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Molecular interactions across intercellular interfaces serve to convey information between

cells and to trigger appropriate cell functions. Examples include cell development

and growth in tissues, neuronal and immune synapses (ISs). Here, we introduce an

agent-based Monte-Carlo simulation of user-defined cellular interfaces. The simulation

allows for membrane molecules, embedded at intercellular contacts, to diffuse and

interact, while capturing the topography and energetics of the plasma membranes of the

interface. We provide a detailed example related to pattern formation in the early IS. Using

simulation predictions and three-color single molecule localization microscopy (SMLM),

we detected the intricate mutual patterning of T cell antigen receptors (TCRs), integrins

and glycoproteins in early T cell contacts with stimulating coverslips. The simulation

further captures the dynamics of the patterning under the experimental conditions and

at the IS with antigen presenting cells (APCs). Thus, we provide a generic tool for

simulating realistic cell-cell interfaces, which can be used for critical hypothesis testing

and experimental design in an iterative manner.

Keywords: cell signaling, T cell activation, kinetic segregation model, single molecule localization microscopy,

photoactivated localization microscopy, direct STORM, microvilli, agent based Monte-Carlo simulation

INTRODUCTION

Cells associate and form functional interfaces to create tissues, to exchange molecular content and
to convey information. Such interfaces form in multicellular organisms between adherent and
developing cells in tissues (1), between neurons (2) and immune cells (3). Cell contacts can also
occur in unicellular organisms, e.g., between bacteria in biofilms and between bacteria and their
host cells (4).

A wide range of physical structures appear in intercellular interfaces, including junctions (e.g.,
plasmodesmata and gap junctions, tight junctions, and desmosomes) (5), neuronal synapses and
immune synapses (IS). The dynamics of the interfaces may vary widely, from seconds to days.
For instance, neuronal synapses may persist over much longer times, but still show surprising
remodeling dynamics (6, 7).

In this study, we focus on the IS between CD4+ T Cells and antigen presenting cells (APCs)
as an example of a dynamic intercellular interface of outstanding importance and interest
(Figures 1A,B). This synapse serves T cells to probe the outer surface of APCs for cognate
antigens, and to mount an appropriate immune response (8). Advancements in microscopy have
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FIGURE 1 | Cell interfaces of the immune synapse. (A) A scheme of a

physiological interface between a T cell and an antigen presenting cell (APC).

(B) A physical model of the interface in panel (A). (C) A scheme of an

experimental interface between a T cell and a coverslip. (D) A physical model

of the interface in panel (C).

shown that such structures demonstrate complex levels of
dynamic organization (9). The IS starts with early contacts that
mature within a few minutes to form molecular segregation
into supramolecular activating clusters (SMACs) (10). Such
experiments often turn to artificial mimics of the APC for high
resolution microscopy. Examples include coverslips coated with
antibodies (11) (Figures 1C,D) or with lipid bilayers that include
molecules of interest (12).

Recently, super-resolution cell imaging, and especially single
molecule localization microscopy, has allowed to resolve
the organization of molecules in live cells with resolution
down to ∼20 nm (13). Such methods include Photoactivated
Localization Microscopy (PALM) (14) and direct Stochastic
Optical Reconstruction Microscopy (dSTORM) (15). Through
these techniques, whole (or a large part of) molecular populations
of specific protein species can be directly visualized with such
resolution. For instance, imaging of signaling molecules in
CD4+ T cells has shown surprising nanoscale patterning of
proteins, in the form of hierarchical and functional clusters
(16, 17). Specifically, the nanoscale segregation of the TCRs
from bulky glycoproteins, such as CD45, has been detected
(18). Still, the latter patterns of kinetic segregation in early
contacts (18–20) have not been related to the hierarchical
ordering of TCRs, integrins and glycoproteins into central,
proximal and distal SMACs (c-, p- and d-SMACs; known also
as the “bull’s eye” pattern) that has been detected at the mature
IS (10, 21, 22).

For gaining further insight on the structure, dynamics
and functional role of interfaces, experimental techniques
can be complemented with computational cell modeling and
simulations. Indeed, multiple computational simulations have
been developed and employed for studying cells (23). Such

methods may vary widely in their details, from atoms to entire
cells, time-scale, from microseconds to minutes and length-
scales, from angstroms to microns and more.

Here, we introduce an agent-basedMonte-Carlo simulation of
user-defined cellular interfaces. The simulation, called InterCells,
is based on detailed physical modeling of the interface and
embedded molecules within. The simulation allows for the
molecules to diffuse and interact, while capturing the topography
and energetics of the interacting plasma membranes (PMs).
It relies on simple and inexpensive computation that is still
complex enough to capture realistic complexity and dynamics
of the interfaces. Recently, similar modeling and simulations
have served to resolve possible mechanisms of cooperativity and
localized activation in TCR clusters (24) and to identify kinetic
segregation of TCR and glycoproteins at the engaged tips of
microvilli (18).

