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Understanding mechanisms associated to dendritic cell (DC) functions has allowed

developing new antitumor therapeutic vaccination strategies. However, these vaccines

have demonstrated limited clinical results. Although the low immunogenicity of tumor

antigens used and the presence of tumor-associated suppressive factors may in part

account for these results, intrinsic vaccine-related factors may also be involved. Vaccines

modulate DC functions by inducing activating and inhibitory signals that determine

ensuing T cell responses. In this mini review, we focus on IL-10, inhibitory cytokine

induced in DC upon vaccination, which defines a suppressive cell subset, discussing

its implications as a potential target in combined vaccination immunotherapies.
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DENDRITIC CELLS IN THERAPEUTIC VACCINATION

Since William Coley treated cancer patients with bacterial extracts to activate immunity,
therapeutic vaccination has been considered a promising immunotherapeutic approach (1). During
the last decades, we have witnessed the identification of dendritic cells (DC) as professional antigen
presenting cells (2), characterization of their biological properties (3) and subsets (4), as well as the
development of new techniques and tools to directly purify them (5) or differentiate from peripheral
blood precursors (6). Therefore, a plethora of vaccination clinical trials has been carried out, either
through in vivo administration of antigens and adjuvants, or ex vivo-prepared antigen-loaded DC
(7, 8). Advances related to understanding those receptors and biological pathways involved in
antigen capture and DC activation have allowed developing new vaccines, in terms of improving
antigen targeting (9) or vaccine formulation (10), as well as improving direct DC isolation or
differentiation from precursors, antigen loading and maturation (11). Despite these efforts in
improving vaccine immunogenicity, those strategies reaching clinical phases, have provided limited
clinical results (7). Accordingly, there is only a single licensed therapeutic cancer vaccine, Provenge,
approved for castration resistant prostate cancer (12).

Characterization of the tumor microenvironment has clearly demonstrated the presence
of immunosuppressive mechanisms which render T-cells dysfunctional (13, 14), partially
accounting for vaccine failure. However, there are vaccine intrinsic factors which have not
been fully elucidated and whose characterization may also explain in part these results. A
variety of protocols have been used in vaccination clinical trials, with differences in parameters
such as the type of antigens, its loading method in case of DC vaccines, the adjuvant or
maturation protocol and the type/stage of disease and patients vaccinated, among others
(15). This heterogeneity has made difficult to draw solid conclusions to identify those factors
linking properties of vaccines with the ensuing immunological and clinical results (16).
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Thus, although characterization of the vaccine product is usually
a requisite for its release, commonly analyzed parameters,
usually related to pro-immunogenic vaccine properties,
have not completely revealed the relevant clues on vaccine
immunogenicity (17).

Activation of naive T-cells by DC requires antigen recognition
on MHC molecules, co-stimulatory signals and polarizing
cytokines, according to the three-signal model (18). Although
immature, resting DC usually lack these molecules, in the
case of infections, contact with microbial pathogens leads to
antigen capture and simultaneous sensing of pathogen associated
molecular patterns (PAMPs), inducing thus the upregulation
of genes involved in eliciting immunogenic responses (3).
Similarly, in the tumor setting, danger associated molecular
patterns (DAMPs) and other signals released by dying tumor
cells are known to promote DC activation (19, 20). However,
as in many biological processes, recognition of these signals
by DC may also lead to upregulation of genes associated
with negative feedback mechanisms, regulating thus immune
activation. These include expression of membrane-bound co-
inhibitory ligands (21, 22) that modulate signal 2, together with
the release of soluble molecules (cytokines and metabolites)
(23, 24) modulating signal 3. Vaccines rely either on the
administration of antigens and immunostimulatory molecules
(adjuvants) which will reach DC in vivo (25), or on administering
DC that have been antigen-loaded and stimulated ex vivo (15).
Similarly to infectious processes, DC may upregulate these
control elements upon vaccine administration or during the DC
preparation process (in the case of DC vaccines). Therefore,
understanding these feedback mechanisms and delineation of
optimized strategies to block them may allow developing more
immunogenic vaccines. In this Minireview we will focus on
IL-10, a cytokine regulating many functions, describing those
mechanisms that control their induction on DC, its effect
on these cells during vaccination as well as the rationale to
best block their inhibitory effect with therapeutic vaccination
purposes.

