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Chronic lymphocytic leukemia (CLL) can be divided into prognostically distinct subsets

with stereotyped or non-stereotyped, mutated or unmutated B cell receptors (BCRs).

Individual subsets vary in antigen specificity and origin, but the impact of antigenic

pressure on the CLL BCR repertoire remains unknown. Here, we employed IgH.TEµ

mice that spontaneously develop CLL, expressing mostly unmutated BCRs of which

∼35% harbor VH11-2/Vκ14-126 and recognize phosphatidylcholine. Proportions of

VH11/Vκ14-expressing CLL were increased in the absence of functional germinal

centers in IgH.TEµ mice deficient for CD40L or activation-induced cytidine deaminase.

Conversely, in vivo T cell-dependent immunization decreased the proportions of

VH11/Vκ14-expressing CLL. Furthermore, CLL onset was accelerated by enhanced

BCR signaling in Siglec-G−/− mice or in mice expressing constitutively active Bruton’s

tyrosine kinase. Transcriptional profiling revealed that VH11 and non-VH11 CLL differed

in the upregulation of specific pathways implicated in cell signaling and metabolism.

Interestingly, principal component analyses using the 148 differentially expressed

genes revealed that VH11 and non-VH11 CLL clustered with BCR-stimulated and

anti-CD40-stimulated B cells, respectively. We identified an expression signature

consisting of 13 genes that were differentially expressed in a larger panel of T

cell-dependent non-VH11 CLL compared with T cell-independent VH11/Vκ14 or mutated

IgH.TEµ CLL. Parallel differences in the expression of these 13 signature genes were

observed between heterogeneous and stereotypic human unmutated CLL. Our findings

provide evidence for two distinct unmutated CLL subsets with a specific transcriptional

signature: one is T cell-independent and B-1 cell-derived while the other arises upon

antigen stimulation in the context of T-cell help.
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INTRODUCTION

Chronic lymphocytic leukemia (CLL) is the most common adult
leukemia characterized by an accumulation of monoclonal CD5+

mature B cells with low surface immunoglobulin (Ig) expression
in peripheral blood (1).

CLL is a clinically and molecularly heterogeneous disease
whereby progression is influenced by many factors. One-third of
patients can be classified as stereotypic CLL, in which BCRs are
highly similar between patients (2). The remaining two-third of
CLL either lack or have limited similarity with stereotyped CLL
BCRs. This classification provides strong molecular evidence
for antigen selection in CLL pathogenesis (2). CLL can also be
grouped based on IGHV mutational status (3, 4). Significant
(>2%) somatic hypermutation (SHM) is observed in patients
with mutated CLL (M-CLL), who often develop indolent disease.
SHM is absent in unmutated CLL (U-CLL) which evolves rapidly
and has a less favorable prognosis (4). The SHM status provides
a robust and stable prognostic marker, independently of clinical
stage and other markers (5). Furthermore, it reinforces the
role of selection by self-antigens or exogenous antigens in CLL
pathogenesis. CLL cells show constitutive activation of several
BCR downstream kinases, increasing leukemic cell survival in
vitro (6). In support, small molecule inhibitors of BCR–associated
kinases including Bruton’s tyrosine kinase (Btk) have shown
impressive clinical anti-tumor activity (7, 8).

Few external antigens that potentially drive CLL in vivo
have been identified; CLL cells were shown to display antigen-
independent, cell-autonomous signaling mediated by auto-
recognition (9). Several reports have shown that U-CLL express
polyreactive BCRs that bind with low affinity to various auto-
antigens generated during apoptosis or oxidation (10, 11). In this
respect, they resemble natural antibodies secreted by B-1 cells
in mice. B-1 cells are a self-renewing CD5+ B cell population
with remarkably restricted IGHV gene usage and low or no SHM
(12). B-1 cells are thought to be generated based on positive
selection, by virtue of their receptor specificities to self-antigens,
independent of T-cell help (12). Adding to this complexity, the
antigen specificity of U-CLL includes both T cell-independent
(TI) and T cell-dependent (TD) antigens (11, 13, 14). On the
other hand, M-CLL express BCRs that are believed to bind with
high-affinity to auto-antigens and show activation of pathways
associated with anergic B cells (15, 16).

Differences regarding BCR reactivity have fueled several
theories concerning the cellular origins of CLL. SHM status
and transcription profiling indicated that U-CLL and M-CLL
are derived from CD5+CD27− pre- and CD5+CD27+ post-
germinal center (GC) B cells, respectively (17, 18). Extrafollicular
or marginal zone (MZ) B cell responses, involving the activation
of low-affinity B cells to TI antigens with low SHM, could
also be relevant for CLL (19). Direct in vivo evidence for the
TD or TI origin of CLL subgroups is still missing, mainly due
to a lack of mouse models that spontaneously develop both
stereotypic and non-stereotypic, mutated and unmutated CLL
(20). In the widely studied Eµ-TCL1 model, CLL predominantly
express unmutated stereotyped IghV11 or IghV12 BCRs (21).
The IgH.TEµ CLL mouse model that we previously generated is

based on sporadic expression of the SV40 large T oncogene in
mature B cells (22). This was achieved by SV40 large T insertion
in opposite transcriptional orientation into the IgH locus DH-
JH region. In contrast to the Eµ-TCL1 model, IgH.TEµ mice
mainly develop unmutated CLL with a diverse IghV repertoire,
and at low frequencies mutated CLL (20, 22). Because of their
mixed sv129xC57BL/6 background, we used IgMa/IgMb allotype
expression to define CLL incidence by the accumulation of>70%
IgMb+ B-cells (22, 23). Aging IgH.TEµ mice show accumulation
of monoclonal CLL-like CD5+CD43+IgM+IgDlowCD19+ B
cells around nine months of age. Although constitutive Btk
signaling was not apparent in primary IgH.TEµ CLL cells, CLL
development was dependent on Btk. Btk-mediated signaling
enhanced leukemogenesis and Btk-deficiency led to a complete
rescue from the disease (23). Moreover, primary CLL cells from
IgH.TEµ mice or stable cell lines generated from these mice had
detectable expression of p-Akt and substantial levels of p-S6, both
of which function downstream of the BCR (23, 24).

