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Thymic epithelial cells (TEC) effect crucial roles in thymopoiesis including the

control of negative thymocyte selection. This process depends on their capacity to

express promiscuously genes encoding tissue-restricted antigens. This competence is

accomplished in medullary TEC (mTEC) in part by the presence of the transcriptional

facilitator AutoImmune REgulator, AIRE. AIRE-regulated gene transcription is marked

by repressive chromatin modifications, including H3K27me3. When during TEC

development these chromatin marks are established, however, remains unclear. Here we

use a comprehensive ChIP-seq dataset of multiple chromatin modifications in different

TEC subtypes to demonstrate that the chromatin landscape is established early in TEC

differentiation. Much of the chromatin architecture found in mature mTEC was found

to be present already over earlier stages of mTEC lineage differentiation as well as

in non-TEC tissues. This was reflected by the fact that a machine learning approach

accurately classified genes as AIRE-induced or AIRE-independent both in immature and

mature mTEC. Moreover, analysis of TEC specific enhancer elements identified candidate

transcription factors likely to be important in mTEC development and function. Our

findings indicate that the mature mTEC chromatin landscape is laid down early in mTEC

differentiation, and that AIRE is not required for large-scale re-patterning of chromatin in

mTEC.

Keywords: chromatin immunoprecipitation, histone modifications, thymic epithelial cells, AIRE, tissue restricted

antigen

INTRODUCTION

Epithelial cells constitute the major stromal component of the thymus (1). These cells (designated
thymic epithelial cells, TEC) form functionally and morphologically distinct anatomical regions,
namely the outer cortex within which the early stages of T-cell development take place, and
the inner medulla where the later stages of thymic T cell differentiation occur. One major
developmental process in medullary TEC is progression from immature mTEC (marked by a
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lower cell surface expression of MHC class II molecules, and
hence referred to as mTEClo) to mature mTEC (phenotypically
identified by high MHC class II expression, designated mTEChi).
TEC are critical for attracting blood-borne hematopoietic
precursor cells and controlling their differentiation and selection
to mature, functionally competent T cells via the sequential
processes of positive and negative thymocyte selection (2). A
key aspect of this selection process is the requirement for TEC
as a population to express transcripts from virtually all protein-
coding genes (3). This phenomenon is known as promiscuous
gene expression (PGE) and requires the expression of the
Autoimmune Regulator (Aire) gene, amongst others, to ensure
transcription of around 4,000 tissue restricted antigens (TRA)
withinmTEC (3, 4). Mutations inAIRE result in the development
of multi-system autoimmune disease in humans (5). Recently
other genes, including Fezf2, Prdm1, and Brg1, have also been
identified to regulate PGE (6–8).

The mechanism by which AIRE controls the expression
of tissue specific genes is incompletely understood. The
region around the transcriptional start site (TSS) of AIRE-
regulated genes are more frequently marked by the repressive
chromatin modification trimethylation of lysine-27 of histone
H3 (H3K27me3) and less frequently by the promoter-associated
H3K4me3 (3). When TEC are enriched for specific surface-
expressed antigens, chromatin accessibility is greater around the
TSS of those antigens than other genes (9). Patterns of tissue
specific gene expression are known to occur independent of
changes in DNA methylation (10). AIRE dynamically remodels
chromatin to reduce chromatin accessibility and to tune the level
of promiscuous gene expression across tissue specific genes (8).

The extent to which chromatin modifications in mTEClo and
mTEChi determine AIRE regulatory status of tissue specific genes
is poorly understood. In this study we demonstrate that much
of the chromatin architecture observed in mTEChi is already
present in mTEClo and construct computational models, based
on the chromatin architecture around tissue specific genes, which
accurately predict a gene’s likelihood to be regulated by AIRE.

MATERIALS AND METHODS

Mice
C57BL/6 mice were obtained from Janvier (St. Berthevin,
France). Mice were maintained under specific pathogen-free
conditions. Experiments were in accordance with Swiss federal,
cantonal, and institutional regulations.

Isolation and Sorting of Thymic Epithelial
Cells
Fragmented thymi were digested repeatedly for 15–20min
at 37◦C with 1 unit/ml Liberase TM (Roche Diagnostic)
and 100µg/ml DNaseI (Roche Diagnostic) in PBS, to obtain
single cell suspensions. After the final digest, cells were
pooled and labeled with biotinylated anti-EpCAM for positive
enrichment by AutoMACS system (Miltenyi Biotec), and
stained using the following directly labeled antibodies and
reagents: FITC-anti-IAb (clone AF6-120.1, BioLegend), PE-
anti-Ly51 (clone 6C3, BioLegend), Alexa700-anti-CD45 (clone

30-F11, BioLegend), biotinylated anti-EpCAM (clone G8.8,
DSHB, University of Iowa), PECy7-anti-Sca-1 (clone E13-161.7,
Biolegend), Streptavidin-labeled PerCP-Cy5.5 (BioLegend), and
Cy5-UEA1 (Vector Laboratories). The cells were exposed to 4′,
6-diamidino-2-phenylindole (DAPI) to identify dead cells and
then sorted by flow cytometry (FACSAira II, BD Biosciences)
achieving a TEC purity of over 93%. Sorted TEC were pelleted
and cross-linked for ChIP and kept at−80◦C until use.