A special emphasis in our simulation is its easy operation
by non-experts. For that, we provide a friendly graphical
user interface (GUI) for rapid configuration and deployment
of the simulation. Multiple analytical tools are provided
for data analysis and interpretation. A key property of the
simulation is its ability to confront the results and predictions
of realistic simulations with experimental data, acquired by
single molecule localization microscopy. We provide a detailed
example related to pattern formation in intercellular contacts
that characterize the early IS between CD4+ T cells and
antigen presenting cells (APCs) (18, 20). Specifically, our
simulation results predict a new feature of pattern formation—
the intricate mutual patterning of T cell antigen receptors
(TCRs), integrins and glycoproteins in the early contacts.
We confirm this patterning by SMLM imaging of T cells
on functionally-coated coverslips. Thus, we provide a generic
tool for simulating cell-cell interfaces, which can be used for
critical hypothesis testing and experimental design in an iterative
manner.

RESULTS

Intricate Patterning of Membrane Proteins
at the IS
To study molecular patterning at the IS, we imaged Jurakt
E6.1 CD4+ T cells, as they adhered and spread on functionally
coated coverslips (11) (see details in Materials and Methods).
Anti-CD3-coated coverslips result in direct TCR stimulation, T
cell activation and spreading. In contrast, coverslips coated with
poly-L-lysine (PLL) show reduced levels of TCR stimulation and
smaller cell footprints (25). For imaging, we used three-color
single molecule localization microscopy (SMLM) in total internal
reflection (TIRF; Figure 2). Our SMLM approach included
PALM imaging of TCRζ-Dronpa, stably expressed by the cells.
CD11 and CD45 molecules were immunostained using an
anti-CD11-Alexa568 and anti-CD45-Alexa647, respectively
(see Materials and Methods) and imaged by two-color
dSTORM.

Our images showed a striking patterning of molecules
where CD11 clusters (blue) localized in between TCR clusters
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FIGURE 2 | Intricate molecular patterning at the immune synapse. Three-color PALM/dSTORM imaging of fixed E6.1 Jurkat cells expressing TCRζ-Dronpa (green)

and stained for CD45 (red) and CD11 (blue). The cells were dropped on coverslips coated with either (A) poly-L-lysine (PLL; top raw) or (B) αCD3 (bottom raw). Cells

were let spread on the coverslip for 1.5min before fixation. Shown are representative cells (N = 40 cells on PLL and 31 cells on αCD3). Bars−2µm.

(green) and CD45 clusters (red) on either TCR-stimulating
and non-stimulating conditions. On PLL-coated coverslips, TCR
clusters occupied the center of the interface, while CD45 showed
an outer ring. CD11 clusters localized outside TCR clusters and
in the formed gaps between TCRs and CD45. On αCD3-coated
coverslips, CD11 also localized in between TCR and CD45.
However, on these coverslips, the cells formed larger footprints
and TCR was more clustered.

The segregation of TCRs from CD45 has been shown by

diffraction limited microscopy, and more recently, in early
contact (18). Also, the localization of CD11 was shown before in

the pSMAC while CD45 localized to the dSMAC (22). However,

such mutual patterning has not been resolved in early ISs and at
the nanoscale. Thus, our imaging captured an intricate mutual

patterning of TCRs, integrins and glycoproteins in the early
contacts. The occurrence of the mutual patterning on coverslips

coated with either αCD3 or PLL indicates that this patterning

is caused by the physical contact of the cell with the opposing
interface of the coverslip.

Modeling and Simulation of Molecular
Patterning Under the Experimental
Conditions
For testing the robustness and dynamics of the patterns that
we have detected, we turned to the modeling and simulation
of the cell interfaces. The simulation is described in details in
the Materials and Methods and in the User’s Guide (provided in
the Supplemental Information). Briefly, the simulation employs
physical modeling of the PM of the interacting cells and of the
molecular interactions (Figure 3, and below). The simulation
structure is described in Figure 4, the simulation process is
described in Figure 5 and its GUI is shown in Figure 6.

An important feature of our agent-based Monte-Carlo
simulation, is its ability to integrate experimental measurements
at the single molecule level (as in Figure 2). Such data can be
integrated as initial conditions for the simulation, or as dynamic
physical constraints [as previously demonstrated (18)]. Here,
we demonstrate the setting of initial conditions by cropped
data from the footprints of cells, imaged by SMLM (Figure 2).