To address the impact of antigenic pressure on BCR selection
in CLL, we analyzed the effects of defective T cell help and
GC formation, as well as robust antigenic stimulation on
CLL development in IgH.TEµ mice. We show that there are
two distinct unmutated CLL subsets present in the IgH.TEµ

mouse model. The VH11-2/Vκ14-126-expressing CLL developed
independently of T-cell help. Conversely, non-VH11 CLL was
TD and displayed a specific transcriptional signature associated
with non-stereotypic U-CLL in human. These findings provide
evidence for differential dependence on T cell help in unmutated
CLL in mice and suggest that development of human U-CLL can
also be T cell-dependent.

MATERIALS AND METHODS

Mice
Mice (C57BL/6) deficient for Cd40l (25), Aicda (26) or Siglec-
G (27), and Cd19-E-Btk-2 (28) transgenic mice were crossed
to IgH.TEµ mice (F1 sv129xC57BL/6). CLL development was
monitored every 3–6 weeks by screening peripheral blood for
a monoclonal B cell expansion using flow cytometry. CLL
formation was defined by accumulation of >70% IgMb+ B-cells
in the peripheral blood of the mice. Mice were sacrificed after
detection of CLL. Mice were bred and kept in the Erasmus MC
experimental animal facility and experiments were approved by
the Erasmus MC committee of animal experiments.

Patients and Healthy Controls
Primary patient material was obtained from peripheral blood
from CLL patients, while peripheral blood from healthy controls
(>50 years of age) was obtained via Erasmus MC and via
Sanquin blood bank (Rotterdam). Diagnostic and control
samples were collected upon informed consent and anonymized
for further use, following the guidelines of the Institutional
Review Board, and in accordance with the declaration of
Helsinki. The BCR characteristics of all CLL patients are included
in Supplementary Table 5. Peripheral blood mononuclear cells
(PBMCs) were isolated using Ficoll Hypaque (GE Healthcare,
Little Chalfont, UK) according to themanufacturer’s instructions.
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Naïve mature B cells were isolated from healthy control PBMCs
using FACS-purification for CD19+CD27-IgD+ cells. The purity
of naïve mature healthy B cell samples was >95% as determined
by flow cytometry.

In vivo Immunizations
TD immune responses were induced by i.p. immunization.
Primary immunizations were induced in 10-12-week-old mice
with 100 µg TNP-KLH on alum. After 5 weeks this was followed
by a secondary immunization with 100µg TNP-KLH in PBS (28).

BCR Sequencing
Primer sequences and PCR condition were previously described
(22, 23). PCR products were directly sequenced using the BigDye
terminator cycle sequencing kit with AmpliTaq DNA polymerase
on an ABI 3130xl automated sequencer (Applied Biosystems).
Sequences were analyzed using IMGT/V-Quest (http://www.
imgt.org, using Ig gene nomenclature as provided by IMGT). All
sequences were confirmed in at least one duplicate analysis.

Flow Cytometry Procedure
Preparation of single-cell suspensions of lymphoid organs and
lysis of red blood cells were performed according to standard
procedures. Cells were (in)directly stained in flow cytometry
buffer (PBS, supplemented with 0.25% BSA, 0.5mM EDTA and
0.05% sodium azide) using the following fluorochrome or biotin-
conjugated monoclonal antibodies or reagents: anti-B220 (RA3-
6B2), anti-CD19 (ID3), anti-CD5 (53-7.3), anti-CD43 (R2/60),
anti-CD23 (B3B4) all from eBioscience and anti-CD138 (281-
2), anti-CD95 (Jo2), anti-IgD (11-26), anti-IgMb (AF6-78), anti-
IgMa (DS-1), anti-Igλ (R26-46), anti-Igκ (187.1), anti-CD21
(7G6), all from BD biosciences, using conjugated streptavidin
(eBioscience) as a second step for biotin-conjugated antibodies.

Leukemic cells (CD19+CD5+) were stained with fluorescein-
labeled phosphatidylcholine (PtC) liposomes (DOPC/CHOL
55:45, Formumax Scientific Inc.) in flow cytometry buffer. Cells
were co-stained with anti-CD19, anti-CD43, or anti-CD5 (BD
Biosciences).

MACS Cell Sorting
Splenic single-cell suspensions were prepared in
magnetic-activated cell sorting (MACS) buffer (PBS/2mM
EDTA/0.5%BSA) and naïve splenic B cells from 8–12 week-old
WT C57BL/6 mice were purified by MACS, as previously
described (24, 29). Non-B cells, B-1 cells, GC B cells, and
plasma cells were first labeled with biotinylated antibodies (BD
Biosciences) to CD5 (53–7.3), CD11b (M1-70), CD43 (S7), CD95
(Jo2), CD138 (281-2), Gr-1 (RB6-8C5), and TER-119 (PK136)
and subsequently with streptavidin-conjugated magnetic beads
(Miltenyi Biotec). Purity of MACS-sorted naïve B cells was
confirmed by flow cytometry (typically > 99% CD19+ cells).
To obtain activated B cells, purified naïve WT B cells were
cultured in culture medium [RPMI 1640 (life technologies)/10%
FCS (gibco)/50µg/mL gentamycin(life technologies)/0,05mM
ß-mercaptoethanol (Sigma)] in the presence of 10µg/ml F(ab’)2
anti-IgM (Jackson Immunoresearch) for 12 h.

