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Broadly neutralizing antibodies (bnAbs) against HIV-1 are an effective means of

preventing transmission. To better understand the mechanisms by which HIV-specific

bnAbs naturally develop, we investigated blood and lymphoid tissue in pediatric infection,

since potent bnAbs develop with greater frequency in children than adults. As in adults,

the frequency of circulating effector T-follicular helper cells (TFH) in HIV infected, treatment

naïve children correlates with neutralization breadth. However, major differences between

children and adults were also observed both in circulation, and in a small number of

tonsil samples. In children, TFH cells are significantly more abundant, both in blood

and in lymphoid tissue germinal centers, than in adults. Second, HIV-specific TFH cells

are more frequent in pediatric than in adult lymphoid tissue and secrete the signature

cytokine IL-21, which HIV-infected adults do not. Third, the enrichment of IL-21-secreting

HIV-specific TFH in pediatric lymphoid tissue is accompanied by increased TFH regulation

via more abundant regulatory follicular T-cells and HIV-specific CXCR5+ CD8 T-cells
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compared to adults. The relationship between regulation and neutralization breadth is

also observed in the pediatric PBMC samples and correlates with neutralization breadth.

Matching neutralization data from lymphoid tissue samples is not available. However, the

distinction between infected children and adults in the magnitude, quality and regulation

of HIV-specific TFH responses is consistent with the superior ability of children to develop

high-frequency, potent bnAbs. These findings suggest the possibility that the optimal

timing for next generation vaccine strategies designed to induce high-frequency, potent

bnAbs to prevent HIV infection in adults would be in childhood.

Keywords: pediatric HIV infection, broadly neutralizing antibodies (bnAb), T-follicular helper cells (Tfh), T-follicular

regulatory helper cells (Tfreg), follicular CD8 T-cells, germinal center, vaccination

INTRODUCTION

A protective HIV-1 vaccine is likely to require the generation of
high affinity antibodies recognizing most of the circulating HIV
strains worldwide (1–4). Broadly neutralizing antibodies (bnAbs)
can prevent SIV/SHIV infection in non-human primates (5–9).
However, the mechanism by which a vaccine might elicit bnAbs
against HIV remains unclear (10–12).

Broadly neutralizing antibodies are observed in approximately
20% of HIV-infected adults (13–15) and often take years to
develop (16). By contrast, bnAbs develop in 75–89% of HIV-
infected children, are substantially more potent than those
observed in adults (17), and develop as early as the first
year of life (18). In a direct comparison between infant and
adult responses to the same gp120 vaccine, HIV-uninfected
children made higher-magnitude antibody responses (19, 20),
further suggesting that children are generally better at generating
antibodies than adults. As in adults (21), the generation of
bnAbs in infected children is related to viral load (17, 18).
However, viral load is only weakly correlated with neutralization
breadth (17) indicating that other factors play a more important
role.

T-follicular helper (TFH) cells within germinal centers (GC)
are CD4 T-cells that provide the B- cell help required to produce
increasingly high affinity antibodies over the course of an
infection, by the process of somatic hypermutation. Many bnAbs
identified to date show a high degree of somatic hypermutation
(1, 3), suggesting an efficient GC response mediated by TFH

cells (4, 22, 23). However, as B-cell affinity maturation relies on
competition between B-cell clones, the help provided by TFH

needs to be a limiting resource for effective selection to occur
(24, 25). Thus, regulation of TFH in the GC by T-follicular
regulatory CD4 cells (TFR) is another critical determinant of
antibody breadth and potency in HIV infection. TFR are derived
from thymic TREG precursors, express FoxP3, CD25, and low
levels of CD127, and subsequently acquire TFH markers (PD1,
CXCR5 and Bcl-6) (26–28). These TFR cells contribute to the
regulation and proliferation of TFH and GC B-cells (29, 30), and
skewing of TFR/TFH ratio leads to unchecked expansion of TFH

and an ineffective humoral immune response (31, 32). Growing
evidence frommurinemodels show that TFR cells are necessary to
ensure the quality of the antibody response (33, 34). CXCR5+ve
CD8 T-cells in secondary lymphoid tissue and in circulation can

also regulate the TFH response (35–37). These CXCR5+ve CD8
T-cells reduce GC responses through perforin-dependent lysis of
GC TFH cells and prevent autoantibody development in murine
and SIV models (38–40).

Understanding the immune environment in which high-
affinity antibodies develop is a critical step toward new
vaccination strategies. We therefore studied the TFH response
and its regulatory counterparts in HIV-infected children and
adults to understand the immune conditions that do and do not,
respectively, support HIV bnAb development.

