0.003; Figure 1C). However, these levels remained 
lower than HIV− children (p = 0.02; Figure 1C). In ART+ chil-
dren, treatment initiation at an earlier age predicted preserved 
CXCR5+CCR7+ CD4 TM (p = 0.01, R2 = 0.21; Figure 1D). To 
determine the clinical relevance of decreased pTfh cell frequen-
cies, we examined correlations between memory pTfh cells and 
clinical markers of HIV disease progression. In HIV+ subjects, 
memory pTfh cell levels correlated inversely with HIV viral load 
(p  <  0.0001, r  =  −0.59) and directly with %CD4 (p  <  0.0001, 
r = 0.57) and CD4:CD8 ratios (p < 0.0001, r = 0.54; Figure 1E). 
In separate analyses of ART− and ART+ children, memory pTfh 
frequencies correlated with %CD4 (p  =  0.006, r  =  0.43) and 
CD4:CD8 ratios (p < 0.0001, r = 0.62) in ART− but not in ART+ 
children. These correlations were not present in HIV− subjects 
(Figure S1A in Supplementary Material).

low Memory pTfh cell Frequencies 
correlate With immune activation and gut 
Mucosal Disruption in hiV+ children
We next determined whether memory pTfh cell levels correlated 
with immune activation markers CD38 and HLA-DR, which 
are strong predictors of HIV disease progression (26). Memory 
pTfh cell frequencies inversely correlated with CD38+HLA-DR+ 
CD4 (p < 0.0001, r = −0.62) in HIV+ children and in separate 
analysis of ART− (p  =  0.003, r  =  −0.47) and ART+ subjects 
(p = 0.04, r = −0.37; Figure 2A). Memory pTfh cell frequencies 
also negatively correlated with CD38+HLA-DR+ CD8 T  cells 
(p  =  0.006, r  =  −0.32) and monocyte activation, measured by 
plasma sCD163 concentrations in HIV+ children (p <  0.0001, 
r = −0.48), but not when divided into ART− and ART+ groups 
(Figures 2A,B). There were no significant correlations between 
pTfh cell frequencies and T cell or monocyte activation in HIV− 
children (Figures S1B,C in Supplementary Material).

Chronic inflammation in HIV is driven largely by a com-
promise of the gut mucosa, where the majority of CD4 T cells 
reside (27). In mouse models, Tfh cells have been shown to play 
a unique role in maintaining healthy gut homeostasis (28). To 
study a potential relationship between memory pTfh cells and the 
gut mucosa in humans, we evaluated correlations with two key 
gut-related proteins: β7 integrin and I-FABP. β7 is a subunit of 
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FigUre 1 | Memory peripheral Tfh (pTfh) cells are decreased in untreated HIV+ children and correlate with disease progression. (a) FACS plots showing 
representative gating to identify memory pTfh cells in an HIV− and HIV+ subject. CD4 memory subsets were identified by CD45RO and CCR7 expression. Total 
memory CD4 T cells (CD4 TM) were Boolean-gated as the sum of TCM, TEM, and TEMRA populations. Memory pTfh cells are identified as CXCR5+ CCR7+ cells within 
CD4 TM. (B) The proportion of CXCR5+ CCR7+ cells in CD4 TM in HIV−, ART−, and ART+ children. (c) Memory pTfh cell frequencies in ART− subjects at before 
(T0) and ~12 months after treatment (T1) is shown. The second plot shows memory pTfh cell levels in ART− subjects at T0 and T1 compared with HIV− subjects. 
(D) Linear regression plot of memory pTfh cells vs. age at ART initiation in ART+ children. (e) Correlations between memory pTfh cell frequencies and HIV log 
copies/mL, %CD4+ T cells, and CD4:CD8 ratios in HIV+ children (ART− in orange and ART+ in blue). Significant p values are shown for statistical analysis of HIV+ 
(black), ART− (orange), and ART+ (blue) groups (****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05).
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the gut-homing receptor and HIV co-receptor α4β7 (29). I-FABP 
is expressed in epithelial cells of the small intestine and is released 
into the circulation following intestinal mucosal damage (30). 
Memory pTfh cell levels directly correlated with β7+CD45RO+ 
CD4 T cell frequencies, in both HIV− (p < 0.0001, r = 0.65) and 
HIV+ children (p = 0.004, r = 0.34; Figure 2C). ART+ children 
had a stronger correlation between pTfh cell frequency and β7 
expression in memory CD4 T cells (p < 0.0001, r = 0.78) com-
pared with ART− children (p = 0.046, r = 0.32; Figure 2C). There 
was a direct correlation between memory pTfh cell frequencies 
and I-FABP levels (p =  0.04, r =  0.35) in HIV− children, and 

