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Antibody evolution studies have been traditionally limited to either tracing a single clonal

lineage (B cells derived from a single V-(D)-J recombination) over time or examining bulk

functionality changes (e.g., tracing serum polyclonal antibody proteins). Studying a single

B cell disregards the majority of the humoral immune response, whereas bulk functional

studies lack the necessary resolution to analyze the co-existing clonal diversity. Recent

advances in high-throughput sequencing (HTS) technologies and bioinformatics have

made it possible to examine multiple co-evolving antibody monoclonal lineages within

the context of a single repertoire. A plethora of accompanying methods and tools have

been introduced in hopes of better understanding how pathogen presence dictates the

global evolution of the antibody repertoire. Here, we provide a comprehensive summary

of the tremendous progress of this newly emerging field of systems phylogeny of

antibody responses. We present an overview encompassing the historical developments

of repertoire phylogenetics, state-of-the-art tools, and an outlook on the future directions

of this fast-advancing and promising field.
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INTRODUCTION

B cells are the foundation of humoral immunity and are defined by their characteristic B cell
receptors (BCR, or secreted version: antibodies), which bind foreign pathogens and initiate effector
functions, such as pathogen opsonization, neutralization, complement activation, and cellular
cytotoxic and phagocytosis signaling (1). Antibodies are composed of two identical heavy chains
and two identical light chains, where each chain consists of a variable region and a constant
region. The variable regions dictate antigen-binding specificity (2), whereas the constant regions
enable interactions with other molecular and cellular components of the immune system (1). Initial
variable region diversity is encoded in the organism’s genome through the presence of multiple V-,
D- (heavy chain only), and J-gene segments, which pseudo-randomly recombine in both the heavy
and light chain loci (3, 4). During somatic recombination, the variable regions can undergo further
diversification due to deletions or insertions at the V-D and J-D junctions, rendering a potential
theoretical amino acid diversity in humans and mice of >1013 (5–7). The region encompassing the
last few nucleotides of the V-gene segment, the entire D-gene segment (in the case of heavy chain
rearrangement), and the start of the J-gene segment is known as the complementary determining
region 3 (CDR3), and has been shown to largely dictate antigen specificity (2).
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Selective pressures are present during early B cell development
to ensure binding specificity is not directed toward self-antigens
through interactions with stromal cells in the bone marrow.
This is done via deletion or induction of anergy in B cells
expressing BCRs exhibiting self-reactivity. B cells surviving
this selection emigrate from the bone marrow and enter the
circulating population of mature B cells. These newly produced
B cells circulate between blood and secondary lymphoid organs
until encountering their respective antigen. The BCRs which
bind their respective target can subsequently engulf the foreign
antigen via receptor-mediated endocytosis and display these
pathogen-derived peptides on the cell surface using major
histocompatibility class (MHC)-II proteins (8, 9). This prepares
the B cell for further differentiation via binding of CD4+ T cells,
which interact specifically with the foreign peptides displayed on
the B cell’s MHC-II molecules. Both the strength and duration
of this interaction between B and T cells have been implicated in
dictating the fate of the B cell (10). Longer conjugate interactions
may preferentially lead to a germinal center (GC) reaction, where
affinity maturation and class switching occur (11, 12).

GCs are structurally divided into a dark zone, where B cells
rapidly proliferate while mutations are selectively introduced into
the antibody locus, initially via the enzyme activation-induced
cytidine deaminase (AID) and the upregulation of the error-
prone DNA polymerase eta (13–15), a process referred to as
somatic hypermutation (SHM) (16). A number of reviews exist
describing the complex biochemistry underlying SHM and are
available for further reading (17, 18). The light zone in GCs is
where T follicular helper (TFH) cells mediate the selection of B
cell clones with higher antigen affinity and their differentiation
into plasma cells (Figure 1A) (12, 19, 20). B cell clones incurring
SHM that increase the strength of the antibody-antigen binding
interaction will subsequently receive more survival signals, such
as ICOS, CD40, and interleukin-21 (IL-21) (11, 21, 22).

It has been shown that antibodies surviving the selective
pressures faced during affinity maturation are capable of
producing high affinity antibodies with binding disassociation
constants (Kds) hundreds to thousands of times higher than
their germline progenitor (23). Furthermore, recent work in
mouse models of chronic viral infection have revealed that the
continued presence of TFH cells is crucial for the development
of neutralizing antibodies (24). While it is intuitive that affinity
maturation holds an essential role to improve the specificity and
affinity of B cells against complex antigens (such as pathogens
and their proteins), a recent study has questioned this, as it
was proposed that there is a continuous recruitment of naïve
or memory B cells equipped with high affinity BCRs into an
ongoing humoral immune response (25). This suggests that SHM
might play a prominent role in broadening the antibody response
with respect to its ability to recognize antigenic variants (26, 27).
Despite these recent findings, the exact nature regarding whether
and how affinitymaturation instructs antibody evolution remains
at the forefront of contemporary antibody repertoire research.
What recent studies have made abundantly clear, however, is that
B cells with unique V-(D)-J rearrangements exist contemporarily,
both within an organism and even within a single germinal
center (Figure 1B) (27, 28). The utilization of new experimental

techniques (e.g., multiphoton microscopy, confetti mice, and
bone marrow chimeras) in concert with sequencing technologies
have provided an unprecedented insight into how biological
factors such as BCR affinity or clonal diversity can influence the
evolutionary landscape.