Frontiers in Immunology | www.frontiersin.org 3 September 2018 | Volume 9 | Article 2051

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Neve-Oz et al. InterCells: Simulation of Intercellular Interfaces

FIGURE 3 | A computational model of the intercellular interface between T cells and a coverslip. (A) A top view of a simulated membrane. The membrane is shown as

a grid, where molecules (colored circles) are embedded and can diffuse and interact. Membrane height is marked by variable gray levels. (B) A 3D view of the

simulated membrane. (C) The interaction potential between molecules embedded in the simulated membrane.

FIGURE 4 | A schematic description of the cell interface simulation. A detailed account of the simulation, its structure and interface are provided as a User’s Guide in

the Supplemental Information.

Specifically, coordinates were taken for TCRζ molecules (in
green). To complete the initial conditions, the initial coordinates
of CD11 and CD45 molecules were manually determined via the
available tools of the simulation in the GUI.

In our simulation, the plasma membrane of the interacting
cells are modeled as grids where molecules, modeled as agents,

diffuse and interact within and across the grids (Figures 3A,B).
The simulation included a model that captured the energetic
of the PMs of interacting T cell and APC (26) (Figure 3C).
Specifically, the simulation balanced forces due to attractive and
repulsive interactions. Specific attraction occurred between the
TCR and αCD3 and self-clustering of CD11 and TCR molecules.
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FIGURE 5 | A schematic description of the simulation process.

Non-specific attraction affected the molecules at the T cell
PM by the PLL. Repulsive interactions occurred between the
molecule (and esp. for the bulky glycoprotein) and the coverslip
(Figure 3C). The PM underwent thermal fluctuations during the
simulation. The positions of the molecules were updated in each
step of the simulation. The simulations included 10,000 steps of
400 × 400 pixels of 10 nm each and took ∼5min (∼100 s in cell
time) each, using a PC (i7 quad processor). Simulated parameters
are detailed for the interacting molecules (Table S1).

The simulation resulted in a redistributed pattern ofmolecules
that was embedded within the interface, and evolved over
time (Figures 7A,B,Movies M1, M2). Strikingly, the simulations
could recreate realistic patterning of CD45 molecules around
the evolving TCR clusters. CD11 molecules were distributed
in between TCR clusters and CD45. These results correlated
well with experimentally imaged positions of these molecules on
either PLL- or αCD3-coated coverslips (compare left and right
columns in Figures 7A,B with Figures 2A,B).

The Effect of Simulation Parameters on the
Molecular Patterning
Multiple parameters could affect the resultant molecular patterns
that we observed. Such parameters include the initial conditions
of molecular placement (e.g., in Figure 7 at t = 0); the density
of the molecules; their diffusion coefficient and their interaction
potential. Thus, we repeated the simulations shown in Figure 7,
yet with modifying one of the described parameters in each
simulation. Recent publications showed that TCRs are clustered
in microvilli (27) that form early contacts (18, 28). Hence, we
started with changing the initial placement of CD11 and CD45
molecules in relation to TCR clusters. The cells were attached to
a coverslip coated with PLL and αCD3, for engaging the TCRs.
Figure S1 shows the results for applying the initial conditions
as in Figure 7B (Figures S1A–C), a diffused pattern of CD45
(Figures S1D–F) or a diffused pattern of both CD45 and CD11
(Figures S1G–I). The variability in initial conditions was applied
to simulations that either included molecular self-clustering of
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FIGURE 6 | The graphical user interface. A snapshot of the graphical user interface (GUI) of the simulation. The GUI includes dynamic menus for setting all simulation

parameters and a live interface for presenting the simulated parameters (top) and initial conditions (bottom). All menus, parameters and operation instructions are

provided in the User’s Manual in the Supplemental Information.

TCR and CD11 (Figures S1B,E,H) or did not include such self-
clustering (Figures S1C,E,I). Strikingly, themolecular patterning
under all conditions showed the mutual patterning of TCRs,
CD11 and CD45, as in Figure 7B an in our experiments
(Figure 2B). As expected, TCR and CD11 were more diffused
within these mutual patterns when the simulations did not
include self-clustering of these molecules (Figures S1C,E,I). Our
results indicate the robustness of the mutual patterning of TCR,
CD11 and CD45 to variations in initial molecular placements and
to their self-clustering.

We next conducted a sensitivity analysis of molecular
patterning to variations in the density of CD45 (Figure S2A),
the diffusion coefficient of the molecules (namely, TCR, CD11
and CD45; Figure S2B), and the interaction potential of CD45
(Figure S2C). Parameter values were taken as half, equal or
twice the values that were chosen in the simulation shown in
Figure S1B. The mutual patterning of TCR, CD11 and CD45 was
robust to most of the conditions. Still, the following differences
can be observed for the different conditions. For instance, the
CD45 outer ring became relatively thicker with the increase
of CD45 concentration (Figure S2A). The mutual shape of the
TCR, CD11 and CD45 became more diffused and occupied a
bigger area with the increase in the diffusion coefficients of
the molecules (Figure S2B). Last, we observed a less diffused
pattern of CD45 when its spring constant became stronger
(Figure S2C).