an indirect correlation in HIV+ children (p = 0.03, r = −0.26; 
Figure 2D) but not separately in ART− and ART+ groups.

Memory pTfh cells in hiV+ children 
express high PD-1 levels That correlate 
With Disease Progression
We next evaluated PD-1 expression on memory pTfh cells (gat-
ing strategy shown in Figure S2A in Supplementary Material). 
Both ART− and ART+ subjects had higher PD-1 expression on 
memory pTfh cells compared with HIV− children (p < 0.0001 
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FigUre 2 | Low memory peripheral Tfh (pTfh) cell frequencies correlate with immune activation and gut mucosal disruption in HIV+ children. (a) Correlations 
between memory pTfh cell frequencies and CD38+ HLA-DR+ CD4 and CD8 T cells in HIV+ children (ART− in orange and ART+ in blue). (B) Correlation between 
memory pTfh cells and plasma soluble CD163 (sCD163) levels in HIV+ children. (c) Correlation between memory pTfh cell levels and (c) β7 integrin and (D) 
intestinal fatty acid-binding protein (I-FABP) in HIV− (gray circles) and HIV+ children. Significant p values are shown for statistical analysis of HIV+ (black), ART− 
(orange), and ART+ (blue) groups.
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and p = 0.003, respectively; Figure 3A). PD-1 levels on memory 
pTfh cells negatively correlated with pTfh cell frequency in HIV+ 
(p = 0.004, r = −0.34) and ART+ children (p = 0.03, r = −0.38) 
but not in ART− children (Figure  3B). In ART+ children, 
earlier age at ART initiation predicted lower PD-1 expression 
on memory pTfh cells (p = 0.007, R2 = 0.22; Figure 3C). PD-1+ 
memory pTfh cell frequencies correlated directly with HIV viral 
load (p = 0.004, r = 0.34), and inversely with %CD4 (p < 0.0001, 
r = −0.46) and CD4:CD8 ratios in HIV+ children (p < 0.0001, 
r  =  −0.51; Figure  3D) but not in HIV− children (Figure S2B 
in Supplementary Material). PD-1+ expression on memory pTfh 
cell correlated directly with CD38+HLA-DR+ CD4 (p = 0.0002, 
r = 0.43) and CD8 T cells (p = 0.0009, r = 0.39; Figure 3E) but 
did not correlate with plasma sCD163 levels (Figure  3F) in 
HIV+ children. In ART− children, PD-1 expression on pTfh cells 
significantly correlated with HIV viral load (p = 0.03, r = 0.35, 
Figure  2D) and CD38+HLA-DR+ CD8 T  cells (p  =  0.002, 
r = 0.49; Figure 3E). In ART+ children, PD-1 expression corre-
lated inversely with %CD4 (p = 0.0001, r = −0.62) and CD4:CD8 
ratios (p  <  0.0001, r  =  −0.76; Figure  3D). There were no sig-
nificant correlations between PD-1 expression on pTfh cells and 
%CD4 or immune activation markers in HIV− children (Figures 
S2C,D in Supplementary Material).