Over the past decade, many fields of research have leveraged
the increased resolution and decreased cost of high throughput
sequencing (HTS) to better understand genomic diversity and
evolution. Similarly, the field of immunology has employed HTS
to investigate the genetic diversity of antibody variable regions,
also referred to as immunoglobulin sequencing or Ig-Seq. This
application has been instrumental in providing a quantitative
description and profile of antibody repertoires (29–31). Ig-Seq
experiments capture the diversity found in the variable regions
of co-existing antibodies, enabling the reconstruction of multiple
antibody lineages within a single host over time (32–34). Given
the immense wealth of sequencing data arising from Ig-Seq,
phylogenetic inference is a well-suited methodology to better
understand clonal selection and expansion mechanisms that
drive B cell evolution.

The standard evolutionary analysis of a B cell involves
the reconstruction of a phylogenetic tree, in which the
temporal relationships between recovered antibody sequences
are modeled. The phylogenetic tree is often referred to as a clonal
lineage, whereas a “phylogenetic lineage” represents a branch in
the tree. In the case of antibody repertoire phylogenetics, each
phylogenetic tree represents a clonal lineage descending from an
independent V-(D)-J recombination event. From a single Ig-Seq
experiment, a multitude of phylogenetic trees can be inferred,
demanding a novel analysis pipeline not typically required in
conventional phylogenetic studies examining species or viral
evolution. The sequencing reads covering the full V-(D)-J region
(∼350–400 base pairs) are represented as nodes in the tree,
while the edges indicate the relationship between the tips, and
the edge lengths represent the time between branching events.
These representations provide valuable information regarding
the evolutionary history of a given antibody or B cell clone
and can be employed to understand the selective pressures
experienced during affinity maturation.

Studying how antibodies evolve in the context of pathogen
neutralization has the potential to both answer basic biological
questions pertaining to clonal selection and to aid in the
development of precision vaccines or discovery of therapeutic
monoclonal antibodies. Extensive research efforts have already
been dedicated to better comprehend a subset of antibodies
capable of neutralizing the infectious potential of multiple
strains of HIV-1 (broadly neutralizing antibodies, bNAbs)
(35–38). A prominent example involves the VRC01 bNAb
lineage, originally identified from B cells of an HIV-1
patient, which has been shown to neutralize 90% of HIV-1
strains after undergoing extensive SHM (39). Using traditional
phylogenetic methods, the evolutionary steps preceding virus-
neutralizing capability were inferred, enabling the inference of
both ancestral and intermediate sequences (38, 39). Further
work has attempted to design vaccine immunogens that
target these intermediate progenitor sequences in hopes of
directing the subsequent evolution of antibodies toward
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FIGURE 1 | Evolutionary dynamics of the Germinal center reaction. (A) Naïve and memory B cells are recruited into germinal center reactions where they undergo

subsequent rounds of somatic hypermutation in the dark zone and selection via follicular dendritic cells in the light zone. This leads to successive rounds of division

and mutations (shown by colored antibody receptors) or apoptosis (shown by gray cells). Different selection pressures can lead to either balanced selection, in which

multiple independent clones expand and undergo SHM, or imbalanced selection where a few clones dominate the GC reaction and undergo many rounds of SHM.

(B) Ig-Seq can capture the sequence diversity within populations of B cells. Systems phylogeny aims to assign the recovered sequences into clonal families, followed

by the inference of evolutionary histories. The resulting phylogenetic trees can then be compared both within one host and between hosts.

the broadly neutralizing phenotype (40, 41). Additionally,
how affinity, avidity, and the initial concentration of these
progenitor BCRs influence the subsequent GC reactions
and incurred mutations was recently described, providing

further insight about the appearance and propagation of
bNAbs (42).

While the various HIV-1 bNAbs have ignited hopes of
utilizing phylogenetics to design vaccines for rapidly mutating
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viruses, most research employing antibody phylogenetics has
been confined to single clonal lineages (35–37, 43, 44). Despite
the emphasis on single antibody lineages, the majority of the
sequencing data used to describe these neutralizing antibodies
has been recovered via Ig-Seq experiments. Thus, while
individual trees describing the evolution of HIV-1-neutralizing
antibodies have been well characterized, several unanswered
questions remain regarding how to partition the sequencing
reads into the individual V-(D)-J recombination trees, and how
this antibody “forest” of distinct phylogenetic trees evolves as a
system.

The unique opportunity to apply sequencing technologies to
the study of B cells has led to the development of several tools
and practices specifically tailored to the investigation of antibody
evolution (45–47). It is foreseeable that this trend will only
continue to increase as Ig-Seq experiments become increasingly
commonplace in immunological research given the applications
both to antibody therapeutics and rational vaccine design (48).
Despite the lack of standardization, many studies have already
incorporated phylogenetic analyses in concert with Ig-Seq (34,
38, 49). These studies have employed various tools, inference
methods, and heuristics. We provide here a comprehensive
review tailored specifically to antibody repertoire phylogeny.
We outline both contemporary practices and software, in
addition to the problems currently faced by this promising
field.

CLONAL LINEAGE ASSIGNMENT

As opposed to traditional phylogenetic studies, the somatic
diversification mechanisms inherent to B cell development
present an additional pre-processing step even before the
selection of a tree-inference method. V-(D)-J recombination
creates an immense starting pool of roots, each of which has
the potential to encounter its cognate antigen and subsequently
undergo clonal expansion and evolution (polyclonal response).
Therefore, at any given point in a single individual host, multiple
co-evolving lineages will be present. Phylogenetic analyses
involving pathogens traditionally assume that all recovered
sequences are related to a single common ancestor. Thus,
correctly assigning a given B cell clone to a particular clonal
lineage presents a challenge not found in other phylogenetic
analyses. Upon successfully sequencing the B cell populations of
interest, the recovered reads need to be first assigned to a given
phylogenetic tree, representing a group of clones expanded from
a single V-(D)-J recombination event (Figure 1B). A given Ig-Seq
experiment can produce millions of sequencing reads per sample
(4, 29, 50), rendering it difficult to disentangle the simultaneous,
independently co-evolving lineages. Several strategies and tools
have been recently developed in response to this problem and are
outlined below.