ChIP for Histone Markers
Chromatin immunoprecipitation (ChIP) was performed as
previously described (3) using Protein A or G magnetic
beads (Dynabeads, Life Technologies) to capture antibody-
chromatin complexes. Antibodies used were anti-H3K4me1
(ab8895, Abcam), anti-H3K4me3 (C15410003, Diagenode), anti-
H3K4ac (07-539, millipore), anti-H3K9ac (ab4441, Abcam), anti-
H3K9me3 (05-1242, millipore), H3K27ac (ab4729, Abcam), and
anti-H3K27me3 (07-449, millipore).

Histone ChIP-Seq Analysis
We used FastQC to assess read quality and Trimmomatic
to remove adapter sequences (transposons or their reverse
complement), trim the first and last 3 bases of each read based
on sequencing quality, trim sequences based on a sliding window
(4:15), and retain reads with a minimum length of 20 bases (11).
BWA (version 0.7.12) was used for pre-alignment of 100 base-
pair paired-end reads against the UCSC mm10 genome with
the arguments “bwa aln -t8 -q10 <forward/reverse reads>” and
“bwa sampe <forward sai> <reverse sai>” (12). Pre-aligned
bam files were further aligned with Stampy (version 1.0.23) with
the arguments “-t 8 –process-part=n/10 –bamkeepgoodreads”
(13). Reads were filtered to obtain concordantly mapping read
pairs with a MAPQ score > 10. Picard Tools was used to
remove duplicate fragments. Peaks for narrow peak marks
(H3K4me1, H3K4ac, H3K9ac, and H3K27ac) were called using
MACS2 (version 2.0.10.20131028) with the arguments “–keep-
dup all” using pooled input samples as a control (14). Peaks
were called for broad marks (H3K9me3 and H3K27me3) using
MACS2 with the arguments “–keep-dup all –broad.” Peaks
were filtered against the ENCODE mm10 blacklist (15, 16).
Enrichment of ChIP-seq peaks within genes +/– 5 kb intervals
was assessed using Genomic Association Tester (GAT) with
10,000 randomizations, using the appropriate sets of gene
intervals as a workspace (17). Irreproducibility discovery rate
were estimated for peaks as detailed in refs. (18, 19) using
a threshold of IDR < 0.01. Pooled ChIP/input ratios were
estimated for genes using the maximum signal within 1 kb of
the TSS across all transcripts. Differential ChIP-seq peaks were
identified using DiffBind (DBA_DESEQ2) with the default cut-
off of FDR < 0.1 (20). Neural network modeled was undertaking
using the package neuralnet in R. The optimum number of
hidden nodes was estimated using iterative testing of fewer
than 80% of the number of input nodes. A threshold of 0.01
improvement between iterations was used for neural network
training on 67% of the total number of genes. The output
threshold for gene categorization was chosen empirically based
on the training set. The accuracy of the neural network was based
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on the correct categorization of the remaining 33% of genes.
Null accuracy was defined as the accuracy of classification simply
from resampling the test set categories. Contribution of different
inputs to the neural network output was estimated using Olden’s
method, which estimates the contribution of each input variable
to the neural network by summing the products of all hidden
weights for each input and scaling this across all input variables
(21).

ATAC-Seq
One replicate of ∼10,000 wild-type cTEC, and two replicates
each of∼25,000 mTEClo and mTEChi sorted in the same manner
as described above underwent lysis, tagmentation, and PCR
amplification as described in the ATAC-seq protocol (22). ATAC-
seq libraries were sequenced on an Illumina HiSeq 2500.

ATAC-Seq Analysis
We used FastQC to assess read quality and Trimmomatic to
remove contaminating sequences (transpons or their reverse
complements), crop the first and last 3 bases of each read based
on sequencing quality, and remove the 3′ 10 bases of each read
to remove partial transposon sequences (11). We used Bowtie2
(version 2.2.3) to align 100 base-pair paired-end reads against
the UCSC mm10 genome with the arguments “–no-mixed –no-
discordant -X 2000” as in a previous study (23). Reads were
filtered to obtain concordantly mapping read pairs with a MAPQ
score> 10. Picard Tools was used to remove duplicate fragments.
The position of reads were passed into BEDtools and remapped
taking into account transposon sequence insertion bias (24).
Peaks were called using MACS2 (version 2.0.10.20131028) with
the arguments “–nomodel –nolambda –keep-dup all –call-
summits” as in a previous study (14, 25). Peaks were filtered
against the ENCODE mm10 blacklist and a set of mitochondrial
pseudopeaks generated from 1,000,0000 in silico 100 single-end
reads produced from mitochondrial DNA aligned against non-
mitochondrial DNA (15, 16).