Differentiated B cell Populations correlate 
With low Memory pTfh cells expressing 
high PD-1 levels
Because Tfh cells are intricately linked to B cell differentiation, we 
evaluated B cell populations and their associations with memory 

pTfh cell frequencies and PD-1 expression. Total B cell frequencies 
were decreased in both ART− and ART+ compared with HIV− 
children (p = 0.005 and p = 0.02, respectively; Figure 4A). IgD 
expression on B cells was increased in ART− and ART+ children 
compared with HIV− children (p = 0.002 and p = 0.0001, respec-
tively; Figure 4B), indicating muted class switching. We further 
sub-classified B  cells into differentiation states of naïve mature 
(BN, CD21+CD27−), resting memory (BRM, CD21+CD27+), 
activated memory (BAM, CD21−CD27+), and exhausted/tissue-
like memory (BTLM, CD21−CD27−; Figure 4C) subsets. ART+ 
had increased BN frequencies compared with HIV− and ART− 
(p < 0.0001; Figure 4D). ART− and ART+ had decreased BRM 
levels compared with HIV− (p < 0.0001; Figure 4E). BRM levels 
were higher in ART+ compared with ART− children (p = 0.002; 
Figure  4E). ART− had elevated BAM and BTLM cell frequencies 
compared with HIV− (p  =  0.003 and p  <  0.0001) and ART+ 
(p  <  0.0001; Figures  4F,G). ART+ had lower BAM frequencies 
compared with HIV− (p = 0.003; Figure 4F).

We next examined associations between B  cell differentiation 
states and memory pTfh cell frequencies. In HIV+ subjects, memory 
pTfh cell levels correlated directly with BN (p  =  0.0001, r  =  0.44; 
Figure 4D) and BRM frequencies (p = 0.0003, r = 0.41; Figure 4E), 
and inversely with BAM (p = 0.0002, r = −0.43; Figure 4F) and BTLM 
frequencies (p < 0.0001, r = −0.52; Figure 4G). Last, in HIV+ sub-
jects, PD-1 expression on memory pTfh cells correlated inversely with 
BN (p = 0.03, r = −0.26; Figure 4D) and BRM (p = 0.002, r = −0.36; 
Figure 4E), and directly with BAM (p = 0.046, r = 0.24; Figure 4F) and 
BTLM levels (p = 0.0006, r = 0.40; Figure 4G). These correlations were 
insignificant when separated into ART− and ART+ subjects except 
PD-1 expression on pTfh cells in ART− children inversely correlated 
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FigUre 3 | Memory peripheral Tfh (pTfh) cells in HIV+ children express high programmed cell death protein 1 (PD-1) levels that correlate with disease progression. 
(a) Comparison between PD-1 expression memory pTfh cells of HIV−, ART−, and ART+ children. (B) Correlation between the frequency of total memory pTfh cells 
and their PD-1 expression. (c) Linear regression plot of PD-1 expression on memory pTfh cells vs. age at ART initiation in ART+ subjects. (D) Correlations between 
the frequency of PD-1+ memory pTfh cells and HIV log copies/mL, %CD4+ T cells, and CD4:CD8 ratios in HIV+ children (ART− in orange and ART+ in blue). 
Correlations between PD-1 expression on memory pTfh and (e) CD38+ HLA-DR+ CD4 and CD8 T cells and (F) plasma sCD163 levels. Significant p values are 
shown for statistical analysis of HIV+ (black), ART− (orange), and ART+ (blue) groups (****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05).
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with BN frequency (p = 0.02, r = −0.38; Figure 4D) and directly with 
BTLM frequency (p = 0.003, r = 0.46; Figure 4G). Memory pTfh cells 
and their PD-1 expression did not correlate with any B cell subpopula-
tions in HIV− subjects (Figures S3A–D in Supplementary Material).

