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Different families of endogenous lectins use complementary defense strategies against

pathogens. They may recognize non-self glycans typically found on pathogens and/or

host glycans. The collectin and galectin families are prominent examples of these two

lectin categories. Collectins are C-type lectins that contain a carbohydrate recognition

domain and a collagen-like domain. Members of this group include surfactant protein

A (SP-A) and D (SP-D), secreted by the alveolar epithelium to the alveolar fluid.

Lung collectins bind to several microorganisms, which results in pathogen aggregation

and/or killing, and enhances phagocytosis of pathogens by alveolar macrophages.

Moreover, SP-A and SP-D influence macrophage responses, contributing to resolution of

inflammation, and SP-A is essential for tissue-repair functions of macrophages. Galectins

also function by interacting directly with pathogens or by modulating the immune

system in response to the infection. Direct binding may result in enhanced or impaired

infection of target cells, or can have microbicidal effects. Immunomodulatory effects

of galectins include recruitment of immune cells to the site of infection, promotion of

neutrophil function, and stimulation of the bactericidal activity of infected macrophages.

Moreover, intracellular galectins can serve as danger receptors, promoting autophagy

of the invading pathogen. This review will focus on the role of collectins and galectins

in pathogen clearance and immune response activation in infectious diseases of the

respiratory system.

Keywords: respiratory pathogens, infection, inflammation, surfactant proteins, alternatively activated

macrophages, autophagy, tissue repair, lung homeostasis

INTRODUCTION

Host defense in the lung is exceptionally, if not uniquely, challenging. The alveolar boundary is
clearly the most vulnerable body interface. There are at least three important differences among the
alveolar boundary and the upper respiratory tract, gut, and skin interfaces. First, the surface area
to be defended is greater in the alveolar boundary (90 m2) than in the gut (10 m2) or skin (2 m2)
(1). Second, compared with the skin, gut, and upper respiratory tract, the bacterial biomass in the
alveoli of healthy lungs is low (2). Third, there are physical barriers or harsh chemical environments
in the skin (cornified epithelial layers) and gut (regular secretion of bile, which acts as an antiseptic
detergent) but not in the delicate alveolar space. In addition, there is higher risk of pathogen
dissemination at the alveolar boundary than at any other environmental boundary, since only two
cell layers (the alveolar epithelium and the capillary endothelium) separate the invader from the
bloodstream in order to facilitate gas exchange.
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The innate immune system in the alveolar space is made up of
a cellular arm [mainly alveolar macrophages (aMΦ) (1), but also
epithelial (AEC), dendritic, and T cells (1, 3, 4)] and a humoral
arm composed of antimicrobial proteins and peptides present
in the alveolar fluid such as surfactant protein A (SP-A) and
D (SP-D), lactoferrin, lysozyme, fibronectin, immunoglobulins,
complement components, defensins, and cathelicidins, among
others (5, 6). In this review we focus on the role of lung soluble
collagenous C-type lectins (SP-A and SP-D) and galectins. SP-A
and SP-D are principally secreted to the alveolar fluid by type II
AECs and to the airway lumen by Club cells and submucosal
cells (7). They are also detected in the trachea (8) and nasal
mucosa (9), where they provide immune protection. Galectins
are expressed in the lung by innate immune cells and epithelial
cells. Galectins are present in the cytoplasm and nucleus, as well
as extracellular space, although galectins lack a typical secretion
signal peptide. They are secreted by direct translocation across
the plasma membrane or through release in extracellular vesicles
(10). Thus, they can function both inside and outside cells.
The review describes biochemical and structural aspects of lung
collectins and their role in antimicrobial immunity and alveolar
immune homeostasis, and the involvement of galectins in the
response to respiratory infectious diseases, including expression,
binding to pathogens, modulatory effects on immune cells, and
intracellular functions.