Single Cell RNA-Seq
mTEChi were isolated as detailed above and sorted into SMART-
seq2 lysis buffer containing RNase inhibitors (26). Wells were
spikedwith 0.1µl of 1:250,000 ERCC92 spike-inmix 1 (Ambion).
Libraries were generated using the SMART-seq2 protocol and
indexed using Nextera adapters before being sequenced on an
Illumina HiSeq2500 platform.

Single Cell RNA-Seq Analysis
We used FastQC to assess read quality and Trimmomatic
to remove contaminating sequences from reads then aligned
these to the mm10 genome plus ERCC92 spike-ins using
HISAT (version 0.1.6) 2-pass alignment (27). Gene quantitation
was undertaken using HTSeq (with the option intersection
non-empty) (28). Outlier cells were identified using robust
PCA on alignment proportion, ERCC spike-in proportion,
number of detectable genes, proportion of reads mapping to
protein-coding genes, proportion of mitochondrial transcripts,
proportion of ribosomal transcripts, 3′ to 5′ coverage bias,
transcriptomic variance, cell-to-mean correlation, the proportion

of the library accounted for by the top 500 transcripts and
GC content (29). Counts were adjusted for library size using
DESeq (30). FPKM values were converted to estimates of absolute
molecule abundance using linear regression on ERCC92 spike-in
expression. Matching of genes for AIRE status was undertaken
by randomly matching AIRE induced genes with a tissue specific
gene either similarly expressed in no cells or expressed in a
very similar proportion of cells (within detection in one cell,
i.e., ±0.6%). Genes for which there were no viable matches were
discarded.

Tissue Specificity
The tissue specificity of genes was estimated using tau on the
RNA-seq data available from the mouse ENCODE project (31,
32). xi is the gene expression in tissue i where n is the number of
tissues.

τ =

∑n
i=1 (1− x̂i)

n− 1
; x̂i =

xi

max(xi)
1 < i < n

Data Accessions
TEC histone ChIP-seq data has been deposited in GSE114713.
mTEChi AIRE ChIP-seq data was downloaded from GSE92597.
Additional RNA-seq and histone ChIP-seq data was obtained
from the mouse ENCODE project (31, 32).

RESULTS

Chromatin Around AIRE-Regulated Genes
Is Enriched for Repressive Marks and
Depleted in Active Marks
We generated replicated histone ChIP-seq data sets for distinct
TEC subsets specific to each of multiple histone modifications
(Supplementary Table 1). As expected, these samples clustered
primarily by histone modification into repressive or activating
marks on cross-correlation and principal component analysis
(Figure 1). This comprehensive set of chromatin modifications
allowed us to expand the number of chromatin modifications
available for study around the TSS of genes regulated by AIRE
in mTEChi and mTEClo.

Genes were designated: as AIRE-dependent, if their transcripts
were undetected in the absence of Aire expression; as AIRE-
enhanced, if their expression was significantly increased >2-fold
in the presence of AIRE relative to AIRE-negative mTEC; and, as
AIRE-independent, if the presence of AIRE did not significantly
change their expression in mTEChi, a category which includes
house-keeping genes. AIRE-independent genes were further
divided into those with tissue restricted expression (TRAs) and
those without tissue restricted expression (3). As previously
reported by Sansom et al. AIRE dependent and enhanced genes
showed elevated levels of the repressive chromatin modification,
H3K27me3, around their TSS relative to AIRE-independent
genes in mTEChi, with the converse effect seen for the promoter-
associated chromatin modification, H3K4me3 (Figure 2) (3). We
further observed an elevation in a second repressive chromatin
mark, H3K9me3, which was particularly pronounced around the
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FIGURE 1 | Histone ChIP-seq samples segregate primarily by chromatin

mark. (A) Correlation heatmap of histone ChIP-seq samples. (B) Principal

component analysis plot of histone ChIP-seq samples. The legend shows the

color both for TEC subtype (for A) and chromatin mark (for A,B).

