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The spatiotemporal regulation of immune responses in the lymph node (LN) depends on

its sophisticated tissue architecture, consisting of several subcompartments supported

by distinct fibroblastic stromal cells (FSCs). However, the intricate details of stromal

structures and associated FSC subsets are not fully understood. Using several gene

reporter mice, we sought to discover unrecognized stromal structures and FSCs in the

LN. The four previously identified FSC subsets in the cortex are clearly distinguished by

the expression pattern of reporters including PDGFRβ, CCL21-ser, and CXCL12. Herein,

we identified a unique FSC subset expressing both CCL21-ser and CXCL12 in the deep

cortex periphery (DCP) that is characterized by preferential B cell localization. This subset

was clearly different fromCXCL12highLepRhigh FSCs in the medullary cord, which harbors

plasma cells. B cell localization in the DCP was controlled chiefly by CCL21-ser and,

to a lesser extent, CXCL12. Moreover, the optimal development of the DCP as well

as medulla requires B cells. Together, our findings suggest the presence of a unique

microenvironment in the cortex-medulla boundary and offer an advanced view of the

multi-layered stromal framework constructed by distinct FSC subsets in the LN.
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INTRODUCTION

Lymph nodes (LNs) are key sites for the induction of adoptive immunity, and this occurs through
the filtering of lymph fluid that is drained form peripheral tissues and the monitoring of antigenic
information. The LN has a sophisticated tissue architecture that is suitable for immunological
functions; it consists of several substructures, in which different sets of immune cells are
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localized to form functionally distinct areas (1, 2). Such tissue
arrangement is probably optimized for the spatiotemporal
regulation of immune responses, although the fundamental
principles associated with the establishment of this architecture
remain largely unclear. In large mammals including humans, two
major tissue parts of the LN are evident, namely, the cortex,
characterized by dense lymphocyte accumulation in the outer
layer, and the medulla, in which blood vessels and lymphatic
sinuses are concentrated, in contrast to the relatively sparse
arrangement of lymphocytes in the organ center and hilum (1).
In the cortex, B cells densely pack to form the follicles (B cell area)
at the superficial part, whereas the majority of T cells are localized
to the deeper paracortex (deep cortex or T cell area). Upon T
cell-dependent responses, activated follicular B cells construct
the germinal centers (GCs), which are further composed of
two areas, the dark, and light zones. In mice maintained under
specific pathogen-free conditions, LNs are relatively small and
show a regular architectural pattern with clear tissue polarity; the
cortex resides at the hemisphere of the afferent side of lymphatic
connections, whereas the medulla is at the opposite side, from
which efferent lymph drains. A structural unit composed of one
paracortex and several follicles is termed a “compartment” (3)
or “lobule” (4, 5), and a single mouse LN has one or more
compartments (6). Accordingly, substructures such as the follicle
or the paracortex within a compartment should be classified as
“subcompartments.”

Previous studies have found that different types of stromal
cells of mesenchymal origin, i.e., fibroblastic stromal cells (FSCs),
support distinct subcompartments, functioning as a structural
backbone and promoting the localization of specific immune
cell subsets by producing specific chemoattractants (7–9). The
maintenance of a subcompartment likely requires continuous
interaction between immune cells and FSCs (10). Follicular
dendritic cells (FDCs) residing in the follicular center (or GC
light zone) produce the chemokine CXCL13, which attracts
B cells and follicular helper T cells expressing CXCR5, and
supports their motility within the follicle (11, 12), whereas
the development of functional FDCs requires factors produced
by B cells (13, 14). In the paracortex, T zone reticular cells
(TRCs; also known as fibroblastic reticular cells, FRCs) that
produce CCL19 and CCL21-ser (Ccl21a gene product) support
the localization of T cells and dendritic cells (DCs) expressing
CCR7 (15, 16). Marginal reticular cells (MRCs) present in the
follicular margin underneath the subcapsular sinus (SCS) also
express CXCL13 and are implicated in the delivery of lymph-
borne antigens (17, 18). MRCs have been recently shown to
be precursors of FDCs (19). A stromal cell subset, CXCL12-
expressing reticular cells (CRCs), is localized to the paracortical
side of the follicles and upon GC formation, provides functional
support for the dark zone (20, 21). Most recently, Cyster
and colleagues showed further heterogeneity in FSCs through

Abbreviations: CRC, CXCL12-expressing reticular cell; DC, dendritic cell; DCP,

deep cortex periphery; DRC, DCP reticular cell; FDC, follicular dendritic cell; FRC,

fibroblastic reticular cell; GC, germinal center; LN, lymph node; MC, medullary

cord; MCRC, medullary cord reticular cell; MRC, marginal reticular cell; MS,

medullary sinus; SCS, subcapsular sinus; TRC, T zone reticular cell.

single-cell RNA sequencing analysis (22), although the functional
significance of such highly diversified FSCs remains obscure.

The anatomical region ranging from the deep cortex to
the medulla of the LN is presumably important for innate
and adaptive responses given the localization of a variety of
immune cells including macrophages, NK cells, and plasma
cells (23–27). However, knowledge of this area is limited; the
indistinct distribution of immune cells, as compared to the
cortex, and the intricate structure of intertwined blood vessels
and lymphatic sinuses could have hampered in-depth studies.
The characteristic anatomies in this area suggest the presence
of functionally distinct stromal cells. In this study, we sought
to clarify the relevance of FSCs for the arrangement of LN
subcompartments by utilizing several gene reporters expressed
in stromal compartments. This led to the discovery of a novel
FSC type that supports an area in the deep cortex, which was
distinct from FSCs in the T cell area as well as the medulla. These
observations bring about a comprehensive view of multi-layered
subcompartments and associated FSC subsets in the LN.