COLLECTINS

Biochemical and Structural Aspects
Collectins or collagenous C-type lectins are a family of proteins
that contain a Ca2+-dependent carbohydrate recognition domain
(CRD) contiguous to a collagen-like triple helical domain. In
humans, members of this group include SP-A and SP-D, secreted
by the alveolar epithelium, nonciliated bronchiolar cells and
other mucosal surfaces exposed to the external environment
(7, 8, 11), mannan-binding lectin (MBL) secreted by hepatocytes
to serum, and the recently discovered CL-L1, CL-K1, and CL-
P1, present in the serum and several tissues (12, 13) (Figure 1A).
Collectins are well-conserved oligomeric proteins, assembled in
trimers or multiples of three subunits due to their collagen
domains. The primary structure of each subunit consists of
an N-terminal segment containing cysteine residues involved
in oligomerization followed by a collagen-like region, an alpha
helical coiled neck region, and a globular CRDwith a calcium ion
at the lectin site (Figure 1A). Lung collectins are modified after
translation (cleavage of the signal peptide, proline hydroxylation,
and N-linked glycosylation) (7, 15) and intracellularly assembled
into oligomeric structures that, in the case of SP-A, resemble
a flower bouquet of six trimers, while the assembly of SP-D
resembles a cruciform of four trimers (Figure 1A). Supratrimeric
oligomerization of lung collectins appears to be needed for many
of their functions (16, 17) since it facilitates multivalent binding
and increases the functional affinity of the globular domain for
their ligands.

The CRDs of lung collectins bind to mannose and
mannose-rich microbial glycoconjugates, such as yeast mannans
and mycobacterial lipoarabinomannan. Besides, lung collectins

recognize a wide variety of carbohydrates present in the
surface of several microorganisms, including glucose, fucose, N-
acetylglucosamine, and N-acetylmannosamine. Their globular
domains recognize not only carbohydrates but also a broader
repertoire of ligands, including proteins, nucleic acids, and lipids
(7, 18, 19). Despite their similar CRDs, SP-A and SP-D show
significant differences in ligand preferences, with SP-A ligands
generally being more amphipathic (19, 20), and SP-D ligands
richer in carbohydrates (20). These different preferences likely
serve to extend the range of innate immune surveillance in the
lung.

The collagen-like domains of collectins not only function
as scaffolding that amplifies the ligand binding activities of
globular domains but also are responsible for collectin binding
to receptors in immune cells. Such receptors are involved in
phagocytosis and clearance of microorganisms (7, 8, 12, 13)
and biological/abiotic particles from the pulmonary environment
(21–23), and in efferocytosis of dead cells (apoptotic/necrotic)
(24, 25). Collagen-dependent functions of collectins are shared
with other secreted defense collagens (C1q, ficolins, and
adiponectin) (26). This group of proteins has a dual capacity
to promote pathogen elimination and control inflammation
(27–30). Moreover, they seem to activate molecular and cellular
mechanisms that force a return to homeostasis (14).

Antimicrobial Immunity
SP-A and/or SP-D recognize a wide range of respiratory
pathogens, including influenza A virus, respiratory syncytial
virus, Mycobacterium tuberculosis, Aspergillus fumigatus,
Pseudomonas aeruginosa, Haemophilus influenzae [see (8, 31)
for reviews], and the parasitic helminth Nippostrongylus
brasiliensis (32). SP-A- or SP-D-deficient mice show decreased
microbe clearance and increased tissue markers of inflammation
(14, 30–33), suggesting lung collectins’ protective role in lung
immune defense.

Lung collectins enhance the clearance of pathogens by four
different mechanisms: (i) By aggregating pathogens to which they
bind, which hinders their entry into epithelial cells and facilitates
their removal, either by mucociliary clearance or by phagocytosis
by aMΦs and recruited neutrophils (7, 8, 30, 31, 34). (ii) By
binding to neutrophil extracellular traps (NET)-DNA and to
bacteria simultaneously, thereby promoting bacterial trapping by
the NETs (35). (iii) By enhancing phagocytosis of IgG-opsonized
particles (36) and complement-coated particles (36, 37). (iv)
By up-regulating expression of cell-surface receptors involved
in microbial recognition, such as mannose receptor (38) and
scavenger receptor SR-AI/II (39).

Data supporting direct antimicrobial activity of SP-A and SP-
D are sparse (8, 31). Most respiratory pathogenic bacteria and
fungi are resistant to SP-A and SP-D (8, 34, 40, 41). However,
it is possible that cooperative interactions of lung collectins
with other lung antimicrobial peptides enhance the microbicidal
defense of the lungs. In this regard, we recently discovered
synergic action between SP-A and SP-BN, a secreted anionic
antimicrobial peptide derived from SP-B proprotein. Interaction
between SP-A and SP-BN confers new antimicrobial properties,
including the ability to bind, kill, and enhance phagocytosis of
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FIGURE 1 | (A) Structural analysis of human collectins. Domain organization of human collectin polypeptide chains and the number of amino acids covering each