TSS of AIRE-dependent genes. Enhancer-associated chromatin
modifications, H3K4ac and H3K9ac, were reduced around the
TSS of AIRE dependent and AIRE-enhanced genes relative to
AIRE-independent genes. The distribution of H3K4me1 was
altered around the TSS of both AIRE-dependent and -enhanced
genes, with higher levels observed proximal to the TSS, whereas
in AIRE independent genes H3K4me1 was marginalized to
beyond 1 kb from the TSS. This pattern may suggest an ongoing
process of H3K4me3 demethylation.

Chromatin Patterns in mTEChi and mTEClo

Are Similar
A key question in TEC promiscuous gene expression concerns
the time point during mTEC lineage development when low
levels of H3K4me3 and high levels of H3K27me3 marks are
established, each a characteristic of AIRE regulated genes.
We hypothesized that the higher proportional expression
of TRAs observed in mTEChi than mTEClo would reflect
differences in the underlying chromatin architecture between
these mTEC subsets. Surprisingly, the overall pattern of
chromatin modifications in mTEClo around AIRE-dependent,

FIGURE 2 | Chromatin landscape around the TSS of AIRE-induced and

AIRE-independent genes in mTEChi. Median ChIP/input signal scaled for

library size is shown for each category of AIRE responsiveness (red = AIRE

dependent; green = AIRE enhanced; blue = AIRE independent TRAs; purple

= all other genes).

AIRE-enhanced or AIRE-independent genes was very similar
to that observed in mTEChi (Figure 3). Despite this, it is
possible that the magnitude of ChIP-seq peaks around AIRE-
induced or AIRE-independent genes may differ between
mTEClo and mTEChi. In order to investigate this possibility,
we identified differential histone ChIP-seq peaks between
mTEClo and mTEChi using DiffBind (20). Enrichment
of these mTEC subset-specific chromatin marks within
the gene body and the flanking 5 kb of AIRE-induced or
AIRE-independent genes was similar between mTEClo

and mTEChi both for all genes and when restricting this
analysis to tissue specific genes only (tissue specificity tau
≥0.8; Supplementary Figure 1). When we applied the
same approach to high confidence histone ChIP-seq peaks
(irreproducibility discovery rate [IDR] < 0.01) we again
observed similar chromatin patterns in mTEClo and mTEChi

(Supplementary Figures 2, 3). However, although the direction
of ChIP-seq signal was similar between mTEClo and mTEChi,
active chromatin marks with significantly higher ChIP-
seq signal in mTEChi showed a more extensive depletion
around AIRE-induced genes (Supplementary Tables 2, 3).
When analyzing the enrichment of all highly reproducible
peaks around tissue restricted antigens between mTEChi and
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FIGURE 3 | Chromatin landscape around the TSS of AIRE-induced and

AIRE-independent genes in mTEClo. Median ChIP/input signal scaled for

library size is shown for each category of AIRE responsiveness (red = AIRE

dependent; green = AIRE enhanced; blue = AIRE independent TRAs; purple

= all other genes).

mTEClo, the only significant difference observed was that
H3K9ac depletion was more marked in mTEClo than mTEChi

(Supplementary Tables 4, 5). Taken together, these results
suggest that chromatin structure in mTEChi and mTEClo is
broadly comparable.

It is possible that this similarity may reflect basal chromatin
architecture present in non-TEC tissues. To explore this
hypothesis, we used ENCODE histone ChIP-seq data to assess
the same chromatinmarks present in our mTEChi dataset around
AIRE regulated or AIRE-independent genes. AIRE-dependent
and AIRE-enhanced genes showed high levels of repressive
chromatin marks and low levels of active chromatin marks in
non-TEC tissues (Supplementary Figure 4). We hypothesized
that this pattern may be driven by the level of gene expression
in individual tissues. In order to investigate this, for each tissue
we divided tissue specific genes into those maximally detected in
that tissue and maximally detected in other tissues. This showed
that individual tissue specific genes were characterized by high
levels of active chromatin marks and low levels of repressive
chromatin marks in tissues with high expression of those genes
(Supplementary Figure 5). This suggests that the pattern of
chromatin seen around AIRE responsive genes is present in
multiple non-TEC tissues and is modulated by the tissue specific
level of expression.

We hypothesized that similarities in individual chromatin
marks around TSS between mTEClo and mTEChi might persist
when projected into higher dimensional space (Figures 4A–D;
Supplementary Figures 6, 7). A clear distribution was present
in either mTEClo or mTEChi that separated genes into those
with high levels of repressive marks, preferentially regulated
by AIRE, and those with high levels of activation marks that
tended to be AIRE-independent. Given that AIRE-induced
genes tend to be more lowly expressed than AIRE-independent
genes, it was possible that this distribution could reflect
underlying differences in the magnitude of gene expression.
Indeed, proportional expression of genes in single mTEChi

followed the same distribution as AIRE regulatory status
(Figure 4E, Supplementary Figure 7; Spearman rho for PC1 vs.
mTEChi proportional expression: rho = −0.81, p < 0.0001).
Similar effects were seen for the magnitude of tissue specificity
(Figure 4F; Spearman rho for PC1 vs. tissue specificity tau: rho
= 0.73, p < 0.0001). Overall, this suggests that AIRE-dependent
and AIRE-enhanced genes have a similar chromatin pattern in
mTEChi and mTEClo.