RNA-Sequencing
RNA was extracted from naive or activated splenic B cells,
as well as from purified (using MACS-purification for CD19+
cells) primary tumors from IgH.TEµ mice with the RNeasy
Micro kit (Qiagen) according to manufacturer’s instructions.
The TruSeq RNA Library Prep kit (Illumina) was used to
construct mRNA sequencing libraries that were sequenced on an
Illumina HiSeq 2500 (single read mode, 36 bp read length). Raw
reads were aligned using Bowtie to murine transcripts (RefSeq
database) from theUniversity of California at Santa Cruz (UCSC)
mouse genome annotation (NCBI37/mm9) (30). Differential
gene expression analysis was performed using DESeq2 (31)
with an adjusted P-value (false discovery rate; FDR) of P
< 0.05. Log2-fold changes and FDR values as calculated by
DESeq2 were used to generate a volcano plot using R (R studio
version 1.1.383). Normalized gene expression levels quantified
as reads per kilobase of a transcript per million mapped
reads (RPKMs) were used for various clustering approaches
(unsupervised hierarchical clustering, supervised clustering, and
PCA) that were performed using R and PAST software (https://
folk.uio.no/ohammer/past/). Visualization of clustering analysis
output was performed using R, PAST, and Java TreeView (32).
Molecular pathway enrichments were obtained from the online
MSigDB database. Gene expression data for anti-CD40 plus
IL-4 stimulated follicular B-cells was obtained from previously
reported data and downloaded from the Gene Expression
Omnibus (GEO; accession number GSE77744) (33). RNA-Seq
data generated in this study have been deposited in the GEO
database (accession number GSE117713).

Quantitative Real Time PCR Analysis
Samples tested in qRT-PCR were from IgH.TEµ (7 VH11
and 15 non-VH11), from IgH.TEµ.Aicda−/− (4 VH11 and
4 non-VH11), and from IgH.TEµ.TD (4 non-VH11) mouse
groups. For quantitative RT-PCR analysis, TaqMan probes were
employed. Probe Finder software (Roche Applied Science),
the Universal Probe Library (Roche Applied Science) and
Ensembl genome browser (http://www.ensembl.org/) were used
for primer and probe design. Taqman Universal Master Mix II,
was purchased from Thermo Fisher Scientific. Quantitative RT-
PCR was performed by using the 7300 Real Time PCR system
(Applied Biosciences) according to manufacturer’s instructions.
Gene expression was analyzed with an ABI Prism 7300 Sequence
Detector and ABI Prism Sequence Detection Software version
1.4 (Applied Biosystems). Cycle-threshold levels were calculated
for each gene and the housekeeping gene glyceraldehyde-3-
phosphate dehydrogenase (Gapdh) was used for normalization of
the values. All primer sequences and probe numbers are listed in
Supplementary Table 7.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism
software (San Diego, California, USA) or R. The log rank test
was used for calculating the level of significance for survival
differences between mouse groups. The Chi-square test was used
to determine the significance for BCR usage differences between
different mouse groups. To evaluate differences in expression
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levels of different genes by qRT-PCR we used a Mann-Whitney
U-test between two groups or a Kruskal-Wallis test corrected
with Dunn’s multiple comparison test for more than two
groups.

RESULTS

Two Subsets of Unmutated CLL Arise in
IgH.TEµ Mice
To analyze the BCR repertoire, we aged a panel of IgH.TEµ

mice and collected blood every 3–6 weeks to monitor CLL
incidence. Hereby, CLL incidence was defined by the
accumulation of >70% IgMb+ B-cells, which displayed a
CLL-like CD5+CD43+IgM+IgDlowCD19+ phenotype (22, 23).
We performed sequencing analyses of Ig heavy (Igh) and light
(Igl) chain transcripts and found that a substantial proportion
(∼36%) of CLL in IgH.TEµ mice expressed stereotyped
BCRs consisting of the VH11-2 Igh chain, with similar Igh
CDR3 length and amino acid sequences, and the Vκ14-126
Igl chain (22, 23) (Supplementary Table 1, Figures 1A,B).
The VH11/Vκ14 CLL mice exhibited an earlier disease onset
compared with IgH.TEµ mice with non-stereotypic (non-
VH11) BCR (mean incidence age 184 days and 219 days,
respectively, p = 0.0175) (Figure 1C). In wild-type mice the
VH11-2/Vκ14-126 BCR is preferentially expressed by B-1
lymphocytes and shows specificity to phosphatidylcholine
(PtC) (12). We could confirm PtC-binding specificity of
VH11-2 BCRs on CLL cells (Figure 1D). VH11 CLL showed
decreased surface IgM expression and increased surface
IgD expression compared to non-VH11 CLL (Figures 1E,F).
A major proportion (∼65%) of the remaining non-VH11
CLL expressed a J558 VH1-family BCR with heterogeneous
CDR3 length, amino acid sequence and Igl chain usage
(Supplementary Table 1). VH1 CLL showed delayed disease
onset (mean incidence age 231 days), compared with VH11 CLL
(Supplementary Figure 1).

In conclusion, based on Ig gene usage we could distinguish
different subsets of unmutated IgH.TEµ CLL displaying
differential disease onset.

Germinal Center Defects Lead to Increased
VH11/Vκ14 Usage in Unmutated CLL
Because VH11/Vκ14-expressing CLL likely originate from B-1
cells, we hypothesized that they should still develop in the
absence of functional GCs. Therefore, we investigated their
dependence on functional GCs and T cell help by crossing
IgH.TEµ mice with Cd40l−/− or Aicda−/− mice. Cd40l −/− or
Aicda−/− mice display a complete lack or aberrant enlargement
of GCs, respectively, paralleling the human hyper-IgM
syndrome phenotype (26, 34). We monitored CLL incidence,
as described above, in cohorts of Cd40l-deficient IgH.TEµ mice
(IgH.TEµ.Cd40l−/−, n = 13), Aicda-deficient IgH.TEµ mice
(IgH.TEµ.Aicda−/−, n = 26) and IgH.TEµ control littermates,
n = 69 or n = 56, respectively for ∼400 days (Figure 2). CLL
frequency and onset was not altered in IgH.TEµ.Cd40l−/−mice
(∼59%, compared with ∼62% in IgH.TEµ control littermates;

p = 0.99) or in IgH.TEµ.Aicda−/− mice (∼62%, compared
with ∼64% in IgH.TEµ control littermates; p = 0.78)
(Figures 2A,B).