IL-10: AN INHIBITORY MOLECULE IN
VACCINATION

Among cytokines reported to down-regulate the activation
of antitumor immune responses, IL-10 plays a prominent
role. IL-10 is a pleiotropic cytokine traditionally considered
as immunosuppressive for antigen presenting cell functions
and concomitant priming of T-cells (26). Although initially
considered a cytokine produced by Th2 cells (27) or Tregs, it is
now known that it is produced not only by other lymphocytic
subsets, but also by cells of innate immunity, including DC
and macrophages (28). Stimuli such as Toll-like receptor (TLR)
ligands or CD40 ligand (CD40L), usually present in microbial
pathogens or induced because of inflammation, have been
included as adjuvants in different vaccination strategies (25).
Although they have a high capacity to promote DC maturation
and release pro-immunogenic cytokines like IL-12 (29), they
may also induce IL-10, even with synergistic effects in some

cases (30–32). There is an inverse relationship between IL-10
and IL-12 production by DC, which has been attributed to
different mechanisms, including MAP kinase activation (33–
35) and transcription factors NFIL3 (36) and DC-SCRIPT (37).
Interestingly, DC-activating adjuvants have different cytokine-
producing profiles, which may vary depending on the cytokine
considered. Therefore, not all ligands have the same capacity
to induce IL-10 (38), depending on the receptor involved and
its associated signaling pathway. Indeed, although there are
differences between murine and human studies because of the
type of DC subsets and the corresponding TLR repertoire
(39), some stimuli like TLR molecules (TLR2, TLR4, TLR7,
or TLR9, among others) strongly induce IL-10 production
(32, 40, 41). However, others like TLR3 ligand poly(I:C) or
CD40 agonists (CD40L or antiCD40 antibodies) are considered
poorer IL-10 inducers, mainly when used alone (42, 43). DC
receptors responsible for sensing microbial or endogenous
inflammatory/danger signals can be grouped according to the
mediator molecules and the corresponding signaling pathways
used to induce DC activation (44). Most TLR ligands signal
through MyD88, with the exception of TLR3, which relies
on TRIF for signal transduction, and TLR4, which depends
on MyD88- and TRIF-dependent pathways (45). Other non-
TLR DC receptors, such as lectins receptors, Nod-like receptors
or RIG-like receptors, use other sets of signaling molecules,
including Syk, ASC and MAVS (46). Thus, signaling through
MyD88 or Syk vs. signaling through TRIF (47) may explain
the distinct capacity to produce IL-10 by different ligands.
Furthermore, some of these pathways lead to the activation
of different MAP kinases (p38, Jun, ERK, among others) that
promote or inhibit IL-10 and IL-12 production, depending on
the relative activation balance between kinases. In this respect,
signaling pathways resulting in the activation of ERK (33–35)
and MK2 (48) have been shown to induce IL-10. In addition,
the receptor and signaling pathway not only determine IL-10
production, but also the susceptibility of DC to autocrine effects
mediated by its own IL-10. It has been demonstrated that IL-10
induced in DC after stimulation by ligands that signal through
the MyD88 pathway (e.g., TLR4 or TLR9 ligands), inhibits DC
functions, such as the secretion of cytokines IL-6 and IL-1β
and expression of IL-12 p35, IL-23 p19, TNF-α, and IFN-β
mRNA (49). In contrast, IL-10 induced by curdlan (a Dectin-
1 ligand) does not affect DC functions. Finally, IL-10 receptor
expression may also represent an additional control mechanism.
Surface expression of IL-10 receptor is downregulated upon LPS-
induced maturation (50), potentially explaining the increased
susceptibility of immature vs. mature DC to IL-10 inhibitory
effects. All these results suggest that there is an intricate network
of interactions involving pathways regulating IL-10 production as
well as those implicated in the susceptibility to its effects, which
has to be considered when analyzing the role of IL-10 during DC
activation.