hiV+ children have low cXcr5+ Memory 
cD8 T cells With elevated PD-1 
expression
Recently, a CD8 T cell counterpart to Tfh cells, defined as fol-
licular cytotoxic T (Tfc) cells, was found to home to B cell follicles 
via a similar CXCR5-dependent mechanism (31). In the B cell 
follicle, Tfc cells control viral infection by killing infected Tfh cells 
and B cells (32, 33). We identified pTfc cells by CXCR5 expression 
in memory CD8 T cells (Figure 5A). CXCR5+ CD8 TM (memory 
pTfc) cell frequencies were significantly lower in both ART− and 

ART+ children compared with HIV− (p < 0.0001 and p = 0.0002, 
respectively; Figure 5B) even in multivariate analysis adjusting 
for age (Table S2 in Supplementary Material). In ART− subjects, 
memory pTfc cell frequencies increased after ~12  months of 
antiretroviral treatment (p = 0.004), but remained significantly 
lower than HIV− children (p = 0.03; Figure 5C).

Next, we determined whether memory pTfc cell levels cor-
related with clinical markers of HIV disease progression and 
immune activation. In HIV+ subjects, there was no significant 
correlation between memory pTfc cell frequencies and HIV 
viral load. Memory pTfc cells directly correlated with %CD4 
(p = 0.0005, r = 0.39) and CD4:CD8 ratios (p = 0.0001, r = 0.43) in 
HIV+ subjects even when divided into ART− and ART+ groups 
(Figure 5D). In HIV− subjects, memory pTfc cell frequencies also 
correlated with CD4 percentages and CD4:CD8 ratios (%CD4: 
p = 0.02, r = 0.37; CD4:CD8: p = 0.02, r = 0.37; Figure S4A in 
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FigUre 5 | HIV+ children have low CXCR5+ memory CD8 T cells with elevated programmed cell death protein 1 (PD-1). (a) FACS plots showing representative 
gating to identify memory pTfc cells as the total CXCR5+ population in memory CD8 T cells and PD-1 expression in an HIV− and HIV+ subject. Plots shown 
were gated within total memory CD8 T cells. (B) Comparison of CXCR5+ cells within total CD8+ memory T cells in HIV−, ART−, and ART+ children. (c) 
Prospective analysis of memory pTfc in ART− subjects before (T0) and ~12 months after antiretroviral treatment (T1). The second plot compares memory pTfc 
cell frequencies between ART− subjects at T0 and T1 and HIV− subjects. (D) Correlations between memory pTfc cell percentages and HIV log copies/mL, 
%CD4+ T cells, and CD4:CD8 ratios in HIV+ children (ART− in orange and ART+ in blue). (e) PD-1 expression on memory pTfc cells in HIV−, ART−, and ART+ 
subjects. (F) Correlation between PD-1+ memory pTfc cell frequencies and HIV log copies/mL, %CD4+ T cells, and CD4:CD8 ratios in HIV+ children. 
Significant p values are shown for statistical analysis of HIV+ (black), ART− (orange), and ART+ (blue) groups (****p < 0.0001, ***p < 0.001, **p < 0.01, and 
*p < 0.05).

FigUre 4 | Differentiated B cell populations correlate with low memory peripheral Tfh (pTfh) cells expressing high programmed cell death protein 1 (PD-1) levels. 
Comparisons of (a) total B cell and (B) IgD+ B cell levels in HIV−, ART−, and ART+ children. (c) FACS plot showing representative gating to identify B cell 
differentiation subsets by CD21 and CD27. Plot shown is gated on CD19+ lymphocytes. Comparisons between (D) CD27−CD21+ naïve (BN), (e) CD27+ CD21+ 
resting memory (BRM), (F) CD27+ CD21− activated memory (BAM), and (g) CD27−CD21− tissue-like memory (BTLM) B cell subsets in HIV−, ART−, and ART+ and 
their correlations with total and PD-1+ memory pTfh cell frequencies in ART− (orange) and ART+ (blue) children. Significant p values are shown for statistical 
analysis of HIV+ (black), ART− (orange), and ART+ (blue) groups (****p < 0.0001, ***p < 0.001, **p < 0.01, and *p < 0.05).
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Supplementary Material). We also examined PD-1 expression on 
memory pTfc cells and found that memory pTfc cells in HIV+ 
children expressed higher levels of PD-1 compared with HIV− 
children (ART−: p < 0.0001, ART+: p = 0.001; Figure 5E). In 
HIV+ children, PD-1 expression on memory pTfc cells inversely 
correlated with CD4:CD8 ratios (p = 0.01, r = −0.29), but did 
not correlate with %CD4 or viral load (Figure  5F). In ART+ 
subjects, HIV viremia correlated negatively with memory pTfc 
cell frequency (p = 0.03, r = −0.39; Figure 1D) and directly with 
PD-1 levels on memory pTfc cells (p = 0.04, r = 0.36; Figure 5F). 
Memory pTfc cell frequencies and their PD-1 expression did not 
correlate with CD38+HLA-DR+ CD4 or CD8 T cells or sCD163 
plasma levels in HIV+ or HIV− children with the exception of a 
direct correlation between PD-1+CXCR5+ CD8 TM and CD38+ 
HLA-DR+ CD8 T  cells in HIV+ children (Figures S4B,C in 
Supplementary Material).