A common starting approach is to initially cluster sequences
by their germline genes, and subsequently infer an individual tree
for each cluster. Based on the number of possible combinations
of V-, D-, and J-genes, this implies that thousands of phylogenetic
trees could be inferred within a single individual. In practice,

not all germline genes and combinations thereof are used at
the same frequency, which dramatically reduces the number of
actual trees produced within one host (4, 51). Additionally, low
alignment accuracy of the D-gene segment has led many studies
to only consider the V- and J-gene segments during clustering.
The number of trees within a single individual can be further
reduced by setting a threshold for a number of sequences per
tree. Unfortunately, the value to define the threshold is less
clear and often depends on the context of biological questions.
For example, there exist studies which have set thresholds
of 10 sequences per tree when tracing B cells across various
compartments (e.g., B cells trafficking to the central nervous
system) (52), whereas other studies that depict differentiated
memory B cells within a tree have omitted a threshold altogether
(49). In addition to lower limits set on the number of sequences
required per tree, upper limits can also be set depending on the
computational demands of the selected phylogenetic method.
Multiple HIV studies, for example, have restricted each lineage
tree to a maximum of 200 randomly sampled sequences for the
root of interest (36, 43).

The challenge of assigning reads to a clonal lineage can
be addressed by taking advantage of the nature of SHM to
preferentially introduce nucleotide substitutions during GC
reactions (53). This implies that insertions and deletions
are mainly introduced via V-(D)-J recombination. Therefore,
information regarding insertions and deletions can be utilized
to restrict sequences with identical clonal (CDR3) lengths to a
given tree. This dramatically increases the number of trees per
individual, while decreasing the number of sequences assigned to
a given clonal lineage. Under the assumption that clonal lineages
evolve independently, phylogenetic trees from a particular
individual can be computed in parallel. Thus, this heuristic
approach can dramatically reduce the necessary computation
time while incorporating relevant biological insight regarding
a constant CDR3 length throughout the affinity maturation
process.

Commonly used tools capable of aligning Ig-Seq data are
MiXCR, IMGT, IgBlast, SONAR, IGoR, iHMMunealign, and
Partis (54–60), which work by assigning germline genes to
sequencing reads and additional annotation [Framework regions
(FRs) and CDRs] (Table 1). In some cases, such as with MiXCR,
Partis, and IgBlast, a user is able to include a custom reference
germline database (particularly useful in cases where germline
genes of a given species have not yet been fully annotated)
(54, 56, 57); this can be used in concert with software capable
of predicting germline alleles from Ig-Seq data. While Partis has
this capability built in (61), other standalone software includes
IgDiscover and TigGER (62, 63). Additionally, one can extract
germline information from whole genome shotgun sequencing,
as performed by VGeneRepertoire (64). One of the major
drawbacks of the previously mentioned lineage assignment is
the large reliance on an initial alignment of recovered reads
to the germline. Furthermore, any rare insertions or deletions
introduced during SHM will be excluded due to restricting trees
to an identical clonal (CDR3) length.

Several methods have been developed to circumvent problems
arising during alignment-based lineage assignment. These
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TABLE 1 | Comparison of tools and methods used for clonal lineage assignment and phylogenetic inference.

Attributes (+) Notes (–)

Clonal LINEAGE ASSIGNMENT

Alignment based

(Mixcr, IMGT, IgBlast, IGoR, IHMMunealign)

• Potentially fast run time (depends on the tool)

• Can often supply own germline genes

• Often arbitrary thresholds for clonal

relatedness (e.g., 80% CDR3 similarity)

Partis

(https://github.com/psathyrella/partis)

• Human, mouse and macaque germline built in

• Germline inference possible

• Docker image available

• Good documentation

• Large datasets may require subsampling due

to computational demands

Clonify

(https://github.com/briney/clonify-python)

• Antibody specific edit distance

• Explicit incorporation of shared mutational

histories

• Limited to unseeded alignment

SONAR

(https://github.com/scharch/SONAR)

• Multiple seeded lineage assignment algorithms

• Easy export to other phylogenetic software

• Docker image available

• Limited to Human germlines

PHYLOGENETIC METHOD

Distance based

(ape, ClustalOmega, EBI, phangorn, FastML)

• Computational speed

• Multiple distance metrics possible

• Difficult to calculate distances for sequences

with large divergence and alignment gaps

• Less sophisticated than probabilistic methods

Maximum parsimony

(PHYLIP, Rphylip, GCTree, phangorn, IgTree)

• Intuitive algorithm

• Clonal frequency incorporation (GCTree)

• Polytomies and internal nodes (IgTree)

• Ignores antibody specific properties (hotspots,

transversions, transitions)

• Long-branch attraction problem

Maximum likelihood

(FastML, MEGA, IQ-TREE, dnaml, IgPhyML)

• Complex substitution models

• Hotspot specific codon models (IgPhyML)

• Computationally demanding

• Sensitive to model misspecification

Bayesian

(BEAST, Mr. Bayes, ImmuniTree)

• Complex substitution models

• Can produce rooted trees without explicit

outgroup

• Possible to incorporate biological knowledge

with priors

• Mutation rate returned in calendar time

(BEAST)