Modeling and Simulation of Molecular
Patterning at the T cell-APC IS
Next, we studied the effects of the patterning in simulated
physiological interface between T cells and APCs. Nanoscale
imaging of T cells and APCs is technically complicated, yet is
readily accessible to our modeling and simulation. Here, we
included mobile ligands at the PM of the APC, namely pMHC
and ICAM. These molecules exerted specific attraction forces on
the TCR and CD11 molecules (respectively) as they diffused at
the PM of the opposing T cell. The PM of the APC was given
similar physical properties to the PM of the T cell (as detailed
in Table S2). The molecular positions at the T cell PM were set
manually as initial conditions, and were kept identical for the
simulations on APCs (Figures 8C,D) and on coverslips coated
with either PLL (Figure 8A) or αCD3 (Figure 8B). In this way,
results could be directly compared across different interfaces.

Our simulations showed that the mutual patterning of CD11,
TCRs and CD45 occurred not only on coverslips, but also
at the PM of T cells conjugated to APCs (Figures 8C,D).
Corresponding patterning of pMHC and of ICAM molecules
appeared at the PM of the APCs (Figure 8C). Interestingly, CD11
was less self-clustered in such interfaces in comparison to the cell
interface with αCD3-coated coverslips (Figure 8B).

Under physiological conditions, APCs typically carry only
a small fraction of cognate peptides. Thus, we repeated our
simulations for interface of T cells with APCs, while considering
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FIGURE 7 | The dynamics of molecular patterning in simulations. The dynamic

evolution of molecular patterning of TCRs (green), CD11 (blue) and CD45 (red)

at the cell interface. Simulated results are shown as a function of time for

individual cells on either a PLL–coated coverslip (A) or on an αCD3-coated

coverslip (B) along time. The simulations start from user-defined initial

conditions (top raw) that are set for the simulated molecules. Membrane height

is marked by variable gray levels. Bars−1µm.

only 1% of cognate peptides (Figures S3A,B). As expected, the
interface was not as tight as for the previous simulation (compare
height levels with Figures 8C,D). Importantly, the molecular
patterning of TCR, CD11 and CD45 seemed more diffused and
their segregation was less pronounced.

Another important physiological condition is the
translocation of TCR molecules toward the center of the IS
21 (29, 30). To simulate this process, we created an interactive
tool within the software. Using this tool, we set a target
coordinate for TCRs translocation at the center of the interface
and set a constant velocity of 19 nm/s (29) toward the center to
all TCRs. Along with translocation, we assumed TCR diffusion
but no self-clustering, in order not to hinder its mobility further.
Expectedly, the TCRs concentrated at the center of the IS, while
a relatively pronounced and well-segregated CD45 ring formed

at the periphery (Figures S3C,D). As before, CD11 molecules
localized between the segregated TCRs and CD45 molecular
patterns.

To quantitatively assess the mutual patterns of TCR, CD11
and CD45, we introduced a topological analysis (see details in
the Materials and Methods and in Figure 9A). This analysis
related the density of CD11 and CD45 molecules to individual
TCR clusters. The density of the molecules as a function of
the distance from TCR clusters is shown in Figures 9B–E. The
results of the topological analysis of our experimental results
(in Figure 2) clearly show the hierarchical ordering of TCR
clusters at the center, surrounded consecutively by CD11 and
CD45 molecules (Figures 8B,C). Moreover, the evolution of
this pattern could now be captured using our simulated results
on either PLL- or αCD3-coated coverslips (Figures 9D,E). As
expected, the self-clustering of TCRs (the peak height of the
green manifold) was higher, and more persistent for αCD3-
coated coverslips relative to PLL-coated coverslips. Strikingly, the
mutual patterning of TCR, CD11 and CD45 occurred within
a few 10 s of seconds from the start of the simulations. The
mutual patterning of CD11 and CD45 from TCR can be further
compared between the experimental data and the simulated
results (Figures 9F,G). Our simulations captured the shift in
the peak of the molecular distributions of CD45 relative to
the TCRs on both PLL (Figure 9F, red lines), and on αCD3
coated coverslips (Figure 9G, red lines). The separation of CD11
was captured more accurately on PLL-coated coverslips than
on aCD3-coated coverslips (Figures 9F,G, blue lines). Thus, our
simulations now set the stage for seeking parameters that would
minimize the differences between the density distributions of the
molecules under study (18).