To explore the impact of CD40L or AID-deficiency
on BCR usage in CLL, we performed IghV and IglV
sequence analyses in selected CLL samples with high tumor
load (>95% IgMb+CD5+CD43+CD19+ CLL-like cells)
(Supplementary Table 1). Interestingly, usage of the stereotypic
VH11/Vκ14 BCR was significantly increased in CLL from
IgH.TEµ.Cd40l−/− mice (n = 7/7, 100%), compared with
control IgH.TEµ mice (n = 9/25, ∼36%, Chi-square p <

0.001). Also CLL from IgH.TEµ.Aicda−/− mice showed
increased VH11/Vκ14 usage (n = 9/13, ∼69%) compared with
control littermates (n = 7/20, ∼35%, Chi-square p < 0.01)
(Figures 2C,D). These VH11 CLL also expressed similar Igh
CDR3 sequences (Supplementary Table 1).

Taken together, these findings indicate that VH11/Vκ14-
expressing CLL arise independently of T cell help
or GC formation, whereas non-VH11 CLL is T cell-
dependent and reduced in the absence of functional GCs
in IgH.TEµ.Cd40l−/−and IgH.TEµ.Aicda−/− mice.

T-cell Dependent Antigenic Stimulation of
B Cells in vivo Reduces VH11/Vκ14 Usage
in Unmutated IgH.TEµ CLL
To directly investigate whether antigenic stimulation in the
context of T cell help affects CLL onset and the CLL BCR
repertoire, we immunized IgH.TEµmice with TNP-KLH coupled
to alum (IgH.TEµ.TD, n = 20) to induce a TD B cell
response. CLL onset did not differ between immunized and non-
immunized littermates (n = 56) (Figure 3A). At the age of ∼400
days, CLL incidence in IgH.TEµ.TD mice was ∼65% similar to
non-immunized control IgH.TEµ mice (∼62%) (Figure 3A).

Next, we analyzed IghV and IglV sequences in CLL samples
with high tumor load (>95% IgMb+CD5+CD43+CD19+ CLL-
like cells). In contrast to control IgH.TEµ mice, which showed
∼35% (n = 7/20) VH11 usage, only 10% (n = 1/10) of
IgH.TEµ.TD CLL expressed a VH11/Vκ14 BCR (Chi-square
p = 0.09) (Figure 3B). The majority (n = 6/9, 67%) of CLL in
IgH.TEµ.TD mice expressed a J558/VH1-family IghV gene and
we did not observe mutated CLL (Supplementary Table 1).

In summary, we found that robust TD immunization favors
development of non-VH11 CLL.

Enhanced BCR Signaling Accelerates
Disease Onset in IgH.TEµ Mice
Our findings provide evidence that T cell-derived activation or
selection signals, in particular CD40L, shape the BCR repertoire
of CLL in IgH.TEµ mice, but do not significantly affect disease
onset or progression. It is therefore conceivable that in the
IgH.TEµ mouse model, BCR-derived signals may be more
decisive for disease progression.

To monitor the impact of BCR signaling strength on CLL
development and IghV gene selection, we first crossed IgH.TEµ

mice with E-Btk-2 transgenic mice. These mice express the
constitutive active E41K-BTK mutant selectively in the B-cell
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FIGURE 1 | Early onset of disease in VH11 expressing CLL from IgH.TEµ mice. (A) Bar graphs summarizing the distribution of CDR3 length in VH11 (gray, n = 15) vs.

non-VH11 (white, n = 23) CLL from IgH.TEµ mice. (B) Web logo depicting stereotyped CDR3 amino acid sequence of VH11 (n = 15) CLL from IgH.TEµ mice.

(C) Retrospective Kaplan-Meier incidence curves including IgH.TEµ mice with identified VH11 (dotted line) or non-VH11 BCR CLL (solid line). (D–F) Histogram

showing flow cytometric analysis of CD19+CD5+CD43+ splenic CLL cells from VH11 (gray) vs. non-VH11 (black line) CLL from IgH.TEµ mice, stained with

(D) phosphatidylcholine (PtC) liposomes or fluorochrome conjugated (E) anti-IgM or (F) anti-IgD antibodies. Bar graphs summarize mean fluorescence intensity of

VH11 (gray) and non-VH11 CLL (n = 6 per group).

lineage driven by the CD19 promoter (28). The E41K mutation
enhances Btk membrane localization and thereby its activation
by Syk or Src-family tyrosine kinases (35). E-Btk-2 mice show
defective follicular B cell survival and a relative expansion of
splenic B-1 cells (28). Flow cytometry analysis of E-Btk-2 B-1 cells
did not reveal detectable PtC binding, indicating that VH11 BCR
expression was limited (data not shown).

We found that IgH.TEµ.E-Btk-2mice (n= 21) developed CLL
significantly earlier (mean age of onset of ∼155 days), compared
with control IgH.TEµmice (∼279 days; p< 0.0001) (Figure 4A).
In addition, IgH.TEµ.E-Btk-2mice appeared to have an increased
disease frequency (∼90% at ∼400 days, compared with ∼71%
for control IgH.TEµ mice). Sequence analysis of Igh revealed
that 1 out of 8 (∼12%) tumors from IgH.TEµ.E-Btk-2 mice
expressed a VH11 BCR, compared with 35% (n = 9/26) in
the control IgH.TEµ group (Figure 4C, Supplementary Table 1).
This difference was not statistically significant, but the finding of

a PtC-reactive VH11 CLL was surprising, since PtC-binding B-1
cells were not detectable in E-Btk-2 mice. The majority (∼71%;
n= 5/7) of the non-VH11 BCRs expressed J558/VH1-family IghV
genes.

To confirm that enhanced BCR signaling affects disease onset,
we crossed IgH.TEµ mice on a Siglec-G deficient background
(IgH.TEµ.Siglec-G−/−). Siglec-G is a negative regulator of BCR-
mediated signaling that is expressed in all B cells (27). It is
a potent inhibitor of BCR-induced Ca2+ signaling and a key
regulator of survival and selection of B-1 cells (36). In addition,
Siglec-G-deficiency abrogates VH11 usage in B-1 cells (36).