IL-10 has been described in many cancer patients as a poor
prognostic factor (51–54). It can be detected in serum (52, 53)
and in the tumor (51), produced by tumor cells (55, 56) as well
as by infiltrating hematopoietic cells, including myeloid (57) and
lymphocytic subsets (58–61). Although IL-10 has an inhibitory
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impact for antigen presenting cells, contradictory effects have
been reported in the case of antitumor T-cells (62–64). In this
regard, it has been demonstrated that IL-10 increases functional
properties of already activated effector CD8 T-cells. In fact, in
different murine tumor models, including mammary carcinoma,
skin squamous carcinoma, and several transplantable models,
such as breast, colon, and melanoma tumors, administration of
IL-10 inhibits tumor growth, promoting antitumor functions
of effector T-cells, increasing tumor infiltration, IFN-gamma
production and lytic molecules (65, 66). However, regarding
priming of naive T-cells during initial stages, IL-10 has been
considered detrimental. This is due to its inhibitory role on
antigen presenting cells at different levels, such as migration
(67), expression of co-stimulatory molecules (68), production of
Th1 polarizing cytokines (57, 69) and blocking cross-priming
and priming with low-affinity peptides of a self/tumor-antigen
and concomitant T-cell activation (70). Therefore, to consider
IL-10 as a target in tumor immunotherapy, the immunological
context has to be taken into account. In those settings where
already primed effector cells exist, IL-10 may potentiate their
properties (65, 66). However, if T-cell priming or generation
of an antitumor immune response is needed, as in vaccination,
therapeutic benefit would be achieved by IL-10 blockade. Indeed,
preclinical data regarding IL-10 blockade has demonstrated an
enhancement of vaccine immunogenicity, not only in the cancer
setting (43, 71, 72) but also in othermodels (41, 73, 74). Although,
as previously mentioned, IL-10 can be expressed by different cell
subsets, we and others (43, 75) have demonstrated that antigen
presenting cell-derived IL-10 down-regulates the elicitation of
Th1 responses. Indeed, vaccine-dependent induction of IFN-
gamma-producing T-cells is greatly enhanced by IL-10 blockade
when using adjuvants promoting IL-10 production by DC (75),
which in the case of tumors results in a stronger therapeutic
effect (43). Thus, although different IL-10 sources coexist in the
tumor setting, DC-derived IL-10 seems to determine vaccination
efficacy.

IL-10 AS A MARKER OF SUPPRESSIVE DC

IL-10 production by DC not only affects their functional
properties, but also identifies a subpopulation characterized by
many immunosuppressive features, both at the phenotypical
and functional levels. Mice vaccinated with IL-10-inducing
adjuvants have an IL-10-producing DC subset (from now on
IL-10+ DC), which is almost absent in unvaccinated mice.
IL-10+ DC are characterized by poorer expression of co-
stimulatory molecules and inflammatory cytokines, as well as by
upregulation of co-inhibitory ligands such as PD-L1, resulting
thus in a cell population with much lower T-cell stimulatory
capability (76) (Figure 1). Interestingly, in addition to their low
antigen presenting capacity, IL-10+ DC also suppress antigen
presentation by third-party cells, reinforcing their inhibitory role.
Some of these features of IL-10+ DC have been also observed in
persistent viral infection models (77), suggesting that generation
of this DC subset may not be specific of vaccines and operates in
other settings.

There are no mechanistic experiments in the vaccination
setting explaining the presence of different DC populations
according to their IL-10 production. Indeed, it is not known
whether the vaccine generates both types of DC from different
precursors or the same DC subset may behave differently.
However, in the viral model it has been demonstrated
that, whereas IL-10- DC are originated from conventional
DC precursors, the source of IL-10+ DC are monocytes
differentiated as a consequence of inflammatory mediators,
which are subsequently endowed with suppressive properties
by type I IFN (78). This association between IL-10 production
by DC and the presence of type I IFN, is in agreement with
the vaccine setting, where many adjuvants known to induce IL-
10 (ligands of TLR4, TLR7, and TLR9) also induce type I IFN
(79), a cytokine that determines IL-10 levels (80). Moreover,
IL-10+ DC have higher ISG expression, indicating a stronger
response to type I IFN. IL-10 and type I IFN production
have been linked as regulatory mechanisms, and blockade of
IFN signal leads to a diminished IL-10 expression (81, 82).
However, theremay be additional factors behind IL-10 induction,
since potent type I IFN inducers, such as the TLR3 ligand
poly(I:C), are poor at inducing IL-10. Similarly, expression
of other inhibitory molecules, such as PD-L1, also depends
on type I IFN, in agreement with the pivotal role of this
cytokine in generating the immunosuppressive effect on this
DC subpopulation (81, 82). Interestingly, in addition to these
immunoregulatory effects, it has been reported that type I
IFN is required by DC to induce rejection of immunogenic
tumors, supporting the induction of adaptive responses (83).
Moreover, efficacy of therapeutic strategies such as vaccines
(84) or other approaches relying on cross-presentation of tumor
antigens by DC (85) also depends on type I IFN. Overall,
these results suggest that type I IFN plays a dual role on DC-
mediated tumor immunity, by promoting the generation of
antitumor responses, but at the same time inducing regulatory
mechanisms -including IL-10- to balance the magnitude of these
responses (86).