DISCUSSION

In this work, we introduce “InterCells”—a generic agent-based
Monte-Carlo simulation of intercellular interfaces in molecular
detail. Our study focused on dynamic molecular patterning at
the early IS, as an important example of a dynamic intercellular
interface. The study combined three-color SMLM imaging of
fixed CD4+ T cells on functionally coated coverslips, as well
as modeling and simulations of the IS of such CD4+ T cells
with APCs. Our imaging and simulation showed an intricate
patterning of TCRs, glycoproteins (e.g., CD45) and integrins
(e.g., CD11) at the PM of the interacting T cells. In the detected
patterns, clusters of CD11 localized in between segregated
clusters of TCR and of CD45. Such patterning has been instructed
by diffraction limited microscopy (12), recent detection of
segregation of TCRs and CD45 molecules in early contacts (18),
and by preliminary simulations. To our knowledge, such mutual
patterns have not been observed at the nanoscale before and thus,
have not been related to the macroscopic “bull’s eye” patterns
detected at the IS (10, 21).

To test the robustness of the detected pattern, we simulated
a range of relevant interfaces, including coverslips with different
coatings, different sets of initial conditions, and ISs with APCs.
Varying such conditions in the simulation can be readily achieved
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FIGURE 8 | Simulation results of molecular patterning at the immune synapse (A,B) The molecular patterning of TCRs (green), CD11 (blue) and CD45 (red) at the cell

interface, on either (A) a PLL-coated or (B) an αCD3-coated coverslip. (C,D) The molecular patterning at the T cell-APC immune synapse. (C) ICAM (blue) and pMHC

(green) molecules are shown at the PM of the APC. (D) TCRs (green), CD11 (blue) and CD45 (red) are shown at the PM of the T cell. Membrane height in panels (C,D)

is marked by variable gray levels. Bars−1µm.

through the design and the GUI of the simulation. Notably,
our agent based simulation allows for the seamless integration
of experimental data at the single molecule level, as captured
by PALM and dSTORM. We have previously demonstrated the
use of SMLM data as constrains for setting hybrid simulations
(18). The results of such simulations can be directly compared
to experimental results (18). The robustness of the molecular
segregation between TCR, CD11 and CD45 clusters, which
persisted in all simulations, indicates that it is driven by
mechanical forces acting between molecules and the opposing
surfaces of the IS. Notably, our simulation did not include
translocation of molecules, such as TCRs or integrins, across
the IS (31). Such translocation plays a role in the spatial sorting
of newly appearing clusters at the cell periphery in the mature
IS, while our simulation and imaging focused on relatively less
mature ISs.

Multiple simulation tools have been developed to study
molecular interactions in the cell, such as signaling pathways
and enzymatic reactions. Such modeling often assumes complete
molecular mixing via ordinary differential equations (ODEs)
(32), or the use of cell automata with cell compartmentation
that could average out critical spatial variations in local
concentration of signaling proteins. The virtual cell [Vcell;

(33)] allows for solving partial differential equations (PDEs)
and ODEs, and the integration of spatial constraints from
2D and 3D optical microscopy. Still, such simulations cannot
account for molecular heterogeneities and non-synchrony that
are inherent to stochastic processes of molecular diffusion
and interaction within cells. Such heterogeneities can be
captured by Monte Carlo simulations of finite numbers of
interacting molecules that are embedded in realistic models
of cellular compartments [e.g., Smoldyn (34) and MCell
(35)]. Specifically, MCell contains extensive simulation tools,
including the generation of arbitrary meshes through integration
with a powerful graphical package (Blender), the simulation
of cytosolic proteins, allowing stochastic state transitions of
molecules, various mobility states including diffusion and drift
and running batches for scanning parameters. Notably, MCell
is not designed to account for dynamically changing meshes.
In contrast to MCell, InterCells is currently more modest
in its flexibility and in its integration of advanced features
and tools. For instance, multiple dynamic processes, such
as molecular endocytosis and recycling are currently lacking
and will become available in an upcoming update of the
simulation. Also, it is currently limited to simulating membrane
proteins, while cytosolic proteins will be integrated, but will
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FIGURE 9 | Topology analysis of molecular patterning in experiments and simulations. (A) Topology analysis of molecular densities of different species (red and blue

dots) relative to a cluster of reference (green dots). The cluster perimeter is defined by consecutive dilations. (B,C) Results of the analysis of molecular patterning in

experimental results on either (B) a PLL–coated coverslip or (C) on an αCD3-coated coverslip. (D,E) Results of the analysis of molecular patterning in simulated

results, on either (D) a PLL–coated coverslip or (D) on an αCD3-coated coverslip. (F,G) The shift in the peak of the molecular distributions of the topology analyses, on

either (F) a PLL–coated coverslip or (G) on an αCD3-coated coverslip. Experimental results are shown as dashed colored lines while simulated results are shown as

continuous colored lines.

not be explicitly simulated as diffusing agents in the 3D
environment of the cytosol. Still, our simulation specializes
in capturing complex and dynamic interactions and pattern
formation in intercellular interfaces. It focuses on surface
molecules interacting in a dynamic, fluctuating surfaces. To our
knowledge, the integration of SMLM data into cell simulations
and the effects of embedded molecules on the cells’ surface
are important features that have not been attempted in current
simulations.