Similar to IgH.TEµ.E-Btk-2 mice, also IgH.TEµ.Siglec-G−/−

mice displayed an increased disease frequency (∼93 % at ∼400
days, compared with∼70% for IgH.TEµmice), with significantly
accelerated CLL onset (∼121 days compared with ∼268 days for
IgH.TEµ mice; p < 0.0001) (Figure 4B). IghV analyses showed
a VH11/Vκ14 usage of∼18% (n= 2/11) in IgH.TEµ.Siglec-G−/−
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FIGURE 2 | Increased frequency of VH11 usage in CLL from germinal center attenuated IgH.TEµ mice. (A,B) Kaplan-Meier incidence curves of (A) IgH.TEµ (dotted

line) vs. IgH.TEµ.Cd40l−/− (solid line) mice or (B) IgH.TEµ (dotted line) vs. IgH.TEµ.Aicda−/− (solid line) mice. (C,D) Pie charts summarizing frequencies of VH11

BCR (gray) and non- VH11 BCR-expressing CLL in the indicated mouse groups.

FIGURE 3 | CLL VH11 usage is dependent on antigenic stimulation. (A) Kaplan-Meier incidence curves of IgH.TEµ (dotted line) vs. IgH.TEµ.TD (solid line). (B) Pie

charts summarizing the frequencies of VH11 (gray) and non-VH11 BCR-expressing CLL in the indicated mouse groups.

CLL vs.∼35% (9/26) in the control group (Chi-square p< 0.242)

(Figure 4C, Supplementary Table 1). Only 2/11 IgH.TEµ.Siglec-

G−/− CLL expressed J558/VH1-family IghV genes.

Thus, BCR signaling strength plays an important role in

CLL development in IgH.TEµ mice, whereby enhanced signaling

accelerates disease onset. Because E-Btk-2 or Siglec-G−/− B-1

cells do not show detectable PtC expression, our findings suggest

that those few VH11 B cells present are efficiently transformed

to CLL in IgH.TEµ.E-Btk-2 or IgH.TEµ.Siglec-G−/− mice. Thus,

BCR signaling strength may also affect the BCR repertoire
in CLL.

Transcriptome Profiling Identifies Unique
Genes and Pathway Aberrations for
VH11/Vκ14 and non-VH11 CLL IgH.TEµ

Mice
To further explore the biological phenotype of the VH11
and non-VH11 CLL subsets, we performed genome-wide gene
expression profiling on primary IgH.TEµ CLL (tumor load
>95%) expressing either a VH11 (n = 3) or a non-VH11
(n = 3) BCR. As a reference we included resting unstimulated
(un-B, n = 4) and anti-IgM stimulated (αIgM-B, n = 4)
naïve splenic B cells from wild-type mice. Normalized gene
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FIGURE 4 | Onset of CLL is dependent on BCR signaling capacity in IgH.TEµ mice. Kaplan-Meier incidence curves of (A) IgH.TEµ (dotted line) vs. IgH.TEµ.E-Btk-2

(solid line) mice or (B) IgH.TEµ (dotted line) vs. IgH.TEµ.SiglecG−/− (solid line) transgenic mice. (C) Pie charts summarizing the frequencies of VH11 (gray) and

non-VH11 BCR-expressing CLL in the indicated mouse groups.

expression values (see Methods for details) were used for
principle component analysis (PCA). The first two principal
components, which represented ∼70% of the total variation
among the different samples analyzed, identified three separate
clusters, corresponding to un-B, αIgM-B and primary IgH.TEµ

CLL samples, indicating a strong correlation between biological
replicates (Supplementary Figure 2).

When we performed differential gene expression analysis

(focusing only on genes passing a stringent statistical filter
of Benjamini-Hochberg false discovery rate corrected P <

0.05), we found 148 differentially expressed genes (Figure 5A;
Supplementary Table 2). Of these genes, 59 genes were
upregulated in VH11 CLL and 89 genes were upregulated in

non-VH11 CLL. To identify biological processes that underlie the
transcriptional differences between VH11 and non-VH11 CLL,

we performed pathway enrichment analysis using the Molecular
Signatures Database (MSigDB) (37). Genes upregulated in VH11
CLL were functionally enriched for an interferon-mediated
response, active Wnt signaling and constitutively active RAF1
signaling (Figure 5B, Supplementary Table 3A). On the other
hand, genes downregulated in VH11 CLL were involved in quite
diverse pathways, including interleukin-, epidermal growth
factor receptor (EGFR)-, vascular endothelial growth factor
(VEGF)-mediated signaling, metabolic processes, hypoxia
and the UV radiation-induced stress response (Figure 5B,
Supplementary Table 3A).

Taken together, these data suggest that in addition to a
different origin, VH11 and non-VH11 CLL subsets display
distinct transcriptional signatures, signifying differential activity
of key signaling pathways.

Strong BCR Dependence of VH11/Vκ14
CLL in IgH.TEµ Mice
Next, we performed a PCA of the 148 differentially expressed
genes between VH11 and non-VH11 CLL. To investigate the
impact of T-cell-independent BCR stimulation and T-cell-
dependent CD40 stimulation on differential gene expression, we
included RNA-Seq gene expression values of the 148 genes from
the unstimulated and αIgM-stimulated B cells described above,
as well as previously reported gene expression values from anti-
CD40/IL-4 stimulated follicular B-cells (α-CD40/IL4-B) (33).

The first principal component (PC1) separated both CLL
groups and the two stimulated B cell subsets from unstimulated
B cells, suggesting IgH.TEµ CLL cells share a transcriptional
signature related to activated B-cell phenotypes. Interestingly,
PC2 revealed a strong similarity between αIgM-stimulated B cells
andVH11 CLL on one hand and between α-CD40/IL4-stimulated
B cells and non-VH11 CLL on the other hand (Figure 6A). These
findings indicate more prominent BCR stimulation in VH11 than
in non-VH11 CLL B cells in vivo and are consistent with a
dependence on T-cell help for non-VH11 CLL.