domain are shown. Interruptions in the collagen domain of SP-A and MBL are indicated. Three-dimensional models of collectin oligomers are also shown. Trimers of

collectins are each built up by the association of three polypeptide chains, the collagen regions of which intertwine to form a collagen triple helix. Whereas all other

collectins are soluble, CL-P1 is a transmembrane protein orientated with its N-terminal toward the cytosol. CL-P1 may be regarded as both a collectin and a scavenger

receptor. The scissors symbol means the shedding of a soluble form of CL-P1 by a hitherto unknown mechanism, which results in the presence of soluble CL-P1 in

the circulation. The molecules are not drawn to scale. SP, signal peptide; NHt, N-terminal domain; COL, collagen-like domain; α-C, α-helical coiled-coil domain; CRD,

carbohydrate recognition domain; TM, transmembrane domain. (B) Role of lung collectins on sequential type 1 and type 2 immune responses following respiratory

infection. Respiratory pathogens are detected by AECs and aMΦs, initiating an innate immune response to clear localized infections. The type 1 response is essential

(Continued)
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FIGURE 1 | in controlling infection but also induces tissue damage. Stimulated tissue-resident lymphoid cells and AECs release appropriate second-order cytokines

that initiate a two-tiered response. The type 2 response, amplified by lung collectins (14), modulates aMΦs toward an anti-inflammatory resolving phenotype involved

in lung repair. The role of lung collectins in these homeostatic changes is shown by small green or red arrows, which mean SP-A/D-mediated activation or inhibition,

respectively.

pathogenic K. pneumoniae K2 that is otherwise resistant to either
protein alone (34). Moreover, therapeutic treatment with SP-A
and SP-BN protects against K. pneumoniae K2 infection in vivo
due to SP-A/SP-BN capability to both kill bacteria and modulate
host inflammatory response (34). Yet a promising field to explore
is the interaction of lung collectins with other lung antimicrobial
peptides and antibiotics and the potential relevance of these
interactions in innate host defense in the lung.

Alveolar Immune Homeostasis
The niche in which alveolar macrophages exist, rich in surfactant
lipids, SP-A, and SP-D (42), has a considerable influence
on many aspects of aMΦ phenotype (1, 43). Alveolar MΦs
function as sentinels of a healthy state, promoting immune
tolerance to innocuous antigens. During an infection, aMΦs
recognize alarm signals such as IFN-γ and PAMPs, initiating
proinflammatory responses and pathogen clearance (MΦ-1
phenotype) (Figure 1B), and collectins promote phagocytosis
of pathogens by binding to the CD91/calreticulin receptor on
aMΦs (44). However, host defense requires a balance between
decreasing microbial burden and restricting tissue damage
caused directly by pathogens or indirectly by the immune
response (45). In this vein, lung collectins influence aMΦ

responses to limit inflammation. First, they block the binding
of TLR ligands to their receptors by direct interaction with
TLR4, TLR2, the TLR co-receptor MD2, and CD14 (17, 30, 46)
or by binding to TLR4/CD14 ligands (47, 48), acting as LPS
scavengers in vivo (49). Second, they modify aMΦ response
to TLR ligands by modulating signaling cascades. For example,
SP-A and SP-D bind to SIRPα through their globular heads
to initiate an SHP-1-dependent signaling pathway that blocks
proinflammatory mediator production (44). In addition, SP-A
increases the expression of negative regulators of TLR-signaling,
such as IRAK-M (50) and β-arrestin 2 (51), and inhibits
activation of NFκB, ERK, p38, and Akt in aMΦs (52, 53). Third,
they reduce the production of reactive oxygen intermediates
(54, 55) and for SP-D, this effect is mediated through its
binding to the inhibitory receptor LAIR-1 (56). Fourth, SP-A
limits inflammation by binding to IFN-γ, suppressing IFN-γ
interaction with its receptor IFN-γR1 (57).