MATERIALS AND METHODS

Study Participants
Peripheral blood mononuclear cells (PBMC) of 38 vertically
HIV-1C clade-infected ART-naïve children with matched
neutralization data (17) were studied. Additional pediatric
and adult samples were obtained from clinics in Durban,
South Africa (Ithembalabantu Clinic and Prince Mshiyeni
Hospital). Tonsil specimens were obtained from medically
indicated tonsillectomies carried out in KwaZulu-Natal
(Stanger Hospital in Stanger, Addington Hospital in Durban).
All tonsillectomies in this study were conducted for either
chronic obstructive symptoms (e.g., snoring) due to tonsillar
hypertrophy and/or recurrent tonsillitis. All procedures were
elective and, if conducted for recurrent tonsillitis, were carried
out after infection and associated inflammation had resolved,
as determined by the clinician and typically 6 weeks or more
after the last episode. The clinical characteristics of the study
cohort are shown in Table S1. Adult participants on whom
neutralization assays were undertaken are from the South
African CAPRISA 002 cohort, as previously described (41). Viral
load measurements were performed as described previously
(17). Informed consent was obtained from all adult study
participants or from the caregivers of pediatric participants
where appropriate. Additionally, assent to participate in
the study was given directly by children from the age of
six and above. Studies were approved by the University of
the Free State Ethics Committee, Bloemfontein; Biomedical
Research Ethics Committee, University of KwaZulu-Natal,
Durban; and Research Ethics Committee, University of
Oxford.
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Sample Processing–PBMC and Tonsils
PBMCs were isolated by Ficoll density gradient centrifugation
and stored in liquid nitrogen until use. Tonsil mononuclear
cells (TMCs) were obtained by mechanical and enzymatic
disaggregation using the gentleMACS system (Miltenyi).
Mononuclear cells were then isolated by Ficoll density
gradient centrifugation and used directly or preserved as
above.

Virus Neutralization Assays
The ability of plasma from infected children and adults to
neutralize HIV was measured as described before (17).

Flow Cytometry and ICS Assays
PBMCs and TMCs were stained with fluorescent monoclonal
antibodies against markers previously associated with TFH cells
Table S2. Briefly, cells were thawed and rested in R10 medium
for 3 h at 37◦C in 5% CO2 and either directly stained with the
phenotypic panel as described below or used for Intracellular
Cytokine Staining (ICS) by stimulating with SEB at 1µg/ml
or with pools of overlapping 18-mer HIV peptides (Gag and
Env at 2µg/ml for each peptide) in the presence of anti-
CD28 and anti-CD49 at 1µg/ml (BD Biosciences). After 1 h
of incubation at 37◦C, Brefeldin A and Monensin (5µg/ml;
BD biosciences) were added and the cells were incubated
overnight (14 h), washed and stained in the dark for 20min with
antibody cocktail and live dead stain (Fixable Blue, Thermo)
and fixed. ICS was performed by standard methods (42),
using fix/perm solution (BD), 20% Goat serum for Fc-receptor
blockade and antibodies listed as above. Rainbow beads were
run at every experiment to ensure interexperimental consistency.
Flow cytometry acquisition was performed on a BD LSRFortessa
within 5 h of staining and analyzed using FlowJo version
9.9.5.

Multi-Color Immunofluorescence Staining
Tissue samples were fixed in formalin, embedded in paraffin, and
sectioned. These specimens were incubated with antibodies: anti-
CD4 (clone: CM153A; Biocare), CD8 (clone: ab85792; Abcam),
CXCR5 (clone: MAB190; R&D) and Foxp3 (clone: ab22510;
Abcam) followed by incubation with secondary antibody using
a SuperPicTureTM Polymer Detection Kit (Invitrogen) and
an OpalTM 3-Plex Kit (Fluorescein, Cyanine3, and Cyanine5).
The samples were mounted with ProLongTM Gold Antifade
mountant containing DAPI (Invitrogen).

Statistical Analyses
Statistical analyses were undertaken using Prism GraphPad
Software version 7.0; for comparisons between two groups
Mann–Whitney–Wilcoxon test was applied and for comparisons
>2 groups Kruskal-Wallis test with Benjamini, Krieger and
Yekutieli’s correction for multiple comparisons. All correlations
were performed using the Spearman rank method with exact
permutation P-values calculated. All P-values are two-sided
with a cut off of p > 0.05. For Figure 5, the Spice (Simplified
Presentation of Incredibly Complex Evaluations) package

was used to calculate permutation P-values between Spice
charts (43).