• Sensitive to model misspecification

• Highest computational demands due to

Markov chain Monte Carlo algorithm

methods include both seeded and unseeded lineage assignment.
Seeded lineage assignment aims to extract all clonally-related
transcripts to an input antibody sequence. Conversely, unseeded
lineage assignment attempts to decompose the entirety of
input sequences into their constitutive clonal families.
Three prominent tools specifically tailored to clonal lineage
determination are Partis, Clonify, and SONAR (57, 58, 65).
Partis models B cell evolution with a likelihood function
that avoids the need to strictly define rooting assumptions,
such as an arbitrarily defined percentage of CDR3 sequence
homology (57). This tool can perform both unseeded and
seeded lineage assignment, with input sizes reaching hundreds
of thousands and millions of sequences, respectively. Another
tool, Clonify, uses hierarchical clustering based on an antibody
specific edit distance to determine clonal lineage inclusion
(65). One benefit of this proposed algorithm relative to the
aforementioned alignment tools is that neither CDR3 lengths
nor germline alignments explicitly define a clonal lineage.
Instead, CDR3 similarity, germline alignment scores, and
information regarding shared mutational histories are included

in the clonal assignment. Finally, SONAR first aligns reads to
germlines provided by IMGT and can subsequently perform
either seeded or unseeded lineage assignment (58). Their
unseeded alignment relies upon first separating transcripts into
groups based on V- and J- genes, with subsequent clustering
based on CDR3 sequence similarity. Multiple algorithms for
seeded lineage assignment are available, in addition to functions
which allow visualization of homology to germline genes and
other known antibodies (58). While the subsequent phylogenetic
tree inference is possible with SONAR, clonal lineages can also
be easily exported to formats compatible with other commonly
used tree inference software. Finally, both Partis and SONAR
are available as Docker containers, which can dramatically
simplify the installation process. While these methods are a
promising step to improve the delineation of independent
V-(D)-J recombination events from bulk sequencing data,
further benchmarking studies are still required to illustrate how
clonal lineage assignment algorithms influence the downstream
evolutionary conclusions. Such studies, for example, could
examine how the amount, topologies, and sizes of lineage trees
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from a single repertoire change based on preprocessing and
lineage assignment pipelines.

STRUCTURE OF THE B CELL TREE

Phylogenetic trees are commonly defined such that each node
represents a recovered B cell sequence (or clone), whereas the
branches represent the relationship between sequences. However,
there exist several important differences between traditional
phylogenetic trees and models specifically tailored to describe B
cell evolution (Figure 2). One important characteristic of B cell
maturation is clonal selection during expansion, which results in
multiple B cells that have identical BCR sequences. Therefore, Ig-
Seq can return identical reads corresponding to different B cells,
adding a frequency attribute to each recovered sequence. The
most common method currently employed by repertoire studies
has been to remove replicate sequences, producing a phylogenetic
tree entirely composed of unique sequences. However, this
approach is inherently biased given the disregard for clonal
expansion, a biological phenomenon seminal to B cell immunity.
In particular, evolutionary rates are over-estimated as the periods
without mutation during clonal expansion are disregarded.

Furthermore, it has been recently shown that the starting
amount of antigen-specific memory (precursor) B cells (i.e.,
ancestral sequences) in a given lineage directly impacts the
ability to engage in GC reactions and undergo further
mutations (42). This stresses the importance of implementing
phylogenetic methods that can incorporate clonal frequencies
into the tree reconstruction calculation. To account for
clonal expansion, antibody studies have displayed phylogenetic
trees where the size of the node refers to the number of
identical sequences (Figure 2A). While this leads to a visual
representation of clonal abundance, this information does
not contribute to the phylogenetic inference, thereby ignoring
valuable information describing the evolutionary processes
underlying clonal selection. Therefore, recent progress has been
made to combine traditional phylogenetic inference methods
with this clonal abundance data (66). In what are referred
to as GCTrees, clonal abundance information was explicitly
modeled into the phylogenetic inference process, leading to
increased accuracy based on simulated trees (66). Furthermore,
this reconstruction method allows for the inclusion of recovered
sequences to serve as internal nodes (for the rationale, see section
The Mutation Process Along the Tree) (66). This methodology
highlights the progress toward integrating the biologically
relevant information recovered from Ig-Seq experiments into the
reconstruction of antibody phylogenies.

The traditional phylogenetic framework produces trees where
the recovered sequences are positioned as leaves of the trees.
However, there are several antibody evolution studies that have
conceptualized the internal structure of the phylogenetic tree
to better suit B cell evolution and selection. This involves the
allowance of polytomies (more than two descendants from a
single internal node) and intermediate sequences serving as
internal nodes (Figures 2B,C). The underlying logic behind this
dramatic shift from traditional evolutionary studies relies on the

assumption that a given B cell clone can producemultiple distinct
offspring (somatic variants), each of which may be separated
by only a single mutation. Furthermore, this same ancestral B
cell may persist long after giving rise to progenitor cells without
incurring further mutations (Figure 2D). To account for both
of these biological considerations, antibody-specific phylogenetic
tools such as IgTree and ImmuniTree allow for both the presence
of polytomies and the presence of recovered sequences as internal
nodes in the resulting lineage tree. While these topological
frameworks diverge from traditional phylogenetic analyses, they
introduce a flexibility that allows for the incorporation of
antibody-relevant information. However, it remains unknown
how these adjustments to the phylogenetic model tree impact the
biological conclusions such as tree shape and mutation rates. It
would be interesting to investigate into how the tree structure
of HIV neutralizing antibodies, for example, would change if
polytomies were allowed in the phylogenetic reconstruction.