MATERIALS AND METHODS

Mice
C57BL/6JJcl and BALB/cAJcl-nu/nu mice were purchased from
CLEA, Japan. B6.129P2-Cxcl12tm2Tng (Cxcl12-EGFP,Cxcl12+/−),
Ccl21a-tdTomato (Ccl21a+/−), Tg(Ccl19-cre)489Biat/B6.129X1-
Gt(ROSA)26Sortm1(EYFP)Cos/J (Ccl19-cre/R26-EYFP), and
B6.129S2-Ighmtm1Cgn/J (µMT) mice were described previously
(28–31). B6.129P2-Cxcl12tm2Tng mouse strain (RBRC04200) was
provided by the RIKEN BRC through the National Bio-Resource
Project of the MEXT, Japan. Mice were maintained and crossed
under specific pathogen-free conditions in the animal facility of
Niigata University. All animal procedures were approved by the
Committee on Animal Research at Niigata University.

Generation of Pdgfrb Reporter Mice
Genomic fragments of the Pdgfrb gene locus were amplified
from RENKA ES cell genomic DNA by PCR. The targeting
vector was constructed as follows: the second exon of Pdgfrb
was inserted with an in-frame start codon followed by the
gene encoding EYFP (venus), an internal ribosomal entry site
(IRES), the gene encoding CreERT2, and in reverse orientation,
a FRT-flanked neomycin resistance gene (neor) cassette. The
linearized targeting construct was electroporated into RENKA
B6 mouse ES cells and G418 resistant colonies were screened
by Southern blotting using AflII- or HindIII-digested genomic
DNA using a neor-flanking probe. Targeted ES clones were
injected into B6 blastocysts and chimeras were mated to B6 mice.
Targeted alleles were screened by PCR using the primers: 5′-
CTTGTCTGGTCTGCATTTCTTGGC-3′ (sense; PDGFRβ-gF);
5′-TGAACTTGTGGCCGTTTACGTCG-3′ (antisense; EGFP-
R10).

Antibodies
The following fluorochrome-conjugated, biotin-conjugated, or
unconjugated primary antibodies were purchased: anti-CD3e
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(145-2C11), anti-B220 (RA3-6B2), anti-CD11c (N418), anti-
F4/80 (BM8), anti-CD45 (30-F11), anti-CD31 (390), and anti-
podoplanin (8.1.1) (eBioscience); anti-desmin (Abcam); ER-TR7
(BMA); anti-CD35 (8C12), anti-IgDb (217-170), and anti-CD138
(281-2) (BD Biosciences); anti-VCAM-1 (BAF643), anti-RANKL
(BAF462), anti-CXCL13 (BAF470), anti-LYVE-1 (BAF2125),
anti-LepR (BAF497) (R&D Systems); anti-laminin (LSL); anti-
GFP and anti-RFP (MBL). For secondary reagents, PE-, APC-,
AlexaFluor488-, 546-, 555-, 594-, or 633-conjugated streptavidin,
anti-rabbit IgG, and anti-rat IgG were purchased fromMolecular
Probes.

Flow Cytometry
Single-cell suspensions were prepared from superficial LNs
(cervical, axillary, brachial, inguinal, and popliteal) through
digestion with 1 mg/mL collagenase D and 0.1 mg/mL DNase
I (Roche Diagnostics) as described (32), and stained with anti-
CD45, anti-CD31, and anti-gp38/podoplanin antibodies and
propidium iodide. Data were acquired using a FACSCalibur (BD
Biosciences) flow cytometer and analyzed with CellQuest (BD
Biosciences) or FlowJo.

Immunohistochemistry
Isolated LNs (inguinal, brachial, cervical, and popliteal) were
fixed with 0.05% phosphate buffer containing 0.075M L-lysine
(pH 7.4), 0.01MNaIO4, and 1% paraformaldehyde (PLP fixative)
at 4◦C for 16–24 h. After fixation, LNswere equilibrated gradually
with 10, 20, and 30% sucrose in PBS at 4◦C, embedded in OTC
compound (Sakura Finetechnical), and frozen at −80◦C. Frozen
sections (10µm) were made using a cryostat (Leica Biosystems)
and post-fixed with cold acetone for 3min. To properly evaluate
the pattern of subcompartments and the location of FSC subsets,
we made LN sections that incorporated the cortex–medulla
axis. Sections were stained with antibodies and mounted with
Permafluor mountant (Thermo Fisher Scientific). The specimens
were examined using an LSM710 confocal microscope (Carl
Zeiss) and a FV1200 confocal microscope (Olympus). Digital
images were prepared using ZEN (Carl Zeiss), FV10-ASW
(Olympus), and Adobe Photoshop CS6 (Adobe Systems).

From image data, the longitudinal fluorescent intensity
profile and mean fluorescent intensity of the region of interest
(ROI) were measured with ImagePro Plus (MediaCybernetics).
Fluorescent density was determined by dividing the mean
fluorescent intensity by the ROI area. Percent area of the DCP or
medulla was determined by dividing the ROI area by the whole
LN area and multiplying by 100. Graphs were made in Microsoft
Excel or GraphPad Prism 6.