Machine Learning Predicts AIRE
Responsiveness of Genes From TSS
Chromatin Contexts
The clear distribution of AIRE responsiveness in higher
dimensional space encouraged us to assess whether machine
learning methods could predict AIRE-induced or AIRE-
independent status for genes based on the chromatin landscape
surrounding genes’ TSS. Neural networks were able to classify
genes as AIRE-independent or AIRE-induced more accurately
than expected by chance (mean accuracy: 85.3%; null accuracy:
69.9%; p < 0.0001; Supplementary Figure 8a). This remained
accurate when the analysis was limited to high confidence
TRAs (tau ≥ 0.8) (mean accuracy: 65.0%; null accuracy:
50.1%; p < 0.0001; Supplementary Figure 8b) or additionally
to TRAs closely matched by proportional expression in single
mTEChi (mean accuracy: 62.0%; null accuracy: 50.0%; p <

0.0001; Supplementary Figure 8c) (31). In the neural networks
trained on all genes, chromatin accessibility, H3K27me3,
and H3K4ac marks were associated with AIRE regulated
genes whereas H3K4me3 and H3K9me3 modifications were
associated with AIRE independence (p < 0.05; Figure 5A;
Supplementary Figure 9a). When restricting the neural network
analysis to only genes with tissue specific expression (tau
≥ 0.8), we found that only H3K27me3 and H3K4ac were
associated with AIRE induced genes whereas H3K4me3 was
associated with AIRE independent genes (p < 0.05; Figure 5B;
Supplementary Figure 9b).

Limiting the neural network input to chromatinmodifications
available in both mTEChi and mTEClo, we found that
the accuracy of the model was better than by chance
in either mTEC subtype (mean accuracy/null accuracy: all
genes–mTEChi 85.2/69.9%, mTEClo 84.1/69.8%; tau ≥ 0.8–
mTEChi 64.9/50.2%, mTEClo 62.8/50.0%; all p < 0.0001;
Supplementary Figure 10). However, the accuracy of models
derived from the chromatin architecture of mTEChi consistently
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FIGURE 4 | Principal component analysis (PCA) of chromatin signatures in

mTEClo and mTEChi. PCA plot of maximum signal within 1 kb of the TSS of

individual genes [red = AIRE dependent; green = AIRE enhanced; blue =

AIRE independent TRAs; gray = all other genes; (A) mTEClo and (C) mTEChi].

PCA rotations of individual chromatin marks for (B) mTEClo and (D) mTEChi.

PCA heatmaps of genes shaded by the (E) proportion of single mTEChi

expressing ≥ one molecule and (F) tau tissue specificity index.

outperformed those derived from mTEClo (p < 0.0001;
Figures 5C,D). This increased accuracy from neural network
modeling was associated with more consistent weighting
given to specific chromatin modifications in mTEChi than
mTEClo, which may reflect a more consistent chromatin
signature of AIRE responsiveness in mTEChi than mTEClo

(Supplementary Figure 11).

Chromatin Marks Around AIRE Binding
Sites
Despite the chromatin architecture around TSS being similar
in mTEClo and mTEChi, it is possible that differences in
chromatin marks at AIRE binding sites may underlie differential
TRA expression in mTEClo and mTEChi (33). We found
that AIRE binding sites were enriched for promoter and
enhancer associated chromatin modifications and depleted in
repressive chromatin marks relative to the remaining mappable
genome (Supplementary Figure 12; Supplementary Table 6).

FIGURE 5 | Comparison of models to classify genes by AIRE status. Olden

weightings of mTEChi chromatin accessibility and histone modifications within

100 neural networks for (A) all genes and (B) tissue restricted genes (tau ≥

0.8). Accuracy (%) of neural network models generated for histone marks in

common between mTEClo (red) and mTEChi (green) for (C) all genes and (D)

tissue restricted genes (tau ≥ 0.8).

Interestingly, there was no difference in the magnitude of this
enrichment or depletion between mTEClo and mTEChi (p >

0.05), suggesting that differences in chromatin architecture at
AIRE binding sites are unlikely to be the cause of transcriptomic
differences between mTEC subtypes.