THE MUTATION PROCESS ALONG THE
TREE

The enzymatic nature of how AID induces mutations during
affinity maturation dictates the evolutionary trajectories possible
for a given B cell. AID introduces mutations by preferentially
targeting the immunoglobulin locus via the deamination
of deoxycytidine residues into deoxyuridines. This newly
introduced deoxyuridine results in a mismatch pairing in the
DNA and is subsequently corrected by either MMR or BER.
The majority of mutations introduced after these nucleotide
repair pathways are in the form of point mutations, although
there are occasional deletions or insertions present (67, 68).
These substitutions must not only maintain stability of the BCR,
but also provide a functional antibody capable of surviving
antigen selection imposed during GC reactions (Figure 1A).
This selection has been implicated in improving binding affinity,
broadening of antigen recognition and the development of
specific effector functions such as pathogen neutralization (24,
39). Interestingly, the shift from pathogen binding to pathogen
neutralizing is not always associated with a large increase in
binding affinity, suggesting a more nuanced role of affinity
maturation than solely promoting high affinity antibodies (69).

Given that mutations are introduced through enzyme-
mediated mechanisms, it is somewhat intuitive that particular
patterns in the genome would be preferentially targeted. Even
before the advent of HTS, certain nucleotide motifs, termed
“hotspots,” have been demonstrated to incur point mutations
at greater than average frequency (70). One initial example
supporting this neighbor-dependent model of SHM was the
discovery of the RGYW motif (where W = A/T, R =

A/G, Y = C/T), where the adjacent nucleotides influence
the mutability of the central G nucleotide (70). Subsequent
experiments uncovered additional motifs targeted by AID,
albeit at low numbers due to limitations arising from low-
throughput experimental settings (71–73). However, recent
studies employing Ig-Seq have provided a thorough analysis
of how neighboring nucleotides influence the probabilities of
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FIGURE 2 | Tree topologies for B cells. (A) The inclusion of polytomies in the phylogenetic tree allows a B cell to produce more than two distinct offspring at a given

internal node. (B) Experimentally recovered sequences can be inferred as either internal nodes or tips in the phylogenetic tree. (C) Persisting ancestral sequences can

be sampled at multiple time points while also producing distinct offspring. (D) Clonal frequencies have often been illustrated by the size of the nodes. Therefore,

information regarding clonal expansion can be incorporated into the resulting topologies.

point mutations (74, 75). One prominent example compared
synonymous and non-synonymous mutations across multiple
Ig-Seq datasets to infer mutational probabilities for 5mers
(nucleotide sequences with length 5), termed the “S5F” model
(74). This substitution model contains inferred transition
probabilities for the middle nucleotide of all possible 5mers,
both verifying historical, low-throughput experimental data, and
discovering novel motifs. In subsequent work, similar models
were developed to describe the specific mutational properties
of the 5mer motifs found in light chains arising from human
and mouse data, providing a wealth of pertinent information
to the mutational landscape of SHM (75). The refinement of
distinct hotspot models for heavy and light chain evolution is
crucial because the inference of heavy and light chain phylogenies
can be performed separately, as performed in studies comparing
the evolution of heavy and light chains in the context of
HIV infection (38). However, when the pairing of heavy and
light chains is known, the loci can be combined (concatenated
to each other) and treated as a single evolving entity. This
can increase the information used when inferring evolutionary
parameters such as mutation rates and tree structure, given
that both loci must share the same tree topology. Despite
these findings describing the neighbor-dependent nature of AID,
most modern phylogenetic methods rely on the assumption of

site-independent substitution models, in which the neighboring
nucleotides play no role in the evolutionary inference calculation.
Thus, current studies analyzing B cell lineages typically do not
account for this well-established biological phenomenon that
may also have evolutionary ramifications.

One promising step to incorporate the properties of SHM
hotspot motifs into the phylogenetic inference process has
been demonstrated by the implementation of the HLP17
codon substitution model, which accounts for neighbor-
dependent hotspot mutations, germline sequence knowledge,
and irreversible evolution (76). This substitutionmodel (available
in the IgPhyML program) has been shown to perform better on
Ig-Seq data than conventional phylogenetic substitution models
because of the inclusion of phylogenetic inference parameters
that describe the WRC hotspot (76). Specifically, it could be
observed that the use of this codon model reduced bias in
evolutionary parameters such as tree length (76), which has
been previously shown to be difficult to estimate for multiple
bNAb lineages with traditional substitution models (38). Their
model allows for any motifs of length three nucleotides to
be incorporated while still assuming that these hotspot motifs
(i.e., codons) evolve independently to maintain computational
feasibility (76). While all motifs cannot yet be explicitly
accounted for simultaneously due to computational limitations,
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this work represents important progress toward incorporated
motif-specific properties of SHM. One additional drawback
remains that this substitution model is not yet available in
many commonly used phylogenetic tools, potentially limiting its
application.

FROM SEQUENCES TO TREES

Multiple phylogenetic inference methods exist to construct
the antibody lineages, each of which have their strengths and
weaknesses (Table 1). A variety of these methods have been
employed for the analysis of Ig-Seq data, including distance-
based methods (44, 45, 77), maximum parsimony (36, 52, 78,
79), maximum likelihood (37, 43, 44, 80, 81), and Bayesian
inference (38, 47, 82). Most methods initially require a multiple
sequence alignment (MSA), which allows for lists of sequences
with varying lengths to be compared in a site-dependent manner.
Some common examples of MSA tools include ClustalOmega,
Kalign, MUSCLE, and T-coffee (83–86). The output of the MSA
file will usually be in fasta, nexus, or phylip format, which is
easily integrated with the phylogenetic reconstruction methods
described below.