Live Imaging of B Cell Migration
B cells were isolated from the LNs and spleen by magnetic cell
sorting using a B-cell isolation kit (Miltenyi Biotec) and labeled
with 5µMCMTMR (Invitrogen) at 37◦C for 20min. B cells (1×
107) were intravenously injected into B6 or Cxcl12-EGFP mice,
and sacrificed for imaging analysis at 24 h after transfer.

Live imaging of LN explants was performed as described
previously (33). Skin-draining LNs isolated frommice were glued
onto plastic cover slips (Fisher Scientific) using Vetbond (3M)
with the medullary side facing upward. Alternatively, to make

tissue slices, LNs were cut with a vibratome (VT1200, Leica) at
room temperature. The LNs were placed in a heated chamber
(RC-26G, Warner Instruments) and continuously perfused with
RPMI1640 medium equilibrated with 95% O2/5% CO2 at 36.0–
36.5◦C. Time-lapse images were acquired using a two-photon
laser-scanning microscope (LSM710-NLO, Carl Zeiss). The
Ti:sapphire laser (Chameleon, Coherent) was tuned to 850 or
880 nm. Stacks of 17–25 x–y optical sections (256 × 256 or 512
× 512 pixels) with 1–3µm z-spacing were acquired every 20 s
for 20–30min, using emission wavelengths of 495–540 nm (for
EGFP) and 575–630 nm (for CMTMR). To obtain static images
at higher resolution, 1,024 × 1,024 pixels and 1-µm z-spacing
were used for data acquisition. Image stacks were transformed
into volume-rendered four-dimensional movies.

Fluorescent objects in images were detected using Imaris
software (Bitplane). Cell motility was analyzed by semi-
automated tracking of cell centroids; cellular motility parameters
were calculated from the x, y, and z coordinates using Microsoft
Excel. B cells in contact with FSCs were counted in every
time frame of three-dimensional images. Graphs were made in
Microsoft Excel or GraphPad Prism 6.

Bone Marrow Chimera
Bone marrow chimeric mice were generated as described
(34). Briefly, µMT or Cxcl12-EGFP/µMT recipient mice
were intraperitoneally injected with busulfan (Tokyo Chemical
Industry, 30µg/g body weight) for three times at 7, 5, and 3 days
prior to receiving 5× 106 bone marrow cells from C57BL/6J wild
type mice. Two months after the reconstitution, chimeric mice
were used for analysis.

Statistical Analysis
GraphPad Prism 6 was used for statistical analyses. The means
of two groups were compared by performing an unpaired
Student’s t-test. The Mann–Whitney U-test was used to compare
nonparametric datasets. P values of <0.05 were considered
statistically significant.

RESULTS

Differentially Expressed Gene Reporters
Distinguish the Heterogeneity of FSCs in
the LN
To determine the precise localization of FSC subpopulations
and complicated cellular morphology of the stromal network,
we utilized some reporter mice that express fluorescent protein
(FP) under the control of genes expressed in LN FSCs. We
first generated a knock-in mouse by inserting an EYFP into the
Pdgfrb gene (Pdgfrb-EYFP), a typical marker of mesenchymal cell
lineages. We also employed two established reporters, Cxcl12-
EGFP (28) and Ccl21a-tdTomato (31), both of which are
knock-in mice strains generated by inserting an FP reporter
in chemokine genes. In addition, we included Ccl19-cre BAC
transgenicmice intercrossed with theRosa26-stopflox-EYFP allele
(Ccl19-cre/R26-EYFP) (29), in which cells that express or have
once expressed CCL19 are marked with EYFP expression.

LNs from each reporter mouse showed significant differences
in the pattern of FP expression (Figure 1A). The average
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FIGURE 1 | Differences in LN stromal structural patterns based on gene reporters. (A) Whole views of inguinal LNs isolated from various reporter mice. Vertical

sections of LNs were stained with antibodies against fluorescent protein (FP) and desmin or VCAM-1. White arrows in the panel of Ccl21a-tdTomato indicate HEVs.

(B) Average fluorescent intensity profiles of the rectangular boxed region along with the cortex-medulla axis in (A). The image of the region of interest (ROI) is

replicated in the upper part and the boundary between subcompartments is indicated by dotted lines. Note the absence of or low FP expression in the follicular area

(asterisks), the sharp peak in FP in the outer margin of the follicle (arrowhead in Pdgfrb-EYFP), and the higher signal around the boundary of the T cell area and

medulla (open arrows). F, follicle; T, T cell area (paracortex); and M, medulla. (C) Flow cytometric analysis of FSCs. CD45− LN cells (left) were further fractionated by

CD31 and PDPN expression (right), and the CD31− non-endothelial fraction was defined as FSCs including PDPN+ conventional fibroblastic reticular cells (FRCs) and

PDPN− cells (gated, respectively). (D) FP expression in PDPN+ and PDPN− cells. Open histograms show the corresponding cell fraction of wild type mice.