RESULTS

Circulating Effector Memory TFH Cells Are
Abundant in HIV-Infected Children and
Correlate With Neutralization Breadth
Neutralizing antibody breadth was previously determined in
plasma samples from 85 ART-naïve, HIV-infected children (17).
Although 75% of pediatric samples were broadly neutralizing
(i.e., neutralized >50% of the virus panel tested), neutralization
breadth ranged from 0 to 100%. To investigate the T-
cell immunological parameters underlying this variability, we
first examined, in the same pediatric cohort (Table S1), the
relationship between neutralization breadth and the frequency
of circulating TFH cells in ART-naïve children (defined
as CD3+CD4+CD45RA−CXCR5+CXCR3−PD1+ lymphocytes)
(Figure 1A), cells which have previously been linked with HIV
neutralization breadth in adults (44, 45). In these children
also, we now observed a clear positive correlation between
neutralization breadth and circulating “effector TFH” frequency
(CCR7−; r = 0.44, p = 0.007), but no association with “central
TFH” frequency (CCR7+; Figure 1B), consistent with previous
studies showing that only circulating TFH cells expressing an
effector phenotype are functional active (46). Interestingly, there
is a significant correlation between the frequency of central
TFH and viral load (r = 0.5, p = 0.003), but not with the key
effector TFH subset (Figure S1A). Additionally, PD1 expression
on total CD4 and CD8 T-cells, which is linked to viral load
and immune activation in HIV infection, is inversely correlated
with neutralization breadth (Figure S1B). Taken together, these
data suggest the observed association between the frequency
of circulating effector TFH and the development of broadly
neutralizing antibodies is not driven by viremia or immune
activation. Finally, consistent with the importance of the effector
TFH subset, circulating effector memory TFH but not central
memory TFH were substantially more abundant in HIV-infected
children compared to HIV-infected adults (effector memory TFH

median 4.9 vs. 2.7% of CD4 T-cells, p= 0.004; Figure 1C).

TFH Are More Abundant in Lymphoid
Tissue of Children Than Adults
In order to investigate TFH cells within lymphoid tissue, where
their function is primarily exerted, we next studied tonsils
isolated from HIV infected adults (n = 6) and children (n
= 4, age median 11.1, see methods for cohort description).
The six adults studied comprised 3 receiving ART and 3 not
receiving ART (median viral load 2452 HIV RNA cp/ml), whilst
all 4 children were receiving ART (median viral load 54 HIV
RNA cp/ml) (Table S1) due to lack of sample availability of an
ART-naïve pediatric control group. Plasma neutralization data
of these individuals is not available, since the neutralization
assays cannot be performed with detectable drug plasma levels.
Hence, no direct associations to neutralization breadth can be
drawn. In contrast to TFH in circulation, lymphoid TFH express
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FIGURE 1 | Circulating effector memory TFH cells correlate with neutralization breadth in HIV infected children. (A) Gating strategy of

CD4+CD45RA−CXCR5+CXCR3−PD1+ TFH cells in peripheral blood. The majority of circulating TFH cells express a resting central memory phenotype (CCR7+) in

contrast to the effector memory (CCR7–) phenotype. (B) Positive correlation between circulating effector TFH cells and neutralization breadth (r = 0.44, p = 0.007;

left) and inverse correlation between circulating central TFH cells and neutralization breadth in HIV infected children (n = 36) (r = −0.27, p = 0.117; right). Calculations

were made by Spearman’s rank correlation test. (C) Increased frequency of circulating effector TFH cells in HIV-infected, ART-naïve children (blue squares; n = 38)

compared to infected adults (red triangles; n = 18) (p = 0.004; left). No significant differences in frequency of circulating central TFH between the groups (n.s., right).

Comparisons between >2 groups were calculated using Kruskal-Wallis test and corrected for multiple comparisons. In scatter plots medians are shown.

the canonical transcriptional factor Bcl-6, which was used to
confirm the identity of the subsets studied (Figure 2A). We
observed that tonsil TFH were increased in frequency in HIV
infected children compared to adults, although this does not
reach statistical significance (15.6 vs. 7.0%, p = 0.17; Figure 2B).
TFH cells up-regulate CXCR5 and PD1, and down-regulate CCR7
(47, 48) during migration from the T cell zone into the GC.
When looking at “germinal center” TFH (GC TFH; % CCR7−

of tonsil TFH) we found that they are enriched in HIV infected
children compared to adults (Median 71.2 vs. 41.4%, p = 0.01;
Figure 2C). Thus, HIV infected children have significantly higher
levels of both circulating effector TFH in the blood and GC TFH

from oral mucosal lymphoid tissue compared to infected adults,

supporting the hypothesis that these cells contribute to HIV
bnAb development.

To investigate whether these differences are observed also
in HIV uninfected individuals, we next examined tonsillar
lymphoid tissue in uninfected adults (n = 3) and children (n =

6). As in the HIV infected counterparts, the frequency of TFH is
higher in uninfected children compared to adults (Figures 2D,E),
particularly for GC TFH (62.7 vs. 49.1%, p = 0.02; Figure 2E).
Unexpectedly, however, circulating effector TFH cells were found
to be significantly less frequent in uninfected children (n= 7) vs.
adults (n = 8; p = 0.03; Figure 2F). Taken together, these data
indicate that children possess more abundant GC TFH to support
the generation of neutralization breadth.
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FIGURE 2 | TFH are more abundant in lymphoid tissue of children than adults. (A) Gating strategy of tonsil TFH (CD4+CD45RA−CXCR5+PD1high; light blue) and