To identify the gene signature underlying the clustering
of αIgM-stimulated B cells and VH11 CLL, as well as
α-CD40/IL-4-stimulated B cells and non-VH11 CLL, we
performed hierarchical clustering analyses to separate the 148
genes into 4 clusters (Figure 6B, Supplementary Table 3B).
Cluster 1 consists of 17 genes that were highly correlated between
αIgM-stimulated B cells and VH11 CLL and between α-CD40/IL-
4-stimulated B cells and non-VH11 CLL. Pathway enrichment
analysis (Supplementary Table 3C) on this cluster revealed
overrepresentation of genes involved in interferon response
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FIGURE 5 | A unique set of genes and pathways is upregulated in VH11 vs. non-VH11 CLL in IgH.TEµ mice. (A) Volcano plot showing P-values and fold changes in

gene expression levels comparing VH11 and non-VH11 CLL from IgH.TEµ mice. Genes upregulated in non-VH11 CLL are indicated in red; genes upregulated in

VH11 CLL in blue. Only significantly different genes (Benjamini-Hochberg adjusted p-value < 0.05) are shown. Genes indicated represent a subset of the validation

gene set analyzed in a larger CLL (see Figure 7). (B) Oncogenic hallmark signatures enriched among differentially expressed genes in VH11 (n = 3) vs. non-VH11

(n = 3) CLL from IgH.TEµ mice.

and KRAS signaling. Clusters 2 (35 genes) and Cluster 3 (56
genes) consist of genes that were highly correlated only between
α-CD40/IL-4-stimulated B cells and non-VH11 CLL or only
between αIgM-stimulated B cells and VH11 CLL, respectively.
These clusters were enriched for interferon response/PI3K-
AKT signaling genes (cluster 2) or UV response, epithelial-
mesenchymal transition, glycolysis, hypoxia, unfolded protein
response genes (cluster 3) (Supplementary Table 3C). Finally,
cluster 4 (enriched for genes involved in the reactive oxygen
species pathway) represents genes with low or anti-correlated
expression values between the stimulated B cells and CLL. Thus,
genes from clusters 1 and 3 signify the clustering of αIgM-
stimulated B cells and VH11 CLL, while genes from clusters 1
and 2 drive the clustering of α-CD40/IL-4-stimulated B cells and
non-VH11 CLL (Figure 6B). This analysis was further validated
by computing the average correlation strength for each of the
four gene clusters with PC2 from our PCA (Figure 6B). Indeed,
clusters 1 to 3 underlying the αIgM-B cells and VH11 CLL
and the α-CD40/IL-4-B cells and non-VH11 CLL segregation—
and particularly cluster 1 genes—showed significantly stronger
correlation values with PC2 than cluster 4 (Figure 6C).

Validation of VH11/non-VH11 CLL Gene
Expression Differences in Mouse and
Human CLL
To further strengthen the existence of a unique transcriptional
signature that differentiates VH11 and non-VH11 CLL B cells, we
selected 24 robustly differentially expressed genes for validation.
Some of these genes have already been shown to play a role in
hematologic malignancies, including CLL (Pim-2, Met, Rgs16,
Ccdc88a, Zcchc18, Clip3) (38–42), diffuse large B cell lymphoma,
follicular lymphoma (Vav3) (43), acute lymphoblastic leukemia
(ALL) (Itm2a, Chst1) (44, 45) or acute myeloid leukemia (AML)
(Chd3) (46).

Expression levels were validated by quantitative real-time
PCR (qRT-PCR) in an extended cohort of 15 VH11 and 23

non-VH11 primary CLL from IgH.TEµ mice. Naïve Splenic B
cells from wild type mice (n = 4) were included as controls.
Comparison of RNA-Seq (RPKM) and qRT-PCR expression
fold changes between the two CLL groups revealed highly

correlated trends for these 24 genes (spearman correlation
r = 0.72; p < 0.0001), validating our RNA-Seq analysis when

extrapolated to a larger IgH.TEµ CLL cohort (Figure 7A). qRT-
PCR validation showed that 11/24 (∼46%) of the selected genes
were significantly different (p < 0.05) between VH11 and non-

VH11 CLL (Supplementary Table 4, Figure 7B). Additionally,
7/24 (∼29%) genes were significantly different (p< 0.05) between
non-VH11 CLL from IgH.TEµ and IgH.TEµ.Siglec-G−/− mice,
which might be related to the altered VH usage in Siglec-G−/−

mice or the early disease onset in IgH.TEµ.Siglec-G−/− mice.
Expression of five of these 13 genes that were significantly

upregulated in non-VH11 CLL vs. VH11 CLL (Ccdc88a, Clip3,
Zcchc18, Chd3, Itm2a) was also evaluated in five mutated
IgH.TEµ CLL, defined by <97% IghV germline identity
[Supplementary Table 1 and ter Brugge et al. (22)]. Interestingly,
qRT-PCR analysis showed that four out of five tested genes
(except Itm2a) were expressed at low levels in mutated CLL,
similar to VH11 CLL (Figure 7B). Thus, non-VH11 unmutated
CLL in IgH.TEµ mice represent a unique subset that can be
distinguished from VH11 unmutated and from mutated CLL
by a specific transcriptional signature. Furthermore, correlation
analyses indicated that within the non-stereotypic subgroup in
particular VH1 CLL represents the most heterogeneous CLL
subgroup in IgH.TEµ mice (n = 16; average spearman r,
ρ = 0.280; Supplementary Figure 3). In these analyses we also
found that expression of these five genes is positively correlated
in VH11 CLL (n = 15; average spearman r, ρ = 0.537) and in
the small non-VH11/non-VH1 CLL subgroups (n = 6; average
spearman r, ρ = 0.703) (Supplementary Figure 3).