fluorescence intensity profile of the short side of the rectangular
region set along the cortex–medulla axis in images represented
the characteristics of the patterns (Figure 1B). Desmin is a
suitable marker for the identification of mesenchymal cells in
LN sections (8). We confirmed that an anti-desmin antibody
clearly stains FSCs in all areas of the LN (data not shown);
thus, we used this as a standard marker of FSCs. We also
utilized VCAM-1 as another FSC marker, which is suitable
for examining the whole LN structure. In Ccl19-cre/R26-EYFP
mice, FP signal was detected in FSCs of all areas, similar to
that observed for desmin (Figures 1A,B), suggesting that most
FSC types (or subsets) once expressed cre recombinase under
the control of the Ccl19 transgenic locus (29). The Pdgfrb-
induced FP was also widely observed in the LN. However, a

significant feature of the PDGFRβ reporter was the absence
of signals in the follicular areas, whereas relatively high and
dense reporter expression was observed around the boundary
of the cortex and medulla. Desmin showed a similar high
density in the cortex-medulla (C-M) boundary. The expression
of the CXCL12 reporter was relatively low in the follicles,
but was significantly high at the C-M boundary. In sharp
contrast, CCL21-ser expression was most evident in paracortical
FSCs as expected, in addition to high endothelial venules
(HEVs) (Figure 1A, white arrows). Therefore, these reporters
could provide detailed information regarding specific stromal
structures in subcompartments constructed by FSCs.

To determine the proportion of FSCs expressing reporter
FPs, we analyzed cells from collagenase-digested LNs by
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flow cytometry. The CD45−CD31− fraction includes non-
hematopoietic and non-endothelial FSCs, and in this population,
podoplanin (PDPN)+ cells have been regarded as FRCs (16)
(Figure 1C). Our observations clearly showed that the “FRC
fraction” is composed of heterogeneous cells displaying varying
degrees of FP expression (Figure 1D). In LNs from Ccl19-
cre/R26-EYFP and Pdgfrb-EYFP mice, the majority of cells in
the FRC fraction exhibited reporter expression, although the FP
signal was undetectable in a small fraction of cells. In contrast,
a broad expression of reporter FP expression was detected
in the FRC fraction of Cxcl12-EGFP mice, whereas only a
limited proportion of cells expressed the FP reporter in Ccl21a-
tdTomato mice. These results indicate that the conventional
CD45−CD31−PDPN+ FRC fraction, based on flow cytometric
analysis, is a mixture of FSC subsets indicated by the reporters.

Cortical FSC Subsets Can Be
Distinguished Based on the Expression
Pattern of Reporters
We next compared reporter expression in known cortical
FSC subsets. Within follicles that are characterized by B cell
localization to the outer cortex, FDCs expressing CD35 were
present in the follicular center, whereas MRCs and CRCs
were localized to the SCS- and paracortical-side of the follicle,
respectively (Figures 2A–C). Outside the follicles, a network of
TRCs was found to cover the paracortical T cell area. We found
that all four types of FSCs displayed fluorescent signals in the LNs
of Ccl19-cre/R26-EYFP mice (Figures 2B,C). In Pdgfrb-EYFP
mice, FDCs and CRCs showed virtually no reporter expression,
in sharp contrast to MRCs and TRCs, both of which exhibited
clear FP signals (Figure 2C). In particular, substantial PDGFRβ

reporter expression in MRCs, which was highlighted by their
interconnected morphology in the SCS-lining, co-localized with
RANKL, and CXCL13, typical markers of MRCs (Figures 2D–F).
We detected significant CXCL12 expression in CRCs and TRCs
but not in MRCs and FDCs, although the EGFP signal in CRCs
was relatively weak compared to that in other parts of the LN
(as described below), suggesting moderate CXCL12 expression
(Figure 2C). Moreover, CRCs were not often prominent in
follicles that did not bear GCs. As expected, TRCs were the only
cell type that expressed CCL21-ser among these cortical subsets
(Figure 2C). Collectively, cortical FSC subsets showed different
properties of reporter expression, which clearly distinguishes
these subsets from each other.

A Newly Defined FSC Subset in the Deep
Cortex Periphery (DCP)
To characterize the stromal structures in the deep cortex and
medulla, we examined these regions in more detail and noticed
an area in which B cells showed belt-like accumulation near
the C-M boundary; this comprised the bottom of a bowl-
shaped region of the T cell area (Figures 3A,B). We reasoned
that this structure corresponds to the deep cortex periphery
(DCP), originally reported by Sainte-Marie et al. which is a
region with dense reticular meshwork near the C-M boundary
(3, 35). Despite low B cell density, compared to that in the

follicles, the DCP seemed unique in terms of immune cell
localization, in that B cells and T cells were intermingled
(Figure 3C). Moreover, the DCP corresponded to the region of
high desmin density (Figures 3D,E) and high reporter expression
in Pdgfrb-EYFP and Ccl19-cre/R26-EYFP mice (Figures 1A,B
arrows), suggesting that FSCs are particularly concentrated in
this area. The boundary of the DCP andmedulla was occasionally
indistinct, since the medullary cords and/or the lymphatic
sinuses invaded into the DCP. However, based on the structural
continuity with the cortex, namely lymphocyte density and
the connection with the stromal network, we concluded that
the DCP comprises the part of the cortex adjacent to the
medulla.

Importantly, B cell localization in the DCP correlated well
with a subpopulation of FSCs that expressed high levels of the
CXCL12 reporter (Figures 4A,B); however, small numbers of B
cells and CXCL12high cells were also present in the medulla.
FSCs in the DCP substantially expressed CCL21-ser as well
(Figures 4C,D). Mice bearing Cxcl12-EGFP/Ccl21a-tdTomato
double reporter demonstrated that each FRC in the DCP area
highly expresses both CXCL12 and CCL21a, in comparison with
FSCs in the T cell area and the medulla (Figures 4E,F). In
addition, they were morphologically distinct from TRCs based
on the fact that they hadmore connections with neighboring cells
and the dense network tended to be aligned laterally along the B-
cell belt (Figure 5). Thus, the DCP is a unique subcompartment
supported by specialized FSCs expressing both CXCL12 and
CCL21-ser. Based on these findings, we concluded that FSCs in
the DCP can be regarded as a new subset and called these DCP
reticular cells (DRCs).