GC-TFH cells (%CCR7− of total tonsil TFH; dark blue) in secondary lymphoid tissue. Levels of Bcl-6 expression of the different subsets are expressed in MFI (median

fluorescent intensity). (B) No significant difference in the frequency of tonsil TFH in secondary lymphoid tissue of infected children (blue squares; n = 4) compared to

infected adults (n.s.; Kruskal-Wallis test). Red triangles: Adults on ART (n = 3), red diamonds: Adults not on ART (n = 3). (C) Same as in (B) but showing a significantly

increased frequency of GC-TFH cells (% CCR7− of tonsil TFH) (p = 0.01; Kruskal-Wallis test) in infected children. (D) Increased frequency of tonsil TFH (p = 0.06;

Kruskal-Wallis test) in secondary lymphoid tissue of uninfected children (open blue squares; n = 6) compared to uninfected adults (open red triangles; n = 3). (E)

Same as (D) but showing the increased frequency of GC-TFH cells in uninfected children (p = 0.02; Kruskal-Wallis test) compared to uninfected adults. (F) Increased

frequency of circulating effector TFH in HIV uninfected adults (open red triangles; n = 8) compared to uninfected children (open blue squares; n = 7) (p = 0.03;

Kruskal-Wallis test). In scatter plots medians are shown.
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High-Frequency IL-21 Production by
HIV-Specific GC-TFH Cells in Children but
Not Adults
Germinal center (GC) TFH cells promote B-cell proliferation,
somatic hypermutation, and affinity maturation through IL-
21 production, and this function is therefore critical for the
generation of bnAbs (49–51). In response to stimulation with
peptide pools spanning Gag and Env, “Th2”-GC-TFH cells (by
far the dominant TFH subset present in tonsil homogenate
Figure S2A) from HIV infected children made strong IL-21
responses (median 6.3%), whereas “Th2”-GC-TFH cells from
HIV-infected adults produced little or no IL-21 (Figures 3A,B).
By contrast, the reverse was the case with respect to IFN-
γ production, which was detectable in adults (median 0.3%)
but absent in children (Figure 3C). These differences between
children and adults were both statistically significant (p = 0.02
and p = 0.04, respectively) despite the small sample size, and the
same trend was observed for total cytokine producing CD4 cells
(Figures S2B,C). In response to stimulation by SEB, however,
there was no difference in the responses made by “Th2”-GC-
TFH cells from children or adults, irrespective of HIV infection
(Figures 3D,E), indicating that the differences observed between
children and adults were among HIV-specific GC-TFH cells.
Importantly, the bias in IL-21 and INF-γ production between
adults and children observed in HIV-specific GC-TFH was not
seen in circulating “Th2”-TFH cells (Figure 3F, Figure S2D).
Consistent with this, we found no correlation between HIV-
specific IL-21 production by circulating “Th2”-TFH in ART-
naïve children and neutralization breadth (Figure 3G). Thus,
specifically in the germinal centers of lymphoid tissue, both a
greater abundance of TFH and a higher frequency of HIV-specific
TFH that secrete the key functional cytokine IL-21 were observed
in HIV-infected children compared to adults.

Tonsil Follicular Regulatory T Cells (TFR)
Are Increased in HIV-Infected Children
TFH cells are needed to mediate an optimal antibody response,
but excessive TFH activity leads to the expansion of low-affinity
and auto reactive B cells (24, 25, 52). T-follicular regulatory
cells (TFR), a CD4T cell subset that regulates germinal center
TFH responses, are thus essential for the generation of high
affinity antibodies (26, 27, 33). Therefore, we next examined
the relationship between TFH and TFR within HIV infected
tonsils, defining TFR as CD4+CXCR5+CD25+CD127low cells
that are enriched for the TREG transcriptional factor FoxP3 (30)
(Figure 4A), and having found that CD25 expression is not affect
by HIV infection (Figure S3A). In HIV infected children, the
TFR frequency was 2.7-fold higher than that observed in HIV-
infected adults (median 5.1 vs. 1.9%; p = 0.001), particularly
those adults on ART (Figure 4B). This profound enrichment of
TFR results in a significantly higher TFR/TFH ratio inHIV infected
children, despite the increased frequency of TFH in this group
(p = 0.01; Figure 4C). Immunofluorescent staining of a tonsil
sample from which histological sections were available confirms
the existence of CXCR5+ FoxP3+ CD4 T-cells in proximity to
the GC (Figure 4D). In contrast to TFH, however, this trend

is not observed in HIV uninfected counterparts, in whom
TFR frequency and TFR/TFH ratio are not significantly different
(Figures S3B,C). Overall, these data suggest that the enriched
and functionally superior GC TFH in HIV-infected children
are also better regulated than in HIV-infected adults, which is
likely to support affinity maturation and the development of
bnAbs.