Besides limiting inflammation, lung collectins activate
different mechanisms that contribute to disease resolution.
After proinflammatory type 1 responses against invading
pathogens, repair-associated type 2 responses must be initiated
(58, 59). The tissue repair response is classically associated
with the production of IL-4/IL-13 cytokines and the induction
of alternatively activated macrophages (MΦ-2 phenotype)
(Figure 1B). We recently found that defense collagens (SP-A
and C1q) enhance IL-4/13-dependent alternative activation,
proliferation, and tissue-repair functions of macrophages

through binding to the myosin 18A receptor by their collagen
domains (14). Loss of function studies using SP-A- and C1q-
deficient mice demonstrated that SP-A and C1q are necessary
to promote tissue repair during infection with the parasite
N. brasiliensis and the Gram positive bacterium Listeria
monocytogenes, respectively (14). SP-D also seems to be an
important modulator of protective IL-4/13-induced aMΦ

responses against N. brasiliensis (32). Interestingly, IL-4Rα

signaling requires concomitant recognition of apoptotic cells to
induce the tissue repair program inmacrophages (60), suggesting
that tissue repair is restricted to the damaged site. SP-A, SP-D,
and C1q assist the recognition and clearance of apoptotic
neutrophils by macrophages (24, 25, 61, 62), a mechanism
that differs from classical phagocytosis and that leads to the
production of anti-inflammatory cytokines (IL-10 and TGFβ)
(63), contributing to host tolerance during lung infection.

In conclusion, pulmonary collectins provide immune
protection against respiratory pathogens, promoting pathogen
clearance, limiting inflammation, and activating molecular and
cellular mechanisms that help to restore homeostasis. Much
of what we know about the protective role of SP-A and SP-D
has arisen from studies using SP-A– or SP-D–deficient mice in
murine models of respiratory infections (14, 31–33) and other
respiratory diseases (30, 31, 64).

GALECTINS

Galectins are a family of lectins sharing a CRD with β-sandwich
fold and β-galactoside-binding ability (65, 66). Nevertheless,
the glycan-binding preferences of different galectins may differ
significantly, leading to functional divergences. To date, 16
mammalian galectins have been described, of which galectins 5,
6 (both found in rodents), 11, and 15 (found in ruminants) are
not present in humans (Figure S1). Based on their structural
organization (Figure S1), galectins are classified as proto type,
composed of one or two identical CRDs forming non-covalent
homodimers (e.g., Gal-1), chimera type, composed of one CRD
linked to a non-lectin N-terminal region (Gal-3), and tandem-
repeat type, containing two different CRDs covalently connected
by a linker peptide (e.g., Gal-8 and -9). Galectins are widely
expressed in epithelial and immune cells, and participate in
different biological phenomena, including inflammation and
immunity (67, 68).

The Expression of Galectins Is Altered in
Respiratory Infections
An archetypal example is the accumulation of Gal-3 in the
alveolar space of Streptococcus pneumoniae-infected mice (69).
Gal-3 release also increases in the lungs of mice lethally infected
with Francisella novicida (70). In patients infected with M.
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tuberculosis, the plasma levels of Gal-9 are significantly increased
(71). However, Gal-9 expression in macrophages generated in
the presence of M. tuberculosis lipoarabinomannan is down-
regulated, favoring bacterial intracellular growth (72).

The expression of galectins is also affected by respiratory
viruses. As an example, Gal-1 is up-regulated in the lungs
of influenza virus-infected mice, in correlation with the
viral load (73). Interestingly, Gal-1 is differentially expressed
in bronchoepithelial cells infected with 2009A or seasonal
H1N1 influenza virus, revealing strain-specific responses (74).
Moreover, patients carrying genetic variants associated with
higher Gal-1 expression are less susceptible to infection by avian
influenza A (75).

Gal-3 levels in serum and lungs are augmented in infections by
the fungus Cryptococcus neoformans (76), while plasma levels of
Gal-9 are higher in severe infections by the parasite Plasmodium
falciparum (77), and mRNA levels of Gal-9 in the lungs of P.
berghei-infected mice are also increased (78).

Thus, the expression of galectins is altered in bacterial,
viral, fungal, and parasitic respiratory infections, conceivably
correlating with galectin-mediated defense mechanisms.

Galectins Bind to Different Respiratory
Pathogens
Gal-3 binds mycolic acids (Figure 2A), the major constituents of
mycobacterial cell wall, and could participate in their interaction
with host cells (79). Gal-3 also binds lipopolysaccharides
from different bacteria, including K. pneumoniae (80) and
P. aeruginosa (81). Moreover, Gal-3 and Gal-8 bind to
K. pneumoniae O1 cells and decrease bacterial viability, and
the same occurs for Gal-8 and strain 2019 of non-typeable
H. influenzae (NTHi) (82). Recently, binding of Gal-8 to other
six different NTHi clinical isolates was detected (83), suggesting
that this could be a general trait.