Next, we evaluated the expression of the 13 signature genes
in a panel of 44 human CLL samples (15 non-stereotypic U-
CLL, 14 stereotypic U-CLL, 15 M-CLL, Supplementary Table 5)
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FIGURE 6 | Genes discriminating VH11 from non-VH11 CLL show similarly distinct expression profiles in BCR or CD40-stimulated B-cells. (A) Principle component

analysis (PCA) using the 148 differentially expressed genes defined in Figure 5A in unstimulated (n = 4, black), anti-IgM-stimulated (n = 4, green) WT splenic B cells,

1 day (n = 2, orange) or 2 day (n = 2, yellow) anti-CD40 plus IL-4 stimulated follicular B-cells (obtained from GSE77744), VH11-2
+/Vk14-126

+ BCR (n = 3, blue)

and non-VH11 (n = 3, red) BCR-expressing CLL from IgH.TEµ mice. (B) Hierarchical clustering analysis (top) and accompanying heat map showing differences in

expression levels (RPKM, shown as row Z-scores) of the 148 gene signature in anti-IgM-stimulated (n = 4) WT splenic B cells, 1 day (n = 2) or 2 day (n = 2) anti-CD40

plus IL-4 stimulated follicular B-cells, VH11 and non-VH11 CLL from IgH.TEµ mice. Heatmap shown on the right shows average expression levels for each group.

(C) Boxplot showing average correlation values of each of the four gene clusters shown in B with principal component 2 (PC2) from the PCA shown in A. P-values

were calculated using a Mann-Whitney U-test.

by qRT-PCR. Hereby, 6/13 (∼46%) genes (CCDC88A, CLIP3,
ZCCHC18, CHD3, ITM2A, GOLIM4) were significantly higher
expressed in all three CLL subsets than in naïve B-cells from
healthy individuals, suggesting a role for these genes in CLL
(Figure 7C, Supplementary Table 6). Expression of CLIP3 was
significantly higher in non-stereotypic than M-CLL. Expression
of ZCCHC18, CHD3, GOLIM4, BHLH9B, and ITM2A was
significantly higher in non-stereotypic U-CLL compared to
stereotypic U-CLL (Figure 7C).

To compute any parallel between stereotypic and
heterogeneous U-CLL from patients and IgH.TEµ mice, we
performed t-SNE clustering analysis on expression values for
the 13 signature genes (Figure 7D, Supplementary Table 6).

We used dCT values obtained by qRT-PCR for non-sterotypic
(#U-CLL, n = 10) and stereotypic (U-CLL, n = 10) U-CLL as
well as for non-VH11 (n = 21) and VH11 (n = 14) CLL from
IgH.TEµ mice. Interestingly, 7/10 stereotypic U-CLL clustered
with 10/14 VH11 CLL (Figure 7D). Conversely, non-stereotypic
human U-CLL and mouse non-VH11 CLL showed a more
heterogeneous distribution into several clusters largely devoid of
stereotypic human U-CLL or mouse VH11 CLL.

Taken together, we conclude that differences in the expression
of these signature genes in heterogeneous U-CLL, stereotyped
U-CLL and M-CLL were partly overlapping between human
CLL and the corresponding CLL subgroups in our IgH.TEµ CLL
mouse model.
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FIGURE 7 | qRT-PCR validation of a subset of differentially expressed genes. (A) Correlation plot comparing fold-changes in expression between VH11 and

non-VH11 CLL for 24 genes measured by RNA-Seq (RPKM) or qRT-PCR (spearman r, ρ = 0.72; p < 0.0001). The differentially expressed genes selected for further

study are indicated. Characteristics of samples tested in qRT-PCR are provided in the Methods section (B) Expression of indicated genes as measured by qRT-PCR in

VH11 (n = 15), non-VH11 (n = 23) and mutated (n = 5) CLL from IgH.TEµ mice. (C) Expression of indicated genes as measured by qRT-PCR in CLL cells from

non-stereotypic U-CLL (n = 15), stereotypic U-CLL (#U-CLL, n = 14) and M-CLL (n = 15) patients. Bars in (B,C) represent mean ± SEM values. The expression

values were calculated relative to expression in (B) naïve splenic WT B cells from mice (n = 4) or (C) naïve circulating B cells from healthy controls (n = 3), both of

which were set to 1 (dashed line). Numbers indicate p-values (Mann-Whitney U-test). (D) t-SNE clustering analysis of the expression values for 13 signature genes

(from Supplementary Table 7) using dCT values obtained by qRT-PCR for non-sterotypic (#U-CLL, n = 10) and stereotypic (U-CLL, n = 10) human U-CLL and

non-VH11 (n = 21) and VH11 (n = 14) CLL from IgH.TEµ mice, as indicated. Expression values were converted to Z-scores separately for mouse and human

datasets to allow combined t-SNE analysis.

DISCUSSION

In this report, we investigated the role of antigenic pressure and
BCR signaling thresholds on clonal selection of CLL cells in

the IgH.TEµ CLL mouse model. We found that U-CLL tumors
that develop in these mice can be classified into two different
groups based on their IghV usage. The stereotypic VH11-2/V

κ14-126 CLL subset recognized the PtC self-antigen, developed
independently of T cell help or GC formation and represented
a somewhat more aggressive type of CLL. Proportions of
VH11/Vκ14-expressing CLL were increased in the absence of
functional germinal centers in IgH.TEµmice deficient for CD40L
or activation-induced cytidine deaminase. Conversely, in vivo

T cell-dependent immunization decreased the proportions of
VH11/Vκ14-expressing CLL. Mice were immunized at 10–12
weeks of age, with a secondary immunization at 15–17 weeks
of age. In a proportion of mice at these time points, CLL
cells become detectable in peripheral blood (Figure 1). In our
immunization model the onset or frequency of CLL was not
altered, but we cannot exclude that there will be effects on CLL
onset or disease progression when immunizations are performed
at a different age.

Consistent with the observed effects of defective germinal
center function or robust T-cell dependent immunization
on VH usage in CLL, PCA of a gene signature comprised
of 148 genes differentially expressed between VH11 and
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non-VH11 CLL revealed that VH11 and non-VH11 CLL
clustered with BCR-stimulated and anti-CD40-stimulated B cells,
respectively.