Interestingly, no differences between HIV-infected children
and adults were observed in circulating TFR frequency, and the
ratio of circulating TFR to effector TFH cells was significantly
lower in HIV-infected, ART-naïve children compared to adults (p
= 0.04; Figures 4E,F and Figures S3D,E). However, circulating
TFR from HIV-infected adults express significantly higher levels
of the exhaustion marker PD1, known to impair TFR function
(p = 0.03; Figure 4G) (53). Furthermore, circulating pediatric
TFH expressed lower levels of the surface marker CD40L
(p = 0.0003; Figure 4H), which implies tighter regulation
through this key TFH functional molecule. Thus, although
the frequency of circulating TFR is lower in HIV-infected
children, in contrast to the frequency of GC TFR, the
phenotypic differences observed between children and adults
are consistent with increased regulation of the TFH response
in HIV infected children in circulation as well as in lymphoid
tissue. This is corroborated by a positive trend between
the frequency of circulating TFR and neutralization breadth
in HIV infected children and negative trend in the same
group between PD1 expression and breadth (Figures S3F,G).
Again, these data support the importance of TFH regulation
in the preferential development of bnAbs in HIV-infected
children.

Follicular CD8 T-Cells Correlate With
Neutralization Breadth in Children
To further explore the contribution of TFH regulation to bnAb
development, we next studied CXCR5+ve CD8 T-cells, a subset
also known to limit GC TFH cell activity (35, 36, 38, 40, 54).
The overall frequency of CXCR5+ve CD8 T-cells in tonsils did
not differ between children and adults, in either HIV infected
or uninfected individuals (Figure 5A). However, HIV-specific
CXCR5+ve CD8 T-cells that produced IFN-γ in response to
stimulation with Gag/ Env peptide pools were of considerably
higher magnitude (median 3.7 vs. 0.3%) in infected children
compared to adults, although this did not reach statistical
significance (p = 0.17; Figure 5B). Immunofluorescent staining
of available histological sections confirmed the presence of
CXCR5+ve CD8 T-cells in association with CD4 T-cells within
the GC (Figure 5C). In circulation, we observed a significant
positive correlation between the frequency of CXCR5+ve CD8
T-cells and neutralization breadth in HIV infected, ART-naïve
children (r = 0.47, p = 0.008; Figure 5D). As with circulating
TFR, the frequency of total CXCR5+ve CD8 T-cells was similar in
infected adults and children, as was the frequency of HIV-specific
CXCR5+ve CD8 T-cells (Figures 5E,F). However, CXCR5+ve
CD8 T-cells were significantly more polyfunctional in children
with high neutralization breadth compared to those with low
neutralization breadth (p = 0.04; Figure 5G) (functions tested
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FIGURE 3 | High-frequency IL-21 production in HIV-specific GC-TFH Cells in children but not adults. (A) Representative flow cytometry plot of one pediatric

HIV-infected subject. Gated on CD4+CCR6−CXCR3−CXCR5+ “Th2” TFH cells. IL-21 (top row) and INF-γ (bottom row) secretion of PD1+ve cells is shown in

response to HIV-peptide pools (middle) or SEB (right). On the left unstimulated control. (B) Gated on tonsil “Th2” GC-TFH cells as follows:

CD4+CCR6−CXCR3−CXCR5+PD1+. Increased IL-21 secretion (p = 0.02) and (C) decreased INF-γ secretion (p = 0.04) in HIV infected children (blue squares; n =

4) compared to infected adults in response to Gag/Env. Red triangles: Adults on ART (n = 3), red diamonds: Adults not on ART (n = 3). Mann-Whitneys test was used

for comparisons between 2 groups. (D) No significant differences of IL-21 or INF-γ (E) production in response to SEB in children (blue; n = 10) compared to adults

(red; n = 9) irrespective of HIV infection and ART status (n.s.; Mann-Whitneys-test). Closed symbols: HIV infected; open symbols: HIV uninfected. (F) No significant

differences in Gag/Env specific IL-21 secretion of circulating “Th2”-TFH cells between ART-naïve infected children (blue squares; n = 38) and ART-naïve infected adults

(red triangles; n = 18) (n.s.; Kruskal-Wallis test). (G) Lack of correlation between HIV-specific (Gag/Env pool) IL-21 production of circulating “Th2”-TFH and

neutralization breadth in HIV-infected, ART-naïve children (n = 36). Calculations were made by Spearman’s rank correlation test. In scatter plots medians are shown.

being IL-2, IL-4, IL-17 and IFN-γ production in response
to HIV Gag/ Env). These differences in functionality were
not observed in CXCR5-ve CD8+ T-cells and no significant
differences were seen between adults and children as a whole.
Together, these data support a role for CXCR5+ve CD8 T-cells,
in addition to TFR in the regulation of TFH in HIV-infected
children.