Our simulation has been designed as an accessible tool to
non-experts. It operates on a PC with a standard (i7 quad)
processor. It is coded in Matlab, in a modular structure that
can be easily expanded to include additional membrane and
cortical structures, such as cortical cytoskeleton, membrane
bound proteins, channels, etc. Still, expansion of the simulation
to whole cells will require much stronger computational power
than is currently employed. It integrates a wide range of physical
parameters of simulated entities (membranes, molecules) that
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are accessible via an intuitive GUI. We provide multiple
analysis tools, including univariate and bivariate PCFs (36),
clustering algorithms and the topological analysis demonstrated
here (Figure 9). Additional analyses of relevance may include
Minkowski functionals (37), conditional second order PCFs
(13), and more. Our simulation enable batch runs for scanning
systematically values of parameters of choice. The results of
such batch simulations can be presented graphically using
our statistical analyses tools. The user can then quantitatively
compare the results of such statistics to experimental results,
for further refinement of the simulation. We have recently
demonstrated this approach to study inaccessible properties of
the PM (e.g., its rigidity and its ligand density) (18). The further
integration of iterative simulations with sensitivity analyses such
as the Sobol method could enable more systematic evaluation of
the wide parameter space of our agent-based simulation.

We believe that InterCells, esp. with its upcoming tools, will
allow the study of molecular patterning at cell surfaces and
interfaces in a wide range of cases. We provided in the User’s
Manual a second example, demonstrating how InterCells can be
employed to quantify the effects of molecular trapping and self-
clustering on molecular organization at the PM. Additional cell
interfaces that can be studied using InterCells may include cell
junctions between cells in a tissue, the evolution of interfaces in
development, neuronal synapses, immune synapses of multiple
types, and under various experimental conditions, and more.

To conclude, we provide here a generic simulation of
intercellular interfaces. The simulation was applied to nano-
scale pattern formation at the IS, which was resolved by three-
color SMLM. The detailed simulations combined data from
SMLM imaging, coarse-grained physical model PM of the
interacting cells, and simulative data from multiple Monte-Carlo
simulations. During this process, the simulation has proved to
be an invaluable predictive and hypothesis generating tool. It
further provided an elaborate test of our physical understanding
of molecular patterning at the IS and of the forces behind it. The
iterative application of novel experimental tools and modeling
could provide critical feedback to future experiments and the
adaptation of working models; thus, in this case, enhancing
our mechanistic understanding of early T cell activation. Our
simulations are modular, flexible and accessible, such that they
can be employed for studying a wide range of intercellular
interfaces and molecular interactions within.

METHODS

Sample Preparation
Jurkat E6.1 cells and such cells stably expressing TCRζ-Dronpa
were available for this study from a previously published
work (16). Positive expression was routinely monitored using
fluorescence microscopy. For three-color, SMLM TCRζ-Dronpa
were immunostained with antibodies: 1. αCD45-Alexa647
conjugated (BioLegend, 304056); 2. αCD11 (LFA1) primary (BD
Pharmingen, 555378) and αMouse secondary antibody labbled
with Alexa568.

Cells were dropped onto glass coverslips coated with 0.01%
poly-L-lysine (Sigma) with or without following coating αCD3

(UCHT1, eBioscience 16-0038-85). The cells were incubated at
37◦C for a specific spreading time on the coverslips of 1.5min.
After this time the cells were fixed with 2.4% Paraformaldehyde
for 30min at 37◦C. Combined SMLM (PALM-dSTORM)
imaging was performed in a dSTORM buffer (50mM TRIS
pH = 8, 10mM NaCl, 0.5 mg/ml glucose oxidase, 40µg/ml
catalase, 10% glucose, 10mMMEA).

PALM and STORM Microscopy
Three-color SMLM (combined PALM/dSTORM) imaging was
performed using a total internal reflection (TIRF) microscope
(TI-E, Nikon). Imaging in TIRF mode served to visualize
molecules at the PM of spreading cells in close proximity
to the coverslip (up to ∼100–200 nm). PALM images were
analyzed using the N-STORM module in NIS-Elements (Nikon)
or a previously described algorithm (ThunderSTORM) (38)
to identify peaks and group them into functions that reflect
the positions of single molecules (14). PALM acquisition
sequence typically took ∼5min for three channel imaging at
50–100 frame/s. Custom algorithms were then applied for
statistical characterization of the SMLM images of the detected
molecules (see Supplementary Information for further details).
The fluorescent proteins were imaged sequentially in the different
channels using dedicated emission filters that minimized cross
talk between the channels. Photoactivation illumination at
405 nm was changed over the imaging sequence of fixed cells.
Drift compensation and channel registration were performed
using dedicated algorithms in ThunderSTORM.