To determine whether B cell localization in the DCP
depends on CXCL12 and CCL21-ser, we next compared various
combinations of deficiency in these chemokine genes taking
advantage of knock-in alleles (Figure 6). Interestingly, CCL21-
ser seemed critical, as the accumulation of B cells in the DCP
was significantly reduced in Ccl21a+/− (Ccl21a-tdTomato) mice
compared to that in wild type controls (Ccl21a+/+Cxcl12+/+)
and was further dramatically decreased in Ccl21a−/− mice, in a
gene-dosage dependent manner. In contrast, the density of DCP-
B cells was slightly but not significantly decreased in Cxcl12+/−

(Cxcl12-EGFP) mice. However, haploinsufficiency of Cxcl12 gene
clearly affected B cell density under Ccl21a+/− and Ccl21a−/−

settings (Ccl21a+/−Cxcl12+/+ vs. Ccl21a+/−Cxcl12+/− and
Ccl21a−/−Cxcl12+/+ vs. Ccl21a−/−Cxcl12+/−), suggesting that
Cxcl12 also contributes to the localization of B cells in the
DCP. Moreover, DCP-B cells almost disappeared in LNs of
Ccl21a−/−Cxcl12+/− mice. Together, these indicate that two
chemokines produced by DRCs synergistically control B cell
accumulation in this area.

B Cell Migration in the DRC Network
Given the co-localization of B cells with DRCs in the DCP, we
expected a close interaction between them. Within the follicles, B
cells are known to migrate to be in contact with the FDC network
(8); therefore, we speculated that DCP B cells migrate in a similar
manner to the DRC network. To address this, we performed
two-photon microscopy on the LNs of mice transferred with
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FIGURE 2 | Distinct patterns of reporter expression in cortical FSC subsets in mouse LNs. (A) Schematic representation of subcompartments and associated FSC

subsets in the outer cortex. (B) Close-up view of the outer cortex. The border of the follicle and paracortex is indicated by the localization of B cells (dotted line).

(C) The patterns of FP expression in reporter mice. CD35 expression is an indicator of the FDC network in the follicular center. Territorialities of the network of FSC

subsets are indicated by dotted lines. FP expression in each FSC subset is summarized on the right. Asterisks indicate characteristic FP expression. (D–F) Expression

of RANKL and CXCL13. Sections of an inguinal LN from Pdgfrb-EYFP mouse were stained for the indicated markers. The boxed regions in (D,E) are magnified in

(E,F), respectively. Note that MRCs express both RANKL and CXCL13 (arrowheads in E), whereas FDCs express CXCL13 but not RANKL.

fluorescent-labeled B cells (Figure 7A). Examining LN explants
from the medullary side and setting the image field to include
both follicle and DCP, we compared B cell migration between the
two areas (Figures 7A,B and Video S1). Consequently, although
B cells in the DCP showed active migration, the velocity and
displacement were significantly lower and the turning angle was
higher than those in follicular B cells (Figures 7C–E), suggesting
that B cell behavior in the DCP clearly differs from that in the
follicle. In the LNs from wild type and Cxcl12-EGFP mice, we

visualized DRCs that formed a three-dimensional dense network
(Figures 5, 7F,G and Video S2). B cells migrated along with the
thin filaments of DRCs, continuously making points of contact,
and frequently changing direction (Figures 7H–J, Video S3).
These results suggest the possibility that slower migration of
DCP B cells might be due to dense DRC network with an
intimate interaction and supports the idea that the DCP is a
subcompartment that is physiologically distinct from other areas
of the LN.
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FIGURE 3 | Characterization of the DCP of mouse LNs. (A) Substantial B cell accumulation in the periphery of the deep cortex adjoining the medulla (inguinal LN,

arrows). (B) The DCP is a belt-like zone surrounding the bottom of the T cell area (asterisks). (C) B and T cells were intermingled in the DCP (higher magnification view

in the lower right), as compared to the superficial cortex, in which they were clearly segregated (upper right). Laminin signals are eliminated in the right micrographs.

(D) Enrichment of desmin correlated with B cell accumulation in the DCP. Average fluorescent intensity profiles of B220, desmin, and LYVE-1 along the cortex–medulla

axis. Desmin signals were also high in the medulla. (E) Quantitative analysis of signal densities in LN subcompartments. The micrograph is representative of the region

of interest (ROI) from the image data. Marker densities in each region are plotted (open circles) in the lower graphs (bars, mean; asterisks, significantly different

compared to the follicles, p < 0.0001).