DISCUSSION

Understanding the immunological conditions in which bnAbs
against HIV-1 are generated will help to optimize and target
future vaccine strategies. Although most HIV-infected children
produce broad and potent neutralizing antibodies against HIV-
1 (17, 18), the relationship between the TFH response, which
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FIGURE 4 | Tonsil follicular regulatory T cells (TFR) are increased in HIV infected children. (A) CD4+CXCR5+CD25+CD127low follicular regulatory T cells (TFR) (dark

blue) show the highest FoxP3 expression as expressed in MFI (median fluorescent intensity) when compared to CD4+CXCR5+CD25+CD127high (light blue) and

CD4+CXCR5+CD25−CD127high (gray) non-regulatory follicular T cells. (B) Increased frequency of tonsil TFR in HIV infected children (blue squares; n = 4) compared

to infected adults (red triangles: Adults on ART, n = 3; red diamonds: Adults not on ART, n = 3) (p = 0.001; Kruskal-Wallis test). (C) Same as B but showing the

increased ratio of tonsil TFR to tonsil “Th2” TFH cells (gated on CD4+CCR6−CXCR3−CXCR5+PD1+) in HIV infected children compared to infected adults (p = 0.01;

Kruskal-Wallis test). (D). Immunofluorescent staining of a tonsil sample from which histological sections were available confirms the existence of CXCR5+ FoxP3+

CD4 T-cells in proximity to the GC. CD4: red; CXCR5: green; FoxP3: blue. (E) No differences in frequency of circulating TFR between infected, ART-naïve children (blue

squares; n = 38) and ART-naïve adults (red triangles; n=18) (n.s.; Kruskal-Wallis test). (F) Same as F but showing an increased ratio of circulating TFR to circulating

effector TFH (gated on CD4+CD45RA−CXCR5+CXCR3−CCR7−PD1+) in HIV infected adults compared to infected children (p=0.04; Kruskal-Wallis test). (G)

Increased expression of PD1 on circulating TFR of HIV infected adults compared to HIV infected children (p = 0.03; Kruskal-Wallis test). (H) Decreased expression of

CD40L on circulating effector TFH cells in children when compared to adults (p = 0.0003; Kruskal-Wallis test). In scatterplots, medians are shown.
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FIGURE 5 | Follicular CD8 T-cells correlate with neutralization breadth in HIV infected children. (A) No significant difference in frequency of tonsil CXCR5+ve CD8

T-cells between children (blue squares; n = 10) and adults (red triangles; n = 9) irrespective of HIV infection (closed symbols: HIV infected; open symbols: HIV

uninfected) (n.s; Mann-Whitney test). (B) Increased secretion of INF-γ of tonsil CXCR5+ve CD8 T-cells in response to Gag/Env pool in HIV-infected pediatric study

participants (n = 4) compared to infected adults (red triangles: Adults on ART, n = 3; red diamonds: Adults not on ART, n = 3) (p = 0.17; Mann-Whitneys test). (C)

Immunofluorescent staining of available histological sections shows the presence of CXCR5+ve CD8 T-cells in association with the GC. CD4: violet; CD8: red;

CXCR5: green. (D) Frequency of circulating CXCR5+ve CD8T cells correlates with neutralization breadth within the cohort of HIV infected children (p = 0.008, r =

0.47; Spearman’s rank test) (n = 36). (E) No significant differences in the frequency of circulating CXCR5+ve CD8 T-cells or HIV-specific (Gag/Env pool) INF-γ

production (F) between HIV-infected, ART-naïve children (blue squares; n = 38) and adults (red triangles; n = 18). Comparisons between 2 groups were performed

(Continued)
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FIGURE 5 | using Mann-Whitneys test and between >2 groups using Kruskal-Wallis-test and corrected for multiple comparisons. (G) Circulating CXCR5+ve CD8

T-cells (left) show a more polyfunctional cytokine response to HIV Gag/Env compared to CXCR5–ve CD8 T-cells (right). Circulating CXCR5+ve CD8 T-cells of children

with high neutralization breadth show a stronger polyfunctional profile than those of children with low neutralization breadth (p = 0.04) (Monte Carlo simulation partial

permutation test). Cytokine-negative cells are excluded from the pie chart. (color coding pie chart: red: 4 cytokines, orange: 3 cytokines, yellow: 2 cytokines, green: 1

cytokine; color coding arcs: pink: IL-2, violet: IL-4, turquoise: IL-17, blue: INF-γ).

is critical for affinity maturation, and neutralization breadth
has not been investigated to date in children. The need to
examine lymphoid tissue in particular was made apparent by
the current study, as many of the key differences in TFH

activity between children and adults were only evident within
the tonsil. Circulating effector TFH were more frequent in
infected, ART-naïve children than adults and correlate well
with neutralization breadth; and GC TFH in tonsil were more
than double the frequency in children. However, differences
between children and adults in antigen specific TFH were only
observed in lymphoid tissue. HIV-specific “Th2”-GC TFH were
more abundant in children and produced IL-21 and not IFN-
y, whereas adult HIV-GC TFH cells secreted IFN-y not IL-
21. Additionally, these studies of lymphoid tissue underline
the key role of TFH regulation in the development of HIV
bnAbs in children, as TFR cells were present at substantially
higher frequencies than in infected adults, giving rise to
significantly higher TFR/TFH ratios in HIV-infected but not in
uninfected children. Furthermore, HIV-specific CXCR5+ CD8
T-cells, described to have regulatory function in the GC (36,
39, 54), were more frequent in pediatric lymphoid tissue; and
total circulating CXCR5+ve “follicular” CD8 T-cells correlated
with neutralization breadth and were more polyfunctional in
children with high neutralization breadth. Together these data
are consistent with the notion that increased HIV-specific TFH

activity and increased regulation within GC both contribute to
the high frequency of potent, bnAbs observed in HIV-infected
children.