In addition to the murine setting, there are several examples
of suppressive DC in human studies, having in common the
production of IL-10. Besides those protocols aimed at preparing
tolerogenic DC by incubation with IL-10 in the therapy of
autoimmune diseases, which are not the scope of thisMinireview,
there are also inflammatory conditions where induction of IL-
10 takes place and results in similar suppressive functions. As an
example, in vitro differentiation ofmonocytes in an inflammatory
environment, such as the presence of TLR ligands (e.g., LPS or
R848), led to generation of tolerogenic CD14+ DC expressing
high IL-10 and PD-L1 levels (87) in a STAT3-dependent manner.
Moreover, combined DC stimulation with potent TLR ligands
results in partial inhibition, due to IL-10 induced by some of these
compounds (42). More interestingly, the relevance of vaccine-
derived IL-10 has been also demonstrated in the clinical setting.
A recent paper (88) analyzing properties of monocyte-derived
DC used as vaccines in prostate cancer patients reported that
IL-10, in addition to CD14, and MCP-1 and MDC chemokines,
identified a gene signature that could discriminate between
patients responding or not to the vaccine. Authors found that
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FIGURE 1 | Vaccine-induced IL-10 production defines two different dendritic cell populations. Adjuvants included in vaccines promote the generation of two DC

populations identified by their capacity to produce IL-10. IL-10+ DC are characterized by poorer expression of MHC and co-stimulatory molecules, upregulation of

PD-L1 and immunosuppressive cytokines, resulting in impaired ability to activate antitumor T cells, as opposed to IL-10− DC, which retain full capacity to trigger

functional antitumor T cell responses. Moreover, IL-10+ DC inhibit antigen-presenting functions of IL-10− DC.

clinical and strong immunological responses correlated with
low expression of molecules belonging to this gene signature,
some of them, like CD14 and IL-10, already described as
tolerogenic markers of DC. In addition to monocyte-derived
DC, vaccines based on DC directly isolated from blood have
been also used. When analyzing the cell composition of these
vaccines, Bakdash et al. found a BDCA1+ DC population
positive for CD14, which is elevated in patients as compared
with healthy donors (89). These cells are a DC subset that,
although overlaps in many factors with monocytes and classical
BDCA1+ DC, can be considered as a distinct population,
characterized by displaying suppressive properties. Therefore,
they have been suggested as responsible for hampering vaccine
efficacy in patients. Interestingly, besides CD14 expression [as in
DC previously mentioned (88)], these DC are characterized by
stronger IL-10 secretion than monocytes or classical BDCA1+
DC upon LPS stimulation, reagent also used to induce DC
maturation in (88). Also in the clinical setting, we reported
results from a vaccination pilot clinical trial of patients suffering
from chronic hepatitis C by using a DC vaccine (90). Poor
Th1 immune responses were detected in vaccinated patients.
Although disease status could have played a role in these results,
we detected higher levels of CD14+ DC and a stronger IL-10
production by theDC vaccine prepared from patients, as opposed
to DC obtained from healthy individuals, in agreement with
aforementioned clinical studies. Interestingly, blockade of IL-10
during vaccine preparation restored in vitro production of Th1
responses in these patients, suggesting again a relevant role of
IL-10 in vaccine efficacy.

Therefore, considering the relevance of IL-10 during
therapeutic vaccination, different blockade strategies have
been used, depending on the type of vaccine. As summarized
in Table 1, for those vaccines relying on direct antigen
administration, antibodies blocking IL-10 or IL-10R have been
used in most cases. When using DC administration, in addition
to direct IL-10/IL-10R blockade, genetic ablation of IL-10/IL-
10R expression and pharmacological inhibition of pathways
leading to IL-10 production have been also used. Despite these
different options in preclinical studies, only antibodies against
IL-10, in combination with a TLR9 ligand, have advanced to
clinical phases for the treatment of patients with advanced
malignancies.