DiscUssiOn

We demonstrated that untreated children with perinatal HIV 
infection aged 5–18 years have significantly lower memory pTfh 
cell frequencies compared with HIV-negative children. Low 
memory pTfh levels increased with antiretroviral treatment but 
failed to normalize. In ART+ children, treatment initiation at 
younger ages predicted preserved pTfh levels. HIV+ children 
had higher PD-1 expression on pTfh cells regardless of treatment 
status. Furthermore, lower memory pTfh cells with increased 
PD-1 expression correlated with worsening HIV disease and an 
activated and differentiated B cell profile in HIV+ children. Last, 
HIV+ children have decreased proportions of memory pTfc cells 
with high PD-1 expression.

In our cohort, low memory pTfh cell frequencies correlated 
with decreased %CD4 and CD4:CD8 ratios and increased HIV 
viral load, which may reflect preferential infection of Tfh cells by 
HIV (14). Muema et  al. similarly reported that CXCR5+ CD4 
T  cells correlated with %CD4 in HIV+ children, yet Bamford 
et  al. failed to find any correlation between pTfh cell frequen-
cies and clinical variables in children. This difference may relate 
to treatment status, as in our cohort, where these correlations 
were no longer significant when limited to only ART+ children. 
While the mechanism of pTfh cell depletion in HIV is not well 
understood, it is possible that like tissue-resident Tfh cells, pTfh 
cells are preferentially HIV-infected and killed. It is also plausible 
that pTfh cells in HIV+ subjects are ill-maintained as a result of 
impaired crosstalk with B cells, as Tfh and B cells need constant 
communication via co-stimulatory signals to maintain a homeo-
static and healthy immune system (2, 16). Alternatively, Tfh cells 
may be chronically activated and subsequently sequestered in the 
LNs, depleting levels in the peripheral blood as shown in SIV 
(34). While Pallikkuth et  al. reported a reversible depletion of 
CXCR5+ cells within TCM in adults with HIV (21), the recovery 
of pTfh cells with antiretroviral therapy in children is previously 
unreported. Treatment initiation raised pTfh cell frequencies in 
ART− subjects, but failed to restore them to normal levels within 
one year. However, our ART+ subjects had pTfh cell frequencies 
similar to HIV− children. This may be due to longer duration of 
antiretroviral treatment or younger age at treatment initiation, 

which predicted higher pTfh levels. We speculate that with early 
antiretroviral treatment, HIV+ children may be able to recover 
memory pTfh cells, in accordance with the recent recommenda-
tion from the World Health Organization to start treatment at the 
time of HIV diagnosis (35).