At the initial phase of infection by Nipah virus (NiV),
Gal-1 bridges glycans of the envelope glycoprotein F (NiV-F)
with those of host cells, thereby enhancing virus attachment.
However, Gal-1 secreted in response to infection reduces NiV-
F-mediated syncytia formation and production of progeny
virus (84–86). This is a remarkable example of opposing
effects of the same galectin on infection by a given pathogen.
Moreover, Gal-1 binds to envelope glycoproteins of influenza
virus, impairing infection. Cells treated with Gal-1 generate
lower viral yields, and treatment of infected mice reduces
viral load and lung inflammation (73). Conversely, Gal-1 could
account for the increased susceptibility of influenza patients to
subsequent infection with pneumococcus. Influenza infection
results in desialylation of epithelial cell glycans and exposure
of galactosyl moieties that serve as galectin ligands. As Gal-
1 also binds to S. pneumoniae, it crosslinks the bacteria
to the airway epithelial surface, enhancing pneumococcal
adhesion (87).

As final example, Gal-3 binds to C. neoformans cells and
delays fungal growth. Moreover, it exerts a lytic effect on
fungal extracellular vesicles (76). Thus, Gal-3 has direct anti-C.
neoformans effects.

Galectins Modulate the Immune Response
to Infection
Accumulation of Gal-3 in the alveoli of pnemococcus-
infected mice correlates with neutrophil extravasation (69).
Consistently, less neutrophils are recruited in Gal-3−/− mice,
which develop more severe pneumonia, and treatment with
Gal-3 reduces the severity of infection (88, 89). Gal-3 bridges
neutrophils to endothelial cells and activate neutrophils
(Figure 2B), augmenting pneumococcus phagocytosis and
delaying apoptosis. These effects are disabled by Staphylococcus
aureus via degradation of Gal-3 with a bacterial protease (90).
In contrast, Gal-3 deficiency confers resistance to Rhodococcus
equi (91). Thus, Gal-3−/− mice exhibit higher bacteria lethal
doses and production of IL-12 and IFN-γ. Moreover, Gal-3−/−

macrophages show decreased bacterial replication and survival,
and enhanced production of IL-1β and TLR2. Gal-3−/− mice
lethally infected with F. novicida, however, show significantly
reduced inflammatory response and leukocyte infiltration in the
lungs, in parallel to improved lung architecture and survival (70),
and the same is observed for Gal-9−/− mice (92). Thus, Gal-3
and Gal-9 function as proinflammatory alarmins in F. novicida
infection.

Gal-9 also modulates the immune response through
binding to TIM-3 receptor on neutrophils, macrophages
and lymphocytes. For example, P. aeruginosa opsonization
with Gal-9 enhances neutrophil-mediated killing via TIM-3
interactions inducing intracellular Ca2+ mobilization, neutrophil
degranulation, andNADPH oxidase activity (93). Binding of Gal-
9 expressed by M. tuberculosis-infected macrophages to TIM-3
also leads to restriction of intracellular bacterial growth through
secretion of IL-1β, upregulation of TNF, and activation of
caspase-3 (94–96). In contrast, Gal-9–TIM-3 binding decreases
the levels of IL-17 in serum of mice infected with K. pneumoniae,
resulting in reduced bacterial clearance (97).

Gal-9 binding to TIM-3 receptor on T lymphocytes decreases
the immune response against viral infections. Influenza A
virus-infected Gal-9−/− mice generate stronger humoral and
CD8+ T-cell responses and cleared virus more rapidly than
Gal-9+/+ mice. Accordingly, selective blocking of the Gal-
9–TIM-3 interaction in Gal-9+/+ mice boosts the immune
response (98). On the other hand, Gal-9 administered to mice
infected with respiratory syncytial virus decreases the severity
of lung pathology by increasing Tregs number and reducing
the number of Th17 cells, IL-17 levels, and CD8+ T cell
apoptosis (99). Similarly, Gal-9 injection into herpes simplex
virus-infected mice increases Tregs number and decreases the

levels of pro-inflammatory cytokines, improving the symptoms
of inflammation (100), while intraperitoneal infusion of lactose,

which prevents Gal-9 binding to TIM-3, reduces Treg function
and augments CD8+ T cell responses (101).