Predicting Transcription Factor Binding
From Enhancer Chromatin Modifications in
TEC
Beyond AIRE, the binding of transcription factors may
shape specific differences between mTEClo and mTEChi. We
therefore assessed the enrichment of transcription factor
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binding motifs curated from JASPAR, the open access data
base of non-redundant transcription factor binding sites,
to assess the enrichment of motifs within peaks containing
enhancer chromatin modifications differentially identified
between TEC subtypes (Supplementary Figures 13, 14). By
intersecting enriched motifs between different enhancer marks
and overlaying this motif enrichment on transcriptomic data,
we found candidate transcription factors with motifs that
were differentially enriched within enhancers and differentially
expressed between relevant TEC subtypes (FDR< 0.05; Figure 6;
Supplementary Table 7). We identified candidate transcription
factors particularly likely to be important for the differentiation
or function of specific TEC subtypes by highlighting motifs
expressed at FPKM > 10 and with a fold change > 5 between
TEC subtypes. This approach identified: Klf5, Spib, and Zbtb7c in
mTEClo

> cTEC, Egr3 in mTEClo
> mTEChi, and Cdx1, Runx3,

Tbx21, and Tcf7 in mTEChi
> mTEClo.

Gene Ontology Analysis of Chromatin
Marks
Even without large-scale alterations in chromatin patterns, it is
likely that differences in chromatin marks between TEC subtypes
may be enriched near genes involved with particular biological
and molecular processes. An overlap analysis using each of
the available chromatin marks in cTEC, mTEClo and mTEChi

revealed enrichment in multiple different biological pathways
(Supplementary Figure 15). As above, we identified chromatin
marks with significantly higher ChIP-seq signal in specific TEC
subsets. Based on our motif analysis, one molecular pathway
of particular interest in mTEClo chromatin modifications was
the enrichment of H3K4me1 and H3K27ac peaks within sets
of genes known to be upregulated by epithelial growth factor
(EGF) (H3K4me1 1.9-fold, q < 10−7; H3K27ac 3.03-fold, q <

10−11). Enhancer marks specifically present in mTEChi were
enriched for a multitude of mouse phenotypes associated with
abnormal lymphocyte development and function (e.g., abnormal
CD4+ T-cell physiology: H3K4me1 2.0-fold, q < 10−8; H3K9ac
2.2-fold, q < 10−12) as well as gene pathways upregulated in
response to ionizing radiation (H3K4me1 2.05-fold, q < 10−6;
H3K9ac 2.3-fold, q < 10−9). H3K27me3 peaks in mTEClo, but
notably not in mTEChi, were enriched for known targets of the
Polycomb Repressive Complex 2 (mTEClo: 2.8-fold, q < 10−17;
no overlapping genes in mTEChi).

DISCUSSION

We have identified differences in chromatin architecture between
AIRE-regulated and AIRE-independent genes. Dimensionality
reduction of the observed histone modifications revealed a
clear separation of genes by AIRE regulatory status in mTEC.
This distribution was also associated with tissue specificity
and proportional expression in mTEChi. Machine learning
through neural network analysis was able to predict the
AIRE status of genes from multidimensional measures of
chromatin architecture in both mTEClo and mTEChi, although
with significantly higher accuracy in mature over immature

FIGURE 6 | Heatmaps of RNA-seq data from TEC subtypes for significantly

enriched transcription factor motifs within enhancer elements. Transcription

factor motifs differentially expressed between the TEC subtypes shown are

indicated by the red bars. Transcription factors expressed at FPKM > 10 and

with a fold change > 5 are indicated by text to the left of the heatmap.

Expression values are log2 transformed and scaled by gene.

mTEC. Together these findings suggested that the chromatin
architecture is broadly similar between mTEClo and mTEChi but
is further refined through the course of mTEC differentiation
with a more marked reduction in most active chromatin
marks around AIRE-induced genes in mTEChi than in mTEClo.
Moreover, an analysis of chromatin modifications was also
able to identify potential novel master transcription factors of
TEC development and functional pathways in which chromatin
modifications specific to TEC subtypes were significantly
enriched.
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Our data suggest that much of the chromatin landscape
surrounding tissue specific genes is already present in mTEClo

prior to mTEChi differentiation. Previous studies only examined
histone modifications in mTEChi. Consequently, the chromatin
landscape prior to this point in TEC differentiation was
previously unknown (3, 33). However, supportive evidence that
this might be expected to be the case was provided by the
observation, which we have expanded upon in this study, that
the chromatin patterns around AIRE-induced genes in mouse
ENCODE ChIP-seq data derived from non-TEC cell types are
similar to those observed in mTEChi (3). This suggests that
AIRE is not required to establish the chromatin architecture of
tissue specific antigens but instead acts dynamically to ensure
appropriate levels of histone modifications, as suggested by a
previous chromatin in vivo assay (8). Our machine learning
approaches support the fact that AIRE status can be predicted
from chromatin signatures in both mTEClo and mTEChi. One
important caveat to these findings is that a small proportion
of mTEClo cells are actually terminally differentiated post-AIRE
mTEC (34). Although this could dilute the magnitude of any
differential signal between mTEClo and mTEChi, the relatively
small size of this population of post-AIRE cells is unlikely to have
a major impact on our analysis. In other systems, reshaping of the
chromatin architecture occurs after alterations in transcription
and it is possible that chromatin patterning in mTEChi is
determined by transcription rather than transcription being
determined by chromatinmarks (35). Knock-out of determinants
of epigenomic remodeling will be required to resolve this issue.