Distance-Based Methods
Distance-based methods involve first filling a matrix by an all-
against-all calculation of a given metric comparing pairwise
sequence similarity (87). The distances between sequences
are often calculated using a substitution model. This allows
for the incorporation of certain characteristics of sequence
evolution, such as indicating different rates of evolution for
transitions (purine <-> purine, pyrimidine <-> pyrimidine),
and transversions (purine<-> pyrimidine), as well as taking into
account the possibility of hidden mutations (such as backward
mutations). A neighbor-joining algorithm is utilized to produce
the tree, which involves successively joining two sequences
together with newly created internal nodes (88, 89). One major
advantage of this method is that tree inference is very fast.
Therefore, thismethod can be especially useful for exploring large
Ig-Seq data sets, particularly when there are many sequences in
each lineage tree. A noteworthy example of this implementation
was seen when examining the evolution of HIV-1 bNAbs, in
which the neighbor-joining method was used exclusively for
large datasets (45). There exist many tools that can produce
neighbor-joining trees, either found online with ClustalOmega
or EBI bioinformatics server, in addition to R packages such
as phangorn or ape (84, 90, 91). One notable example of a
distance metric that does not require a MSA is the Levenshtein
distance. The Levenshtein distance describes the number of
changes (mutations, insertions, or deletions) required to change
one string into another, and has been used extensively in Ig-Seq
experiments in the past (4, 92).

Maximum Parismony
Another non-parametric method of inferring antibody evolution
involves the use of maximum parsimony, in which the output
phylogeny is the tree that can explain the evolution with the
least amount of mutations (93, 94). This method does not

allow for the incorporation of parameters specific to antibody
evolution, which can be a disadvantage when there is abundant
background knowledge of the experimental system. Conversely,
the lack of assumptions regarding the substitution process
may prevent model misspecification and thereby erroneous
conclusions. Maximum parsimony has been used in multiple
studies pertaining to Ig-Seq data, with some notable examples,
examining B cell migration to the cervical lymph node or
the development of neutralizing antibodies against West Nile
virus (4, 74). Several tools exist to create maximum parsimony
trees, although the most common among them is PHYLIP (95).
Additionally, R packages such as Rphylip and phangorn have
both incorporated maximum parsimony, allowing one to work
within the R framework (91, 96). Finally, as previously stated,
the GCTree utilizes a modified maximum parsimony to allow for
clonal frequencies to influence the phylogenetic inference (67).

One of the earliest methods specifically tailored to inferring
antibody evolution, IgTree, utilized a customized parsimony
metric to produce lineage trees (45). This tool additionally
introduced the concept of inferred intermediate sequences, in
which all direct ancestral sequences were restricted to the
separation of a single mutation (46). For example, two “inferred”
internal nodes would be created when two sequences differing by
three nucleotides are in the same clonal family. Thus, even if an
intermediate sequence was not explicitly sampled, there would be
a corresponding internal node in the output phylogeny. IgTree
has been used to characterize how B cells evolve under a variety
of selective pressures, such as lymphomas, multiple sclerosis, and
autoimmunity (33, 77, 97).

Maximum Likelihood
Another method applied to study antibody evolution is
maximum likelihood, which relies on the optimization of
a likelihood function. This parametric method incorporates
a substitution model that can dictate parameters such as
nucleotide/amino acid frequencies and allow for different
substitution rates for transitions and transversions. Thus,
maximum likelihood can utilize evolutionary models that may
better describe antibody evolution than the neutral assumption
that all nucleotides are the same. Some of these models include
the HKY, GTR gamma, and JC69 (98–100), which allow for
nucleotide specific behavior (e.g., A mutating to C can have a
different rate as C mutating to G). It may not be immediately
apparent which substitution model best fits the data at hand,
whereby tools that include model selection capabilities may be
useful. Notable programs utilized in the context of Ig-Seq data
include FastML, MEGA, IQ-TREE, and Phylip’s dnaml (33, 90,
94–96, 98, 101–103). As mentioned above, one notable limitation
of these substitution models is that the transition probability of
a given site is independent to the neighboring nucleotides. Thus,
building upon models which incorporate information regarding
hotspot mutability represents a cornerstone of contemporary
systems phylogenetics research (76).

A multitude of studies have employed the maximum
likelihood method to analyze Ig-Seq data, with many focusing
on the evolution of HIV-neutralizing antibodies (35, 37, 39, 43,
44, 80, 104, 105). Despite most maximum likelihood programs
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producing a “traditional” phylogenetic tree, where recovered
sequences cannot serve as intermediate nodes and polytomies
are absent, the biological relevance of these maximum likelihood
trees has been proven by the inference and production of
intermediate and ancestral germline sequences which possessed
virus-binding capabilities (36, 40).

Bayesian Inference
The final considered method of phylogenetic inference relies
upon Bayesian statistics, which is thus capable of incorporating
prior biological information (known as priors) into the inference
process. This includes information regarding the evolution of the
B cells, in particular themutation rate, and the replication of the B
cells generating the tree, in particular B cell duplication and death
rates. The most commonly used tool is BEAST (106, 107), which
has many learning resources and user-contributed modules
that are available for download. This method involves the
largest computational demands compared to other phylogenetic
methods both in terms of memory and calculation time (87). This
largely is due to the inference process, which utilizes a Markov
chain Monte Carlo (MCMC) algorithm to explore parameter
space. This provides a sample from the posterior probability
distribution, i.e., the output consists of millions of trees, which
are a sample of the probability distribution. One can summarize
this distribution into a single tree, termed as the most credible
clade (MCC) tree, allowing for an easier comparison between
multiple trees.