In respiratory fungal infections, Gal-1 and Gal-3 play
differential roles. Gal-1 modulates prostaglandin E2 and nitric

oxide levels inH. capsulatum infection, contributing to phagocyte
responses and thus exerting a protective effect (102). In contrast,

Gal-3−/− mice clear H. capsulatum infection more efficiently

than Gal-3+/+ mice, likely due to a negative regulatory role
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FIGURE 2 | Galectin activities in respiratory infections. (A) Binding to pathogens. Gal-3, the only chimera-type galectin described to date, binds bacterial mycolic

acids, lipopolysaccharides, and cells, and also C. neoformans cells with antifungal effects. Gal-8 binds NTHi, decreasing bacterial viability (left side). Gal-1 binding to

influenza virus blocks infection, while binding to NiV and S. pneumoniae bridges pathogen and host glycans (right side). (B) Effects on immune cells. Oligomerized

Gal-3 can bridge neutrophils to endothelial cells. Depending on the pathogen, Gal-3 drives a Th2-polarized response, decreases macrophage and Th1 cell responses,

or activates macrophages and/or neutrophils, similarly to Gal-9. In histoplasmosis, Gal-3 decreases cytokine production by dendritic cells, while Gal-1 modulates

PGE2 and NO levels (left). Via TIM-3 binding, Gal-9 may promote bacterial killing by neutrophils or macrophages, decrease humoral and CD8+ cell responses or Th17

cells and IL-17 levels, and increase Treg cells (right). (C) Intracellular functions. Gal-3, -8, and -9 bind to host glycans in the luminal side of lysed phagosomes or

permeable replicative vacuoles, and contribute to the autophagic response by recruiting NDP52, parkin, GBPs, or TRIM-16. Gal-8 also recruits parkin to group A

Streptococcus.
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of Gal-3 on cytokine production by dendritic cells (103).
However, Gal-3−/− mice are more susceptible to P. brasiliensis
infection and present a Th2-polarized immune response,
clearly showing that Gal-3 effects depend on the particular
pathogen (104).

Intracellular Activities of Galectins
After internalization into host cells, many bacteria lyse the
phagosome and escape to the cytosol for establishing a
replicative niche (Figure 2C). Galectins 3, 8, and 9 bind to
damaged vacuoles that expose host glycans in the luminal
side of the phagosome membrane (105, 106). Moreover, Gal-8
recruits the autophagy NDP52 receptor, activating phagosome
degradation (106). Gal-8 also binds parkin, which targets
damaged vesicles and bacteria for ubiquitination. Interestingly,
Gal-3 diminishes the recruitment of Gal-8 and parkin to group
A Streptococcus, which does not replicate in endothelial cells
and organs of Gal-3−/− mice (107). Gal-8 also targets for
degradation damaged endosomes in picornavirus and adenovirus
infections (108, 109).

Other bacteria replicate within the phagosomes, as e.g.,
Coxiella burnetii. Yet, galectins 3, 8, and 9 accumulate in the
luminal side of the vacuole membrane, revealing membrane
permeability (110). Gal-3 and Gal-8 are also detected in
replicative vacuoles of Legionella pneumophila (111) and mediate
delivery of guanylate binding proteins, a family of antimicrobial
GTPases induced by IFN-γ (112). Moreover, Gal-3 binds TRIM-
16, further contributing to organizing the autophagic response.
The Gal-3-TRIM-16 system operates in macrophages infected
with M. tuberculosis strains causing phagosome damage, and is
required for bacteria translocation to lysosomes. Accordingly,
Gal-3 protects mice in acute and chronicM. tuberculosis infection
(113, 114).

Summarizing, galectins play diverse roles in respiratory
infections with sometimes disparate effects, which may benefit

the host or the pathogen, depending on the specific galectin,
pathogen, and host context.

CONCLUDING REMARKS

This review touched briefly on the important role of collectins
and galectins in pathogen clearance and immune response
activation. Lung collectins are critical in mediating a variety
of immune and physiological responses during health and
disease. Galectins also mediate effective antimicrobial and
immunoregulatory activities but, if activated inappropriately, can
act as potent inducers of immunopathology. It remains to be
determined whether collectins and galectins can interact with
each other and whether such collaborations harness a beneficial
immune response to pathogens. A more complete understanding
of the host factors that control microbial colonization will lead to
improved therapies for respiratory infections.
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