FSCs in the Medullary Cords Are Distinct
From DRCs
The medulla is essentially composed of the medullary sinus
(MS) and the medullary cords (MCs) (5, 23). As the MS is
a continuous luminal structure of lymphatic endothelial cells,

FSCs exist primarily in the MC, which is a mesenchymal

sheath-like network around blood vessels harboring several

types of immune cells. To elucidate the characteristics of

FSCs in the MC, we searched for markers that could be
detected by antibody staining of tissue sections; the candidate
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FIGURE 4 | The DRC comprises a unique FSC subset that expresses CXCL12 and CCL21-ser in the DCP of mouse LNs. (A) Enrichment of CXCL12high FSCs in the

DCP and medulla. Section of a cervical LN from a Cxcl12-EGFP mouse stained for B220 and desmin. (B) Z-projection image (0.5µm interval × 10) of the DCP and

medulla. Boxed area is magnified in the right panel (EGFP only), showing the dense network of DRCs. (C) Comparative views of FP expression in the DCP between

Ccl21a-tdTomato and Cxcl12-EGFP mouse strains. (D) Quantitative analysis of signal densities in LN subcompartments in Ccl21a-tdTomato and Cxcl12-EGFP mice

(bars, mean; asterisks, significantly different compared to the follicles, p < 0.0001). (E) Inguinal LN section from Cxcl12-EGFP/Ccl21a-tdTomato mouse with staining

for CXCL13. The boxed area in left micrograph is magnified on the right. Bright yellow signals (arrows) indicate the cells highly expressing both CXCL12 and

CCL21-ser. (F) Average fluorescent intensity profiles of EGFP (CXCL12) and tdTomato (CCL21-ser) in the boxed area in (E) right.

molecules were selected from a list of genes highly expressed
in LN stromal cells, as reported previously (32) or based on
a public database (ImmGen) (36). Among these candidates,
we found that a polyclonal antibody against leptin receptor

(LepR) strongly stained the stromal structure of MCs
(Figures 8A–C).

Plasma cells are known to be distributed in the MCs, and
their migration and localization are mediated in part by CXCL12
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FIGURE 5 | Morphology and network structures of FSC subsets. (A) Whole view of an inguinal LN section with staining for B220, desmin, and ER-TR7. (B) Highly

magnified z-projection images (1µm interval × 5) of the boxed areas (a–e) in (A). (C) Higher magnification views of the boxed areas (1–7) in (B). BV, blood vessel; CA,

capsule; CRC, CXCL12-expressing reticular cell; DRC, DPC reticular cell; FDC, follicular dendritic cell; MCRC, medullary cord reticular cell; MRC, marginal reticular

cell; SCS, subcapsular sinus; TRC, T zone reticular cell.

(26). We confirmed that CD138+ plasma cells accumulated in
a fraction of the MCs in unimmunized mice and made close
contact with desmin+ cells (Figure 8D). FSCs in the MC showed

high FP expression in Cxcl12-EGFP mice and harbored clusters
of plasma cells within the network, whereas plasma cells were
rarely observed in the DCP (Figure 8E). Quantitative analysis
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FIGURE 6 | CCL21-ser and CXCL12 synergistically control the localization of B cells in the DCP. (A) LN sections from mice with the indicated genotypes were stained

for B220. Representative images of inguinal LN are shown. Arrows indicate the DCP. (B) Signal densities of B220 in the DCP area of various LNs are plotted (open

circles). Bars: mean, n.s., not significant; *p < 0.05, **p < 0.005, ***p < 0.0001.

supported this preferential plasma cell localization in the MC but
not in the DCP (Figures 8F,G), whereas a substantial fraction
of B cells was also localized to the MC (Figures 3, 4). Together,
these results suggest that the microenvironment of the MC is
distinguishable from the DCP, which is composed of a different
FSC subset. Hence, we defined this subset as medullary cord
reticular cells (MCRCs).

Optimal Construction of the Medulla and
DCP Depends on the Presence of B Cells
Given the close association between B cell localization and the
DCP and medulla, the integrity of these anatomical structures
might be related to B cells. For this, we examined LNs from
B cell-deficient µMT mice. Quantitative immunohistochemistry
demonstrated that the medulla including the MC and MS was
poorly formed in the LNs of these mice compared to that in
wild type controls; in addition, expansion or extension of the
medullary sinus, stained by LYVE-1, was significantly limited
(Figures 9A,B). We also analyzed the DCP area in µMT mice
that were crossed with Cxcl12-EGFP mice, and were able to

identify a DCP-like area with a relatively dense population of
FSCs, and with CXCL12 reporter expression even in the absence
of B cells. However, we found that this area was clearly attenuated
in the µMT background (Figures 9C,D). Reconstitution of B
lymphopoiesis in µMT mice with the transfer of wild type
bone marrow significantly restored medullary structures in LNs
(Figure 9). Therefore, these results suggest that B cells control the
optimal development of the DCP as well as themedulla in the LN.

DISCUSSION

Tissue infrastructure is likely essential for the spatiotemporal
regulation of dynamic immune responses and homeostasis in
the LN. This study revealed that a unique FSC subset constitutes
the framework of a subcompertment in the deep cortex, which
was previously poorly understood. In addition to the newly
characterized structure, our observations show that the LN
is composed of complex multi-layered subcompartments
(Figure 10). The definition of a subcompartment is an
anatomical domain with a substantial expanse of space and
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FIGURE 7 | Migration ability of DCP B cells interacting with DRC network in mouse LNs. (A) Schematic representation of experimental procedures. B cells isolated

from wild type mice were labeled with CMTMR and transferred to recipient B6 or Cxcl12-EGFP mice. After 24 h, LN explants were examined with two-photon

(Continued)
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FIGURE 7 | laser-scanning microscopy (TP-LSM) from the medullary side. (B) Three-dimensional reconstruction image (red, B cells; blue, collagen fibers detected by

second harmonic generation) with the migration trajectories of B cells in the follicle (F, pseudo-surfaced region; trajectories, orange lines) and extrafollicular area

including the DCP and medulla (green lines). (C) Migration velocity of B cells in the follicle (F) and DCP. The plot shows the mean velocity of individual cells (circles), as

well as the median (horizontal bars). The right plot shows the median velocity for individual experiments (circles) and the mean of six experiments (horizontal bars); *p