One further advantage of BEAST is that one can easily
specify the time at which sequences were sampled, and that the
output consists of trees with branch lengths in calendar time
units (rather than number of substitutions as in all methods
above). This kinetic information restricts the position of the
sequence in the tree, in addition to inferring mutation rates in
calendar time units. Thus, Bayesian methods present a strong
advantage when time-resolved Ig-Seq data is available. One
major drawback is the limited number of sequences that can
be included in each phylogenetic tree, as trees with more than
∼500 antibody sequences often require substantial computation
time (e.g., months on a server) and do not always converge to
the posterior distribution. Furthermore, if many lineage trees are
desired, running the MCMCs in parallel is essential given the
slow computation time. BEAST has been used to infer mutation
rates of neutralizing antibodies and subsequently compared to
viral evolution (39). An interesting result from this analysis
was that the heavy and light chains evolved at similar rates for
this particular bNAb. Furthermore, it was shown that different
neutralizing antibody lineages evolve at different rates, suggesting
multiple mechanisms underlying the maturation of bNAbs.

An antibody-specific tool, ImmuniTree, has been developed
that incorporates a Bayesian framework into the inference of
lineage trees (48). ImmuniTree allows for recovered sequences
to be placed at internal nodes, polytomies, and accounts for
spurious diversity arising from sequencing errors. Furthermore,
the trees produced by ImmuniTree can depict the percentage
of mutations a given immunoglobulin sequence has, thereby
incorporating information not included in most other inference
methods. Practically, this tool has been used to reconstruct

lineages of bNAbs and to infer ancestral intermediates of these
antibodies (47, 82). The phylogenetic data was subsequently
used to direct experiments which displayed that the neutralizing
breadth of these intermediate antibodies was still present, despite
a lesser extent of SHM (48).

Rooting the Phylogenetic Tree
The presented phylogenetic methods (with the Bayesian methods
as exceptions) return trees without a root, i.e., the tree does
not consist of information regarding on which branch the
clonal expansion process started. Thus, these unrooted trees
need to be rooted, which is typically done using an outgroup
(for example, when inferring an ape tree, one can use a-non-
ape primate sequence as an outgroup for rooting). For B cell
phylogenies, we have knowledge regarding the underlying V-
(D)-J recombination, meaning that unmutated V-(D)-J germline
sequence can be incorporated into the tree reconstruction process
as the outgroup. One major assumption of this strategy is that
there is sufficient confidence in the germline annotations. This
assumption may increase the information present during the
phylogenetic analysis for inbred model organisms, such as mice
or zebrafish. However, when the exact genomic composition of
the V-(D)-J germline segments is unknown (e.g., in humans,
where there are slight allelic changes in the germline between
individuals), this discrepancy could alter the inferred mutation
rate.

BEAST produces rooted trees even without explicitly
designating any germline sequences as the outgroup. This can be
advantageous when an exact annotation of the germline genes
is lacking. While it is possible in BEAST to explicitly specify the
root of a tree, it is not immediately straightforward due to the
nature of the software. In the case where no germline sequences
are supplied as a root, there exists an additional tool in the
program that allows for the user to infer the sequence at the
root (in addition to sequences at internal nodes). Important to
note, however, is that the accuracy of this method has not yet
been explicitly validated for antibody evolution (i.e., compared
unmutated ancestors inferred from BEAST to the known
germline sequences). Further benchmarking on both simulated
data and experimental data is required to better understand how
rooting with the germline segments influences the subsequent
biological conclusions, for example mutation rates and topology
metrics.

Simulations
Simulations of antibody evolution represents a powerful
approach to validate and explore the consequences of various
phylogenetic tools and heuristic strategies. Initial antibody
repertoire simulation frameworks did not possess a temporal
component (i.e., no explicit rate at which sequences change
in regard to time), hence preventing the investigation of how
traditional phylogenetic methods perform on Ig-Seq data (108).
Recently, multiple tools have been developed to account for
evolutionary properties specific to B cell evolution. Elements such
as hotspot motifs, clonal abundances, and mutation rates can
be defined to produce an output phylogenetic tree along with
the accompanying mutated sequences. These sequences can then
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be fed as input into various phylogenetic inference methods to
validate tree reconstruction accuracy. Tree accuracy is validated
by comparing the inferred to the simulated tree, e.g., via the
Robinson Foulds distance, clade accuracy, and treescape metrics
(46, 109, 110). While simulations are commonly incorporated in
Ig-Seq experiments, these are largely in-house and not always
publically available. An important step to improve benchmarking
tools and strategies for Ig-Seq experiments includes making these
simulation platforms publicly available to increase their use.

DOWNSTREAM ANALYSIS

One of the difficulties of including phylogenetic trees into Ig-
Seq studies is the extraction and interpretation of biologically
relevant conclusions. An emerging trend has been to focus on
a few select lineages and leave the majority of the repertoire
unanalyzed. Thus, major questions regarding how the entirety of
the antibody repertoire evolves remain unanswered. The hurdles
of inferring potentially hundreds to thousands of phylogenetic
trees per individual is daunting both due to the computational
demands and the subsequent analysis. Furthermore, comparing
trees within a single host, and to other organisms introduces a
further layer of complexity.