Programmed cell death protein 1 is a classic marker of 
functional Tfh cells in the lymphoid tissue of healthy adults and 
children, where PD-1/PD-L1 interactions in the GC are crucial 
for plasma cell differentiation (36). However, there is some 
uncertainty as to the role of PD-1 on circulating Tfh cells. PD-1 
is a co-stimulatory molecule; it is absent on quiescent pTfh cells, 
expressed on follicular regulatory T (Tfr) cells, and co-expressed 
with ICOS on activated pTfh cells (37). Interestingly, we dem-
onstrated PD-1 expression on memory pTfh cells was elevated 
in all HIV+ children regardless of treatment status, and cor-
responded with worsening HIV disease progression. Moreover, 
in ART+ children, PD-1 expression correlated with lower CD4 
percentages and CD4:CD8 ratios and elevated CD4 T cell activa-
tion despite treatment. This indicates that while memory pTfh 
frequencies recover with antiretrovirals, these cells may still be 
qualitatively defective, with high PD-1 acting as a potentially 
pathogenic marker, as has been suggested by previous studies 
on HIV-specific CD4 (38) and CD8 (39) T  cells. Alternatively 
a portion of PD-1+ pTfh cells may be Tfr cells with suppressive 
functions that account for low pTfh cell frequencies (40). Elevated 
PD-1 expression on pTfh cells correlated with increasing CD38+ 
HLA-DR+ CD4 and CD8 T cells, suggesting PD-1+ pTfh cells 
may be activated Tfh cells associated with inflammation in the 
adaptive immune system. Interestingly, Pallikkuth et al. reported 
that CD38+ HLA-DR+ expression on pTfh cells decreased after 
48  weeks of treatment, but was still significantly higher than 
healthy controls (21). This activated pTfh cell state likely contrib-
utes to their susceptibility as a target for HIV infection and may 
be linked to high PD-1 expression.

T follicular helper cells also localize in the Peyer’s patches of 
the small intestine. Because there are significant disruptions to 
the intestinal mucosa during HIV infection, we examined the 
relationship between Tfh cells and gut-homing receptor α4β7 and 
I-FABP (41). It was previously shown that I-FABP is increased 
in perinatally HIV-infected children (42). We found that low 
memory pTfh cell frequencies in HIV+ subjects correlated with 
higher plasma I-FABP and lower β7+ memory CD4 T cell levels. 
One explanation may be that with worsening gut mucosal disrup-
tion, pTfh cells are trafficked to the gut. Localization to the gut may 
also account for lower circulating pTfh cells during HIV infection. 
Although we did not co-stain for CXCR5 and β7 together, pTfh 
cells likely co-express β7 to mediate homing to the intestine.

It has been well documented that memory B cell populations 
and the quality of B cell responses are substantially impaired in 
HIV+ adults and children (43). More recent reports demonstrate 
that inadequate B cell help by HIV-infected Tfh cells results in per-
turbed B cell differentiation and dysregulated antibody production 
(16, 17). In addition, dysfunctional Tfh cells activate non-specific 
B  cells and lead to hypergammaglobulinemia characteristic of 
HIV infection (34, 40). Prior groups have shown decreased BN 
and BRM cell subsets, as well as expanded BAM and BTLM B  cell 
subsets in HIV+ children (18–20). In our study, we had similar 
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findings—total B  cells were diminished and IgD+ B  cells were 
elevated in HIV-infected children compared with healthy controls. 
We also demonstrated that BN were increased in ART+, BRM were 
low in HIV+, and BAM and BTLM were high in HIV+ compared with 
healthy controls. While pTfh cell proportions were significantly 
decreased in the blood, it is possible that with the accumulation 
of Tfh cells in the LNs, overstimulation by GC Tfh cells in the 
B  cell follicles leads to a shift toward a more differentiated and 
exhausted B cell state. Moreover, lower total B cells and elevated 
IgD frequencies in HIV+ children suggest a general insult to the 
B  cell compartment and a defect in Tfh cell function to induce 
class-switching in memory B  cells. Decreased pTfh cells with 
potentially impaired B cell function may preclude effective HIV 
antibody responses. Indeed, prior studies report preserved pTfh 
cells in subjects with broadly neutralizing HIV-specific antibody 
responses (15, 44). Low pTfh cell frequency was closely linked to a 
differentiated B cell state in HIV+ children but not when separated 
into ART− and ART+ groups, suggesting antiretroviral treatment 
may restore the balance of Tfh cells with B cell differentiation.