DETAILED MOLECULAR SIMULATION

Modeling Approach and Structure of the
Simulation
Here, we take a reductionist approach for modeling, aiming
to explain complex spatio-temporal patterns of molecular
organization at intercellular interfaces. All simulation files are
available online on Github (https://github.com/ShermanLab/
InterCells). These files should be downloaded to the User’s
computer under a directory that can be accessed by Matlab.

Requirements
For ease of use, the simulation Basic computational power,
employing a standard PC (with an i7 processor). It is coded in
Matlab (MathWorks). The structure of the simulation is depicted
in Figures 4,5 and is explained in detail in the User’s Manual
(provided in the Supplemental Information).

Input
Input parameters include parameters that describe the physical
properties of the interacting surfaces and of the molecules
that interact within and across the interfaces. The parameters
are typically extracted from experimental measurements, on
molecular interactions that govern the signaling cascade (39, 40).
In the case of hybrid simulations, initial conditions are set by
single molecule data on molecular positions and their state from
SMLM imaging (see User’s Manual). Benchmark runs for testing
a range of predetermined parameters. Such benchmark runs have
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previously served for critical evaluation of mechanistic models of
T cell activation (24) and for studying the effects of variations
in critical physical parameters on molecular patterning at the
IS (18).

Simulation Core
The simulation includes detailed models of relevant stochastic
processes, including reaction-diffusion processes and relevant
force fields. The details of the simulation algorithm are provided
in separate sections below. Briefly, in our simulation we assume
specific Hamiltonians of a quasi-equilibrium system and with
mean-field approximations. The simulation relies on hierarchical
levels of simplification. Continuous entities that are not the
focus of the simulations are “coarse-grained.” Such entities
include lipids in the PM and water molecules, and are not
specifically described in the simulation. In contrast, protein
molecules of interest are described individually. The simulation
algorithms is realized using “importance sampling” Monte-Carlo
simulations (41). Molecular identities are maintained for the
reactant molecules of interest. Metropolis criterion is applied
to determine the transition probability between consecutive
configurations.

Outputs
Quantifiable readouts of the numeric simulations include the
position and state of individual proteins, the morphology of the
PM and their energetics. Visualization tools are provided for
showing the simulation results. For instance, live evolution of
molecular patterning is provided during the simulation run. The
patterns can then be shown for each step individually, or as a
movie.

Analyses
Here we integrated multiple statistical tools for quantitative
analyses and interpretation of the results. Our tools include
clustering algorithms and second-order statistics (16, 36), and
the topology analysis (Figure 3). These tools are important for
the quantitative comparison between results from experiments
and from simulations. Moreover, the analyses provide a critical
feedback for generating experimentally testable hypotheses and
the adaptation of working models in an iterative way. In fact, our
imaging in this study was instructed by early simulative results
that indicated the mutual patterning of TCR, CD11 and CD45.

Simulation Setup
The simulations are based on a rectangular grid, of a size of
few microns. The array is made of square 10 nm pixels. We
used periodic boundary conditions (molecules that exit on one
side appear on the opposite side). The initial height (z) of
the membrane is set to 70 nm. The PM height in pixels that
accommodate either TCR or CD11 molecules are set to the
molecular height. The z-value of each pixel changes randomly
at every iteration by 1z that has a normal distribution with
σ = 1 nm, according to the Metropolis criterion.

A specific limitation of our simulation to the number of
simulated molecules originates from the occupancy of only one
molecule (regardless of its species) in a single pixel. Thus,
considering a pixel size of 10 nm and a rectangular grid of 1 ×

1 µm2, a limit of 10K molecules can be simulated. Larger grids
are often needed to show complex molecular patterns within a
cell footprint. Thus, we often simulated tens of thousands of
molecules within grids of 400 × 400 pixels. Such grids were
chosen to include a region of interest of a cell footprint with
an area of 4 × 4 µm2 (i.e., each pixel representing an area of
10 × 10 nm). Such a size should leave a wide enough margin
(e.g.,∼50–100 pixels), such that boundary effects are minimized.
Such simulations took ∼15min using a PC with a standard (i7
quad) processor. Acceleration of the simulation can be improved
via operating parallel computing, computation via GPUs and
more. A bigger grid size minimizes the effect of the boundary, yet
requires longer (actual) simulation time, computational power
and memory. Similar consideration may restrict the iteration
time, overall simulation time, the save rate and the number of
runs (Table S3). While other simulations, such as MCell, can
accommodate millions of molecules and states, they require
compartmentation of the simulated space for efficiently running.