In response to stimulation by HIV peptides, peripheral
blood TFH cells produced very low levels of the canonical TFH

cytokine, IL-21 (55), and no correlation with antibody breadth
or differences between children and adults were observed. These
children were not on ART at the time of sampling, which
reduces circulating HIV-specific T-cells (56). Thus, in children at
least, limited information on HIV-specific TFH can be obtained
from the blood. This contrasted with the striking HIV-specific
IL-21 Th2 TFH responses in HIV infected pediatric tonsils
and their almost complete absence in the tonsils of the adults
tested. TFH provide help to B-cells in an antigen-specific manner
(57), and hence the presence of HIV-specific TFH secreting the
appropriate TFH cytokines is likely to be critical to effective
affinity maturation of HIV antibodies. The GC HIV-specific TFH

responses in adults were both less abundant and functionally
distinct in secreting IFN-γ rather than IL-21. The Th2 TFH bias
observed here in HIV-infected children, compared with adults,
and the more frequent development of bnAbs in children is
consistent with other recent findings. In HIV-infected adults,
IFN-γ secreting TFH did not support antibody class switching

as effectively as Th2 biased TFH secreting Th2 cytokines (58).
Furthermore, in the SIV model, Th2-skewed TFH correlated
with the development of broadly neutralizing antibodies, whereas
IFN-γ producing Th1 TFH did not (59). Other studies in both
humans and non-human primates point to the overall Th1
polarization of the GC TFH response in chronic infection that
impairs optimal B-cell activity (60, 61). Together, these data
support the hypothesis that the HIV-specific IL-21-producing
TFH within the lymphoid tissue of HIV-infected children play
a critical role in the generation of the high-frequency, potent
bnAbs that are characteristically observed in children. The
mechanism by which these differences arise remains unclear,
especially since responses to SEB did not differ between adults
and children. It is possible that the increased frequency of
TFH observed in children reflects recent exposure to other
common childhood infections. Indeed, this is consistent with
the increased frequency of GC TFH observed in the tonsils
of HIV uninfected children compared to adults. However,
both the correlation between TFH frequency and neutralization
breadth, and the existence of high frequency HIV-specific GC
TFH, demonstrates a significant HIV-specific component to this
trend.

The other key difference between HIV infected children
and adults highlighted by this study is the evidence of greater
regulation of the TFH response in children. Again, this is
most apparent in the lymphoid tissue, where regulation of TFH

activity is most relevant (25). This makes biological sense, as
the absence of TFR has been shown to cause an outgrowth of
non-antigen specific or low-affinity B cells in germinal centers
and leads to fewer antigen-specific cells (23, 27). Other work
has suggested that expansion of regulatory cells in the GC in
adult HIV and SIV infection may inhibit the generation of
bnAbs (62). In addition, several studies have linked HIV bnAb
development to a loss of immune tolerance and to autoimmunity
(63–66), and reduced circulating TREG (66). This has led to
the hypothesis that bnAb development is constrained by host
tolerance controls and that lower regulation would promote the
development of breadth. However, this concept has been based
exclusively on work in adult infection, and this present study
highlights the immune differences between HIV infected adults
and children (4). For example, although we observed a similar
increase in circulating TFH in children and adults, pediatric
TFH expressed significantly lower levels of CD40L, which is
crucial for providing B-cell help. Neonatal T cells are known to
express lower levels of CD40L than adult counterparts (67), and
these levels appear to increase with age (68). Overexpression of
CD40L can lead to hypergammaglobulinemia in a lymphopenic
mouse model (52), a characteristic of untreated HIV infection
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in adults that is associated with TFH activity (48). Therefore,
lower expression of CD40L on pediatric TFH may help to regulate
these cells as the developing immune system is exposed to
new antigens and facilitate the development of bnAbs. Whether
children make superior antibodies to adults per se is unclear
and is complicated both by exposure that, for most common
infections, occurs in childhood, and the influence of maternal
antibodies. Infants infected with Rota virus, display superior
neutralizing antibody responses greater than their mothers (69),
and potent cross-clade neutralizing antibody responses against
Enterovirus exist in children (70). However, children do not
appear to make neutralizing antibodies to Influenza A H5/N1
infection, whilst adults do (71). Further study is required to better
understand the process of antibody development in children,
which may vary depending on pathogen, route and timing of
infection.