One of the most immediate results of phylogenetic inference
is the output of a phylogenetic tree. The topology of these trees
provides a visualization of the evolutionary relationship between
a set of antibodies, which can be both qualitatively understood
and quantitatively compared. Qualitatively, an imbalanced tree
(defined as the two daughter lineages of a node have very
different numbers of descending nodes) can be interpreted in
that a single progenitor clone continuously out-survives the
other clones. Thus, tree imbalance may describe the breadth of
underlying selection pressures. This selective pressure where a
single clone outcompetes the remaining population has been seen
in other infectious species, for example influenza between hosts
or HIV within a host (111). Conversely, when selection occurs
evenly throughout a lineage, many clones may simultaneously
proliferate, which can be observed as a balanced structure of
the tree (Figure 1). Balanced trees have e.g., been observed for
HIV between hosts (111). While Ig-Seq papers have mentioned
these topological characteristics, few have thoroughly analyzed
these phylogenetic structures. There exist metrics arising from
the evolutionary biology field capable of describing tree topology
in a way that allows comparison of the lineage trees both from
within a single host and across individuals. Metrics such as the
Colless number, the Sackin index, and the average number of
ladders characterize tree “imbalance” (112, 113). Mathematically,
these metrics account for the number of descendant sequences
in right and left sub-trees at all internal nodes, producing
a single value for the entire tree. This value can then be
directly compared to other clonal lineage trees, providing a
framework for a systems analysis of lineages. This concept
of analyzing tree shape and imbalance has been implemented
in the comparison of vaccine-responsive lineages to persistent
lineages (highly abundant lineages that did not change in
response to vaccination) (114). Lineages that were unresponsive

to vaccination showed a more balanced evolution, whereas the
vaccine-enriched lineages often had a focus onmultiple positively
selected subclones (114).

While the metrics above have not often been applied to Ig-Seq
experiments, other topologicalmetrics have been used to quantify
clonal selection. For example, clonal lineage trees were produced
to better understand the diversification processes underlying a
subset of B cells residing in the bone marrow of human patients
suffering from light chain amyloidosis (115). The downstream
analysis described structural properties of the phylogenetic trees,
such as the number of sequences per tree, the length of the trunk
(distance from root to first branching event), pass-through nodes
(internal nodes with a single offspring), the distance to the nearest
branching event (thus quantifying how mutations separate a
sequence’s direct ancestor), and tree branching (determined by
the outgoing number of internal nodes). Similarly, another study
found that during gastric lymphomas, B cell evolution results
in trees with longer trunks and path lengths when compared to
gastritis, correlating with a higher initial affinity and a higher
selection threshold (34).

While these structural motifs and tree-imbalance metrics
provide a natural analysis of phylogenetic trees in biological
terms, there additionally exist less intuitive metrics yet to be
applied to Ig-Seq data. Phylogenetic trees are essentially acyclic
graphs (graphs = networks), suggesting that novel methods in
graph theory may potentially find their use in Ig-Seq studies. One
potential example of utilizing graph theory arises from examining
the Laplacian spectra of the many trees within an individual.
This approach was suggested recently to possess a multitude of
parameters describing individual tree shape and branch length
in the context of eigenvector distributions (116). However, few
studies have leveraged such topological analyses of unlabeled
antibody trees, thus, the extent to which meaningful biological
conclusions can be drawn remains unseen.

In contrast to qualitative topological analysis, statistically
derived parameters may be of further interest to provide a
quantitative description of the evolutionary process of antibody
lineages. Traditionally, repertoire studies have been interested
in counting the number of mutations found at a given time
point, however, leveraging phylogenetics, one can quantify
how often a given lineage accumulates mutations in a time-
resolved fashion. As previously stated, Bayesian phylogenetics
has already been utilized to calculate the mutation rates of
heavy and light chain lineages of HIV-neutralizing antibodies
(39). Furthermore, parameters describing population size, the
speciation and extinction of species, and tree age can be further
inferred, providing a set of parameters that lends itself easily to
the comparison both within a single host and across different
individuals.

Toward Systems Phylogeny of Antibody
Repertoires
The aforementioned metrics to quantify phylogenetic trees
require just a single phylogenetic tree as input. The values
arising from multiple trees can then be collectively analyzed
to describe the selective pressure exerted upon the antibody
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repertoire as a whole. This traditional manner of studying the
collection of antibody lineages, however, assumes a significant
degree of independence between each phylogenetic tree. In an
attempt to describe the population of antibody lineage trees, the
UniFrac metric was applied to quantify the divergent evolution
of immune systems arising during aging (35). The UniFrac
metric was originally developed to measure the distance between
microbial communities based on which branches are present
in each sample, presenting a community-based statistic that
can be easily adapted to Ig-Seq data (117). Another recent
study aiming to characterize the dynamics of BCR evolution
during HIV infection developed statistical models to describe
clonal competition across multiple antibody lineages (118).
Taken in concert, these studies represent important steps in
the direction of statistics and analyses capable of describing
the dynamic nature and evolution of antibody repertoire
forests.

CONCLUSION

Quantifying how antibody repertoires change over time
represents an emerging field only possible due to the increased
resolution of HTS and Ig-Seq. While the earliest phylogenetic
metrics specifically tailored to antibody repertoire evolution
were developed over a decade ago, more work remains necessary
to comprehensively incorporate our experimental knowledge
of antibodies into clonal lineage assignment, phylogenetic
tree inference, and downstream analyses. Furthermore,
benchmarking the aforementioned tools and strategies
on both Ig-Seq data and multiple simulation frameworks

can identify biases arising from the currently employed

methodologies. The usage of lineage trees has immediate
applications with medicinal relevance, such as vaccine design by
targeting intermediate sequences or the discovery of therapeutic
monoclonal antibodies. Furthermore, phylogenetics provides
a unique opportunity to describe the clonal selection and
competition underlying the pathogen-driven evolution of B
cells. While phylogenetics has long held a role in the field of
antibody research, the full potential of systems phylogenetics to
delineate the complex co-evolving landscape between several
independent lineages has not been realized. Other research
fields such as machine learning, statistical entropy, and network
analysis are becoming integral in antibody repertoire analysis,
reinforcing the potential for phylogenetics to similarly take
the stage to help delineate the complex picture of the B cell
immunity.
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