The key transcription factor motifs identified in enhancer
elements within specific TEC subsets highlighted potential
master regulators of TEC development and function, each of
which was robustly expressed (FPKM > 10) in TEC. Klf5, Runx3,
Spib, and Zbtb7c are known to regulate thymocyte development
but have not been studied in TEC (36–38). Egr3 is involved in
γδ T-cell development (39). Tbx21 and Tcf7 have previously been
implicated in the expression of AIRE in mTEC (40). Of particular
interest are the transcription factors that differ between cTEC and
mTEClo both in enhancer availability and transcript expression
(Klf5, Spib, and Zbtb7c), as these may be instrumental in driving
the bifurcation between cTEC and mTEC fate from the early,
bipotent progenitor stage onwards (41). Further work should
focus on the functional effects of these transcription factors on
TEC progenitors.

Our gene ontology analysis (Supplementary Figure 15) of
multiple different chromatin marks identified pathways involved
in immune system function. Our finding that there was
additionally enrichment of pathways involved in the response
to ionizing radiation in mTEChi was interesting because AIRE
is thought to cause DNA double-strand breaks as part of its
dynamic remodeling of chromatin (42). It was also noteworthy
that H3K27me3 peaks in mTEClo were enriched for genes known
to be conventional targets of the Polycomb Repressive Complex 2
but this was not the case in mTEChi. This suggests that dynamic
remodeling of repressive chromatin marks may differ over the
course of mTEC maturation.

An important limitation of the approaches currently applied
to study the chromatin architecture of TEC is that requirements

for large cell numbers mean that histone modifications represent
a population average as these can only practically be surveyed
on pooled cells. Studies in which mTEChi have been purified
for cells expressing specific tissue specific genes revealed that
their chromatin accessibility and that of co-expressed genes
were substantially higher relative to other loci (9). Given
the stochastic expression of genes in individual mTEChi, this
observation suggests that population level measures of chromatin
modifications are unlikely to capture the state of individual
cells (3, 9, 10). The future application of single cell techniques
that permit the parallel measurement of the transcriptome
and chromatin accessibility will help to clarify the chromatin
landscape in individual mTEC and correlate their state to the
expression of particular tissue specific genes (43).
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Supplementary Figure 1 | Enrichment of differential histone ChIP-seq peaks

within genes of different AIRE status. GAT was used to test enrichment of histone

ChIP-seq peaks with differential signal in mTEClo or mTEChi within AIRE

independent (blue) and AIRE induced (red) genes +/– 5 kb. Error bars indicate

95% confidence intervals from 10,000 permutations. Enrichment is relative to all

genes (top) or tissue specific genes (tau ≥ 0.8).

Supplementary Figure 2 | Enrichment of mTEClo histone ChIP-seq peaks (IDR

< 0.01) within genes of different AIRE status. GAT was used to test enrichment of

histone ChIP-seq peaks (IDR < 0.01) in mTEClo within AIRE independent (blue)

and AIRE induced (red) genes +/– 5 kb. Error bars indicate 95% confidence

intervals from 10,000 permutations. Enrichment is relative to all genes (top) or

tissue specific genes (tau ≥ 0.8).

Supplementary Figure 3 | Enrichment of mTEChi histone ChIP-seq peaks (IDR

< 0.01) within genes of different AIRE status. GAT was used to test enrichment of

histone ChIP-seq peaks (IDR < 0.01) in mTEChi within AIRE independent (blue)

and AIRE induced (red) genes +/– 5 kb. Error bars indicate 95% confidence

intervals from 10,000 permutations. Enrichment is relative to all genes (top) or

tissue specific genes (tau ≥ 0.8).
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Supplementary Figure 4 | Chromatin signals in ENCODE tissues. Boxplots show

log2 ChIP/input ratio scaled by library size within 1 kb of the TSS of genes that are

AIRE-dependent, AIRE-enhanced, AIRE-independent TRAs or all other genes.

Kruskal-Wallis p < 0.0001 for all tissues.