In addition to IL-10 as a target, description of this IL-
10+ DC subset and its immunosuppressive properties allows
the identification of other relevant molecular mechanisms
involved in their inhibitory effect. Therefore, these molecules
could be potentially amenable to modulation as a strategy
to enhance vaccine potency. Among them, PD-L1 is an
interesting upregulated target, since there are already approved
therapies directed at this pathway (102). By using samples
from patients with different types of tumors (hepatocellular
carcinoma and glioblastoma, among others), it has been
demonstrated that PD-L1 expression is regulated by IL-10 (103,
104). However, in our hands in vaccination experiments in
murine models, combination of vaccine with IL-10 blockade
did not modify PD-L1 expression on DC, despite a decrease
in the percentage of IL-10+ DC (76), pointing at PD-L1 as
an independent target and providing an additional opportunity
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TABLE 1 | Strategies aimed at blocking IL-10 for combination with antitumor vaccines.

IL-10 blocking strategy Vaccine Tumor Reference

PRECLINICAL

Anti-IL-10 antibodies Plasmid encoding MIP3α-hgp100 B16F10 (91)

DC pulsed with gp100 peptide B16F10 (92)

DC pulsed with tumor cells MC38 (93)

Anti-IL-10R antibodies OVA + Imiquimod B16-OVA (43)

HPV E7 peptide + LPS TC-1 (72)

Soluble IL-10R DC pulsed with tumor cells B16F10 (94)

siRNA targeting IL-10 DC pulsed with E7 peptide TC-1 (95)

siRNA targeting IL-10R DC pulsed with E7 peptide TC-1 (96)

DC pulsed with MART-1 peptide Human melanoma (in vitro) (97)

shRNA targeting IL-10 DC pulsed with tumor cells MC38 (98)

Aptamer targeting IL-10R Monotherapy (no vaccine) CT26 (99)

Inhibitors of IL-10-inducing pathways:

p38 MAPK inhibitor

DC pulsed with tumor cells B16F10 (100)

COX2 inhibitor DC pulsed with tumor cells B16F10 (100)

Retinoic acid receptor alpha inhibitor DC pulsed with tumor cells B16F10 (101)

CLINICAL

Anti-IL-10 antibodies TLR9 ligand Advanced tumors clinicaltrials.gov

NCT02731742

for DC modulation. Accordingly, combined blockade of IL-10
and PD1/PD-L1 clearly potentiated vaccine immunogenicity,
resulting in a greater therapeutic antitumor effect (76, 84).
These results are in agreement with equivalent experiments
carried out in viral models in vitro (105) and in vivo (106).
In addition to these two important suppressive pathways,
other inhibitory molecules, including enzymes (IDO) (77),
cytokines (TGF-beta), ligands for receptors found on T-
cells (HVEM) or inhibitory intracellular molecules (IRAK-3)
(78), have been described in this IL-10+ DC subset. Co-
expression of these negative factors has been already reported
in other examples of DC with poor stimulatory capacity
(107, 108), indicating that they are commonly operating in
settings where T-cell responses are not fully activated, and
suggesting that combined blockade of these mechanisms may
improve DC functions, with special relevance in vaccination
protocols.

CONCLUSION AND FUTURE DIRECTIONS

Different immunosuppressive elements present at the tumor
microenvironment have been described, demonstrating that
they may hamper effector functions of tumor-infiltrating
lymphocytes. These mechanisms would partially account for
the limited effect of therapeutic vaccines, suggesting that
combination therapies that include vaccines plus blockade of
these elements may increase their efficacy. However, together
with these elements, additional inhibitory pathways induced
by the vaccine are triggered. Many of them, such as IL-
10 production, exert their effects at the level of DC, by

impairing their antigen presenting functions and negatively
regulating T-cell activation. Some of the already identified
vaccine-induced suppressive elements present in IL-10+ DC,
are common to those operating at the tumor level, allowing
the design of new combinatorial vaccination strategies based
on drugs currently approved or in development. Therefore,
future vaccination strategies, besides highly immunogenic
and properly formulated and adjuvanted antigens, should
incorporate blockade of IL-10 and additional inhibitory elements,
enhancing thus vaccine potency and associated therapeutic
efficacy.
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