It is important to highlight that tonsil samples studied here
are not from the same subjects studied previously and from
which the neutralization data derive (17). Moreover, it was not
possible to obtain neutralization data from these children, due
to ongoing ART (72). However, given that the ability of typical,
progressing HIV infected children to neutralize a broad range
of viruses is so much greater than that of HIV infected adults
[a median of 63% of viruses neutralized vs. 25% of the same
test set of viruses, respectively, p < 0.0001, (17)], it is clear
that children are fundamentally different from adults in this
respect. There is no reason to suppose that the children and
adults studied here are not representative of those in whom
neutralizing antibody responses have been previously mapped.
The impact of ART on tonsil TFH and regulatory T-cell frequency
and function within infected children is unclear. Limited studies
indicate that ART treatment of chronically infected adults can
reduce the frequency of TFH within lymph nodes, though it
remains higher than uninfected adults (73). This is consistent
with our own data in which the 3 ART treated adults have fewer
tonsil TFH and TFR than the 3 untreated individuals. Indeed,
if one considers only ART treated individuals, the difference in
frequency of both cell types is even greater between children and
adults.

Taken together, these data suggest, in children, the immune

system is well adapted to the production of broadly HIV

neutralizing antibodies, likely as a result of the immunotolerant

immune environment in early life (74–76), that includes
a relatively high degree of regulation of a high-frequency
TFH response. In adults, where TFH cells appear to be
substantially less abundant, better generation of bnAbs
may depend on the strategy of decreasing TFH regulation
(66). However, given the inherent aggressive nature of
the adult immune response, decreasing T-cell regulation
to increase bnAb generation may simultaneously bring
the unwanted consequences of increased autoimmunity.
Children, by contrast, may represent a much more attractive
group in which long lasting broadly neutralizing antibodies
against HIV infection are more easily generated, thereby
providing protection against HIV infection when they become
adults.
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Figure S1 | No correlation between viral load and effector TFH frequency. (A)

Frequency of circulating central TFH correlates significantly with viral load within

the pediatric cohort (r = 0.5, p = 0.0003; left) while there is no correlation with

circulating effector TFH frequency (right). (B) Inverse correlation between PD1

expression on bulk CD4 (left) and CD8 (right) T-cells and viral load within the

pediatric cohort. All correlations are performed by Spearman’s rank test (n = 36).

Figure S2 | High-frequency IL-21 production in HIV-specific GC-TFH cells in

children but not adults. (A) The majority of tonsil TFH cells are “Th2”-TFH cells

(CD4+CCR6−CXCR3−CXCR5+PD1+). See gating strategy on the left and

distribution of Th2 (CCR6−CXCR3−), Th17 (CCR6+CXCR3−) and Th1

(CCR6−CXCR3+) of tonsil TFH on the right. (B) Tonsil bulk CD4 T-cells of infected

children (blue squares; n = 4) secrete more IL-21 and less INF-g (C) in response

to HIV peptide than CD4T cells of infected adults (red triangles: Adults on ART,

n = 3; red diamonds: Adults not on ART, n = 3) (n.s., Mann–Whitneys test). (D)

No significant differences in Gag/Env specific IL-21 secretion of circulating

“Th2”-TFH cells between ART-naïve infected children (blue squares; n = 38) and

ART-naïve infected adults (red triangles; n = 18) (n.s., Kruskal–Wallis test). In

scatterplots, medians are shown.

Figure S3 | Tonsil follicular regulatory T cells (TFR) are increased in HIV-infected

children. (A) Similar expression of CD25 in HIV infected and uninfected children

(left: exemplary FACS plot; right: summary data of all pediatric samples). Closed

blue squares: HIV infected (n = 38), open blue squares: HIV uninfected (n = 7). (B)

No significant differences in the frequency of tonsil TFR or ratio of tonsil TFR to

tonsil “Th2” TFH cells (gated on CD4+CCR6−CXCR3−CXCR5+PD1+) (C) in

uninfected children (open blue squares; n = 6) compared to uninfected adults

(open red triangles; n = 3) (n.s., Kruskal–Wallis test). (D) No significant differences

in the frequency of circulating TFR in uninfected children (open blue squares; n =

7) compared to adults (open red triangles; n = 8) (n.s., Kruskal–Wallis test). (E)

Uninfected children shown an increased ratio of circulating TFR to circulating

effector TFH (gated on CD4+CD45RA−CXCR5+CXCR3−CCR7−PD1+)

compared to uninfected adults (p = 0.02; Kruskal–Wallis test). (F) Positive

non-significant correlation of frequency of circulating TFR and neutralization

breadth in HIV-infected children (r = 0.29, p = 0.09; Spearman’s rank test) (n =

36). (G) Inverse non-significant correlation of PD1 expression on circulating TFR
and neutralization breadth within the pediatric cohort (r = −0.3, p = 0.08;

Spearman’s rank test) (n=36). Medians are shown in scatter plots.

Table S1 | Clinical characteristics of study cohort.

Table S2 | List of antibodies for flow cytometry.
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