Supplementary Figure 5 | Chromatin signals in ENCODE tissues near tissue

specific genes. Boxplots show log2 ChIP/input ratio scaled by library size within

1 kb of the TSS of genes with tissue specificity tau ≥ 0.8. Genes are divided into

AIRE-induced and AIRE-independent, and additionally for each tissue into genes

maximally expressed in each tissue or not maximally expressed in that tissue.

Kruskal-Wallis p < 0.05 for all tissues.

Supplementary Figure 6 | Heatmaps of chromatin signals in mTEClo. ATAC-seq

signal is expressed as log2 CPM+1. ChIP-seq signal is expressed as log2
ChIP/input ratio scaled by library size. The bottom panel shows tau tissue

specificity index.

Supplementary Figure 7 | Heatmaps of chromatin signals in mTEChi. ATAC-seq

signal is expressed as log2 CPM+1. ChIP-seq signal is expressed as log2
ChIP/input ratio scaled by library size.

Supplementary Figure 8 | Plots of accuracy of neural networks compared with

null accuracy. (a) All genes, (b) tissue restricted genes (tissue specificity tau ≥

0.8), and (c) tissue restricted genes (tissue specificity tau ≥ 0.8) closely matched

on proportional expression in single mTEChi. The null accuracy was estimated by

randomly sampling the true gene categories for each 100 neural networks.

Supplementary Figure 9 | Optimum neural networks for AIRE categorization.

Plots of the neural networks are shown for the network with the best accuracy for

(a) all genes and (b) tissue restricted genes (tau ≥ 0.8).

Supplementary Figure 10 | Accuracy of neural networks for predicting AIRE

status of genes.

Supplementary Figure 11 | Olden weighting of chromatin accessibility and

histone modifications in neural networks for predicting AIRE status of genes.

Supplementary Figure 12 | Enrichment of chromatin modifications within AIRE

binding sites. GAT was used to test enrichment of histone ChIP-seq peaks (IDR <

0.01) in mTEClo (red) and mTEChi (green) within AIRE ChIP-seq peaks (IDR <

0.01) relative to the rest of the mappable genome. Error bars indicate 95%

confidence intervals from 10,000 permutations.

Supplementary Figure 13 | Significantly enriched JASPAR motifs in cTEC (blue)

or mTEClo (red) for H3K4me1 (top) or H3K27ac (bottom). The top 20 significant

motifs (FDR < 0.05) are shown ordered by enrichment.

Supplementary Figure 14 | Significantly enriched JASPAR motifs in mTEClo (red)

or mTEChi (green) for H3K4me1 (top) or H3K9ac (bottom). The top 20 significant

motifs (FDR < 0.05) are shown ordered by enrichment.

Supplementary Figure 15 | (left) Gene ontology enrichment from GREAT on

differential peaks in cTEC (blue) or mTEClo (red); (right) Gene ontology enrichment

from GREAT on differential peaks in mTEClo (red) or mTEChi (green). The top 20

significant terms (FDR < 0.05) ranked by fold enrichment are shown. Only

categories with greater than 50 and fewer than 1,000 genes are shown.

Supplementary Table 1 | Experimental design. ∗ = samples generated as part of

a previous study (3).

Supplementary Table 2 | Enrichment of histone ChIP-seq peaks differentially

detected in mTEClo or mTEChi within AIRE-enhanced and AIRE-independent

genes. GAT was used to test enrichment of histone ChIP-seq peaks with

differential signal in mTEClo or mTEChi within AIRE independent (blue) and AIRE

induced (red) genes +/– 5 kb.

Supplementary Table 3 | Enrichment of histone ChIP-seq peaks differentially

detected in mTEClo or mTEChi within AIRE-enhanced and AIRE-independent

TRAs. GAT was used to test enrichment of histone ChIP-seq peaks with

differential signal in mTEClo or mTEChi within AIRE independent (blue) and AIRE

induced (red) TRAs +/– 5 kb.

Supplementary Table 4 | Enrichment of histone ChIP-seq peaks detected in

mTEClo or mTEChi (IDR < 0.01) within AIRE-enhanced and AIRE-independent

genes. GAT was used to test enrichment of histone ChIP-seq peaks within AIRE

independent (blue) and AIRE induced (red) genes +/– 5 kb.

Supplementary Table 5 | Enrichment of histone ChIP-seq peaks detected in

mTEClo or mTEChi (IDR < 0.01) within AIRE-enhanced and AIRE-independent

TRAs. GAT was used to test enrichment of histone ChIP-seq peaks within AIRE

independent (blue) and AIRE induced (red) TRAs +/– 5 kb.

Supplementary Table 6 | Enrichment of histone ChIP-seq peaks within AIRE

ChIP-seq peaks.

Supplementary Table 7 | Motif enrichment within different TEC subtypes.
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