The unmutated VH11 CLL cells parallel B-1 cells, because
these also have a restricted BCR repertoire, may recognize auto-
antigens including PtC, and produce natural IgM antibodies in
the absence of T cell co-stimulation (12). In concordance, it
was recently shown that peritoneal CD5+ B-1 cells generated
early during fetal or neonatal development, increase in number
over time and can progress into CLL in aged mice (47, 48).
Interestingly, CLL development in these mice was linked to
the expression of a restricted BCR repertoire (VHQ52/V κ9
or VH3609/V κ21, reactive toward non-muscle myosin-IIA or
Thy-1, respectively) independent of CD40 signaling. Hereby,
expression of the Eµ-TCL1 transgene enhanced aggressiveness of
the disease.

Non-VH11 CLL, on the other hand, consisted of tumors with
heterogeneous IghV/IglV expression and CDR3 length, lacking
affinity for PtC. Although these tumors were T-cell dependent,
strongly reduced in the absence of functional GCs, their BCRs
were not hypermutated (<3%). This is in line with findings in
human U-CLL, indicating that U-CLL cells can recognize both
TD and TI autoantigens that have relocated to the external cell
surface during apoptosis (11, 13, 14). Our observations are also
consistent with gene expression profiling studies suggesting that
U-CLL reflect memory B cells (49). In contrast, more recent
transcriptome analyses revealed that U-CLL resemble mature
pre-GC CD5+CD27− B cells, while M-CLL resembles a distinct,
previously unrecognized, CD5+CD27+ post–GC B cell subset
(18). Our findings imply that in mice unmutated CLL can
be derived from (i) T cell-independent B-1 cells (e.g., PtC-
recognizing VH11-2/Vκ14-126) or (ii) from B cells that recognize
their antigen in the presence of cognate T-cell help and are
activated without SHM. This latter group of T cell-dependent
unmutated CLL displayed an expression signature, as defined
by 13 genes including the CCDC88A-CLIP3-ZCCHC18-CHD3-
ITM2A module, that is not only different from TI unmutated
CLL, but also from mutated CLL in the IgH.TEµ mouse model.
Moreover, we found evidence that this expression signature
may be partly associated with non-stereotypic human U-CLL,
suggesting that the development of human U-CLL can also be
TD. Such TD U-CLL may derive from B cells involved in an
extra-follicular response or alternatively may be related to auto-
antibody producing B cells in mice that were shown to recognize
TD antigens, mount a rapid IgM response and enter GCs, but do
not develop into IgG-expressing plasma cells (50, 51). Although
our data suggest a role for T-cell help in human non-stereotypic
U-CLL pathophysiology, further investigation is required to
translate our findings to human disease. Such studies should
include expression profiling of (1) large CLL patient cohorts
containing a wide range of stereotypic and non-stereotypic U-
CLL samples and (2) activated B cells that received various
stimulations including anti-CD40.

Gene expression profiling revealed a set of genes that
distinguish VH11 from non-VH11 CLL and are similarly
regulated in BCR or CD40-stimulated cells, respectively. This
observation probably reflects differences in supporting external

cues: pathways induced by interleukin or growth factor-mediated
signaling were specifically upregulated in non-VH11 CLL. These
include the regulator of G-protein signaling 16, Rgs16, which is
upregulated in autoimmune B cells of BXD2 mice and enhances
GC formation by the canonical NF-κB pathway, signifying the
post-GC origin of non-VH11 CLL (52, 53). Second, the actin-
binding protein Ccdc88a, which plays a role in cytoskeletal
remodeling and cell migration following activation of Akt
downstream of EGFR (54) and can also enhance Akt signaling
(42, 55). Third, integral membrane protein 2A (Itm2a) is a type
II integral membrane protein that has been associated with an
enhanced GATA3-mediated regulatory network in B ALL (56).
Chd3 encodes a chromatin remodeler with unexplored function
in lymphocytes.

On the other hand, Wnt-associated genes were specifically
upregulated in VH11 tumors, which is interesting because the
BTK-inhibitor ibrutinib restrains Wnt signaling in CLL (57).
Although the function of several other upregulated genes is
currently unknown, Zcchc18 has been associated with a CLL-
specific transcriptomic signature (42) and Clip3was differentially
regulated in a CLL patient undergoing spontaneous regression
(58). Notably, many gene sets or pathways were active in both
CLL subsets, including high expression levels of MET receptor
tyrosine kinase, which prolongs CLL cell survival through STAT3
and AKT phosphorylation (40, 59). This could contribute to the
enhanced constitutive activation of the p-Akt/p-S6 pathway in
IgH.TEµCLL as reported previously (23, 24). Additionally, genes
involved in KRAS signaling were highly expressed in both CLL
subsets, consistent with its essential role in B cell lymphopoesis
(60), particularly for B-1 cells recognizing PtC (61).

Our data also indicated that availability of T cell help and GC
formation did not affect tumor incidence or onset. In contrast,
the finding of a significantly earlier CLL incidence of mainly the
non-VH11 type in IgH.TEµ.Siglec-G−/− and IgH.TEµ.E-Btk-2
mice suggests that BCR signaling thresholds are a key factor in
determining CLL disease course. Yet, the appearance of VH11
CLL in these mouse lines may indicate a substantial selective
advantage of these clones, because in Siglec-G−/− and E-Btk-2
transgenic mice the frequency of PtC-recognizing cells within the
B-1 cell population is very low (28, 36).

In conclusion, we found that the formation of a major subset
of unmutated CLL in IgH.TEµ mice is dependent on T cell
signals. Our findings therefore provide a mechanistic explanation
for the role of B-cell intrinsic factors, in particular BCR signaling,
as well as extrinsic factors such as T cell help and support from
the tumor microenvironment, in shaping the repertoire of CLL
inmice. These findings are of potential clinical relevance, because
B-cell extrinsic signals may reflect effective targets for novel
therapeutic strategies in CLL patients.
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