< 0.0001. (D) Mean turning angle of individual cells; *p < 0.0001. (E) Mean displacement of cells plotted against the square root of time (s). Error bars: ± SEM. (F)

Three-dimensional reconstruction image of vertically sliced, fixed LNs from Cxcl12-EGFP mice transferred with B cells (red, B cells; green, EGFP; blue, collagen fibers

(SHG)). (G) Snap shot of live imaging of B cell migration in the DCP area of Cxcl12-EGFP LNs. Shown is a three-dimensional reconstruction view. (H,I) Time-lapse

images of B cells interacting with the DRC network. Note that some B cells (asterisks) migrate in contact with the DRC cell body or the extending thin filaments

(arrows). (J) Frequency of B cells in contact with FSCs in every frame of time-lapse images. Eight independent image sets were analyzed (20 s intervals for 20min, 61

frames; total 3,953 cells counted in 488 images; mean ± SD).

FIGURE 8 | The MC in the mouse LN is a unique structure comprising MCRCs. (A) LepR is highly expressed in the medulla. A section of a brachial LN from a wild

type B6 mouse was stained with the indicated markers. The dotted lines indicate the boundary between the DCP and medulla. (B) FSCs in the MC showed the

highest expression of LepR. The inset shows a higher magnification view of a MC. (C) Average fluorescent intensity profiles of B220, desmin, and LepR along the

cortex–medulla axis. Note that LepR expression is prominent in the medulla, and shows a similar pattern to LYVE-1 in Figure 3D, indicating preferential expression in

the medulla. (D) Plasma cells preferentially accumulate in the MCs. Shown is a wild type B6 mouse LN. (E) Plasma cells make close contacts with MCRCs. Shown is

a Cxcl12-EGFP mouse LN. (F,G) Quantitative analysis of plasma cell localization in LN subcompartments (bars: mean; asterisks: significantly different compared to the

follicles, p < 0.0001). (F) A representative image of plasma cells. The dotted lines indicate the boundary between the DCP and medulla. (G) Proportions of plasma

cells in each subcompartment compared to the total number in the LN were plotted (open circles; bars: mean; *p < 0.0001).
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FIGURE 9 | B cells control the optimal development of the medulla and DCP in mouse LNs. (A) Development of the medulla was attenuated in the LNs of µMT mice,

which was restored with bone marrow transfer. Vertical sections of inguinal LNs isolated from wild type B6, µMT mice, or µMT mice reconstituted with wild type bone

marrow (wtBM) were stained with antibodies against LYVE-1, desmin, and B220. Representative images are shown. Higher magnification view of the boxed region is

shown in the right panel. (B) Proportion of medulla in the LNs (bars: mean; *p < 0.005). (C) The DCP was attenuated in Cxcl12-EGFP/µMT mice LNs, which was

restored with bone marrow transfer. Vertical sections of brachial LNs isolated from Cxcl12-EGFP, Cxcl12-EGFP/µMT mice, or Cxcl12-EGFP/µMT mice reconstituted

with wild type bone marrow (wtBM) were stained with antibodies against LYVE-1, desmin, and B220. Higher magnification view of the boxed region is shown in the

right panel. (D) Proportion of DCP in the LNs (bars: mean; *p < 0.005, **p < 0.0001).

the localization of a particular set of immune cells within the
territorialized network of the FSC subset. From this perspective,
the LN has six major subcompartments and at least the same

number of corresponding FSC subsets. The differences in the
pattern of gene reporters and marker expression among FSCs
suggest their distinct roles in tissue organization and immune
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FIGURE 10 | A model of multi-layered subcompartments and associated FSC subsets in mouse LNs. Schematic representation of subcompartmental structures

(A) and summary of reporter and marker expression in FSC subsets (B).

regulation. In terms of the expression of lymphoid chemokines,
the ordered pattern of CXCL13–CCL21-ser–CXCL12 along the
cortex–medulla axis is remarkable, and this could be a central
determinant of the global LN architecture and immune cell
localization. The dense networks of two FSC subsets on the
medullary side, both of which highly express CXCL12, were
shown to form a bowl-shaped base structure that supports the
bottom of the compartment, which appears to be the foundation
for entire LN stromal structures.

The boundaries of subcompartments, determined by the
localization of motile immune cells, are not necessarily clear and

in some cases, FSC subsets were found to be intermingled around
the borders. FSCs that did not meet the current criterion might
exist locally or be induced in some situations (37). The stromal
structure of the paracortical side of the boundary between the
follicle and T cell area, called the cortical ridge (CR), is especially
complex, and in this region, blood vessels including HEVs,
lymphatic sinuses (cortical sinuses), and the reticular network are
concentrated to form an intricate anatomy (38). The CR seems to
be important for the induction of adoptive immunity, as some
DC subsets and activated/memory T cells, as well as innate cells
are enriched in this area (24, 39–43). Thus, FSCs in the CR
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possibly exhibit unique properties; however, there is presently
not enough evidence to suggest that they comprise a subset
that is distinct from TRCs. Recently, single-cell RNA sequencing
analysis of LN stromal cells showed that each subcompartment
does not always consist of a uniform FSC but of multiple
subpopulations (22). In particular, the CCL21-expressing TRC
can be classified into three subsets including Ch25h-expressing
CCL19lo TRCs that are observed in the interface between the
follicle and T cell area. This powerful approach has the potential
to identify a variety of minor populations via subdividing cells
based on the overall transcriptional similarities, butmight neglect
anatomical distributions and differences in the production of a
few critical factors. This indicates the importance of both genetic
and anatomical approaches to identify FSC subsets.