We simulated multiple different types of proteins, as follows.
TCRs behave as binding proteins to immobile ligands (αCD3) on
a coverslip or to mobile pMHC molecules at the PM of APCs.
CD11 may bind ICAM at the PM of APCs. The z coordinates of
the TCRs and CD11 are kept at 13 nm and at 35 nm, respectively,
throughout the simulation runtime. The molecules, and esp.
bulky CD45 molecules, act as repulsive springs. Non-specific
binding occurs between all molecules and the PLL coating
of coverslips. The numbers of simulated molecules remains
constant throughout the simulation. All simulated parameters are
detailed in Tables S1–S3.

Monte Carlo Simulations
Simulation Energetics
In the simulations we used the Hamiltonian H = Hint + Hel, to
calculate the energetics of the overall interactions between the T
cell membrane and the coverslip (represented by the term Hint)
and the elasticity of the T cell membrane (represented by the term
Hel). The interaction part, Hint , is defined as:

Hint =
∑

i
(δ1,moliδ1,ligi )Vmol−lig(zi)+ δ1,moliVmol(zi) (1)

where,

δ1,Xi =

{

1, if a molecule of type X exists in pixel i
0, otherwise

(2)

Single pixels from any surface (i.e., either a PM or a coverslip)
can accommodate only one molecule at a time. The interaction
potential of the molecule with its ligand, Vmol−lig , is defined as:

Vmol−lig (zi) =

{

Umol−lig , |zi − lmol−lig | < Interaction range

0, elsewhere
(3)

where Umol−lig is the interaction strength of a molecule and
its ligand, lmol−lig is the length of an engaged molecule-ligand
conplex. zi is the inter surface distance at pixel i. The width of the
molecule-ligand potential is set and its depth are set according
to published results (see Table S3). The repulsion potential of the
molecule is defined as:

Frontiers in Immunology | www.frontiersin.org 11 September 2018 | Volume 9 | Article 2051

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Neve-Oz et al. InterCells: Simulation of Intercellular Interfaces

Vmol(zi) =

{

kmol(zi − lmol)
2, zi < lmol

0, zi > lmol
(4)

The physical parameters of kmol, the compressional stiffness of
the molecule and lmol, the length of the uncompressed molecules,
are detailed in Table S1.

The elastic part of the Hamiltonian, Hel, is defined as:

Hel =
∑

i

κ

2a2
(1dzi)

2 (5)

where κ = κ1·κ2/(κ1 + κ2), is the general effective bending
rigidity of two membranes. In this case, the bending rigidity is
effectively κ ≈ κ1, since κ2 >> κ1 and is simulated at different
values. The lattice constant, a, is 10 nm and dzi = zi1+ zi2+ zi3+
zi4 − 4zi, (where i1, i2, i3, i4 are the indices of the four nearest
neighbors of pixel i).

Simulations Dynamics
The simulation propagates in time by iterations of 0.01 s. In every
iteration all molecules attempt to hop to one of the neighboring
pixels according to their diffusion coefficient. The hopping
attempts of the molecules are accepted or rejected according to
the following rules:

1. The target pixel is not occupied.
2. The probability of acceptance is according to Metropolis

criterion is:

at an old pixel:

P(old state → free) =

{

11E < 0
exp (−1E) 1E > 0

(6)

and at a new pixel:

P(free → new state) =

{

11E < 0
exp (−1E) 1E > 0

(7)

While

P(attempt accepted) = P
(

old state → free
)

×P(free → new state)
(8)

3. If more than one molecule attempted to hop to the same pixel,
the molecule with the highest energy gain will hop.

4. The height, z, of each pixel of the surface is changed randomly
by 1z, that has a normal distribution with σ = 1 nm and
according to Metropolis criterion. The value of σ is set by
receiving 40–50% of acceptance of the membrane attempts 27.

Topology Analyses
The topology analysis measures the conditional density of
molecules from a spatial reference set by clusters of a chosen
molecular type. In the example presented in Figure 9A, the
cluster of reference is set by green molecules. Next, circles are
placed around each green molecule (middle panel), and we
consider the perimeter of their unified area. The densities of the
other molecules (namely, red or blue points in our example)
can now be calculated on this perimeter. The consecutive
operation of these steps with growing radii from the molecules
yields the Minkowski perimeter functional (37). The conditional
densities of the molecules are then calculated for the growing
perimeters, as shown in Figures 9B–E. Last, the density of the
molecules of reference (here, green dots) is determined and
presented by its univariate PCF as a function of the perimeter
radius.
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