Finally, Tfc cells are a novel CD8 T  cell subset expressing 
CXCR5. Tfc cells have been studied in the blood and LN of SIV+ 
primate models (45, 46), the LNs of LCMV mouse models (33), 
as well as the blood, tumors, and LN of adult humans (32, 33, 
47–49). Multiple groups reported Tfc cells have similar B  cell 
follicle homing abilities to Tfh cells, and the potential to control 
viral infection by eliminating infected T cells and B cells in the 
follicle. He et al. reported that HIV-specific Tfc cells were present 
in the blood of chronically infected adults, and pTfc cells inversely 
correlated with HIV viral load prior to ART (33). More recently, 
Jiao et  al. reported HIV+ adults had increased CXCR5+ CD8 
T cells with high PD-1 expression, which negatively correlated 
with HIV disease progression (47). To the best of our knowledge, 
pTfc cell populations in children were not previously studied. 
HIV+ children had irreversibly depleted CXCR5+ CD8 TM cells. 
Notably, antiretroviral treatment raised memory pTfc cell levels 
but failed to normalize them. As such, pTfc cells directly cor-
related with %CD4 and CD4:CD8 ratios regardless of treatment 
status. PD-1 expression was elevated on memory pTfc cells in 
HIV+ children and negatively correlated with CD4:CD8 ratios 
and positively associated with CD38+HLA-DR+ CD8 T  cells. 
Interestingly, whereas Jiao et al. concluded CXCR5+ CD8 T cells 
with high PD-1 expression were highly functional and associated 
negatively with disease progression, our data demonstrated an 
association with CD4:CD8 ratios, but not with viremia or CD4 
percentages. Our opposing findings may reflect differences in a 
pediatric cohort or our separate gating strategy on CD8 memory 
rather than total CD8 T cells.

In conclusion, we demonstrated a marked decrease in 
peripheral memory Tfh frequencies in untreated children with 
perinatal HIV infection. These memory pTfh cells increased 
with antiretroviral therapy but failed to normalize within 1 year. 
Treatment initiation at younger ages predicted greater recovery 
of this population. HIV+ children have high PD-1 expression on 
memory pTfh cells regardless of treatment status. Low memory 
pTfh cell frequencies with high PD-1 levels correlate with wors-
ening HIV disease status as well as innate and adaptive immune 
activation. Furthermore, B  cell subpopulations are skewed 

toward a differentiated and exhausted profile, and coincide with 
decreased memory pTfh cells in HIV+ children. Finally, memory 
pTfc cells are depleted in HIV+ children. This perturbed memory 
pTfh cell population may contribute to weak vaccine and HIV-
specific antibody responses in HIV+ children. Together, these 
findings have important implications for ongoing pediatric HIV 
cure and vaccine strategies.
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FigUre s1 | Peripheral Tfh (pTfh) cell correlations with %CD4, CD4:CD8 ratios, 
and immune activation in HIV negative children. Correlations between memory 
pTfh cells and (a) %CD4 and CD4:CD8 ratios, (B) CD38+ HLA-DR+ CD4 and 
CD8 T cells, and (c) plasma sCD163 levels in HIV negative children.

FigUre s2 | PD-1+ memory peripheral Tfh (pTfh) cell gating and correlations in 
HIV negative children. (a) FACS plots showing representative gating of PD-1+ 
memory pTfh cells in an HIV− and HIV+ subject. Plots shown were gated within 
the CXCR5+ CCR7+ CD4+ TM population. Correlations are shown between 
PD-1+ memory pTfh cells and (B) %CD4 and CD4:CD8 ratios, (c) CD38+ 
HLA-DR+ CD4 and CD8 T cells, and (D) plasma sCD163 levels in HIV negative 
children.
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