We obtained clear pictures of stromal structures from the deep
cortex to the medulla. To our knowledge, the DCP has never
been recognized as a specific region in which B cells are localized.
DRCs are a DCP-associated FSC subset that expresses both
CXCL12 and CCL21-ser, and forms a dense reticular network.
DRC might be included in CCL19lo TRC fraction proposed by
Rodda et al. (22). In addition to the substantial expression of
Ccl21, CCL19lo TRCs showed the highest mean expression of
Cxcl12, Pdgfrb, Tnfsf13b, and Il7 among the three TRC subsets.
Remarkably, the authors discussed that CCL19lo TRC cluster
has heterogeneity, because of their large proportion, and may
include stromal cells residing in T-zone-adjacent niche such as
the DCP. In agreement with this, Hara et al. generated IL-
7-GFP knock-in reporter mice and observed that FRCs with
high IL-7-expression are abundant in the peripheral T cell area
including the CR and regions facing to the medullary sinus
(44). In close contact with the DRC network, B cells localized
to the DCP demonstrate migration ability that is different from
that of follicular B cells, suggesting that DRCs influence B cell
function. Slower and more frequent turning of B cell movement
in the DCP than in the follicles might be a reflection of denser
stromal obstacles and/or the absence of CXCL13 in this area.
Genetic analysis using various combinations of gene deficiencies
revealed that the localization of B cells in the DCP is regulated
mainly by CCL21-ser and moderately by CXCL12. Interestingly,
the pattern of dependency on CCL21-ser and CXCL12 is well
consistent with that observed in the homing of B cells to the LNs
from circulation (45). These suggest a close correlation between
B cell localization in the DCP and homing into LNs through the
HEVs. In addition to DRCs, CCL21-ser and CXCL12 seem to be
coexpressed in pericyte-looking cells surrounding the HEVs in
Cxcl12-EGFP/Ccl21a-tdTomato double reporter mice, which is
also consistent with the previous report (45).

The enrichment of B cells on the medullary side might
be advantageous for inducing immediate responses in the LN.
Although at first lymph-borne antigens flow into the SCS, they
can reach the medullary sinus at nearly the same time (46–48). It
is therefore possible that some antigens are captured by DCP-B
cells, and promptly stimulate these cells to produce antibodies
in a T cell-independent manner. Simultaneously, the presence
of DCs and T cells in the DCP might foster T cell-dependent
responses in situ. In contrast, preferential localization of plasma
cells to the MCs and close contact with the MCRC reticulum

suggest that MCRCs play important roles in the construction of
a supportive microenvironment for plasma cells. In fact, Huang
et al. recently reported the detailed characterization of medullary
FRCs and their functional aspect in plasma cell homeostasis (49).
MCRCs are similar to DRCs in terms of CXCL12 expression,
but high LepR expression and plasma cell localization indicate
that they comprise a distinct subset. Interestingly, optimal
development of the DCP andmedulla is regulated by B cells. This
suggests a functional link between B cells and the anatomy of the
medullary side.

The present study focused on tissue structures and FSC
subsets of steady-state LNs. However, as the subcompartmental
structure of the LN is dramatically remodeled during immune
responses (50–52), the functions and distribution of FSCs are
likely to change markedly in these situations; in addition, FSCs
that could be defined as a new subset with significantly different
properties might be induced (37). Subcompartments specific to
other secondary lymphoid organs, such as the red pulp and
marginal zone of the spleen and the subepithelial dome region
in Peyer’s patches, might also harbor their own unique FSC
subsets that are present in specific microenvironments. Such
FSC diversification, specialization, and plasticity is surprising
but appears to depend on dynamic interactions with a variety
of mobile immune cells. This would regulate the generation
of multi-layered tissue architecture in lymphoid organs for the
stringent spatiotemporal regulation of immune responses.
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Video S1 | Differential migration of B cells in the follicle and the DCP. Related to

Figure 7B. CMTMR-labeled B cells (red) were injected into a wild type B6 mouse
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and the explanted LN was examined by time-lapse scanning using a two-photon

microscope. Frames (72-µm z-projection images) were taken every 20 s for

30min. Playback is 10 frames/s. Collagen fibers were detected by second

harmonic generation (blue). B cell migration trajectories in the follicle (F,

pseudo-surfaced follicular region; trajectories, orange lines) and extrafollicular area

including the deep cortex periphery and medulla (green lines) are shown.

Video S2 | Dense FSC network in the DCP. Related to Figure 7G.

CMTMR-labeled B cells were injected into a Cxcl12-EGFP mouse and the

explanted LN was examined by two-photon microscopy. B cells (red) and FSCs

(green) are shown. 16-µm z-projection image.

Video S3 | B cell migration in the DRC network. Related to Figures 7G–I.

CMTMR-labeled B cells were injected into a Cxcl12-EGFP mouse and the

explanted LN was examined by time-lapse scanning using a two-photon

microscope. Frames (16-µm z-projection images) were taken every 20 s for

20min. Playback is 10 frames/s. B cells (red) and FSCs (green) are shown. B cell

migration trajectories are shown in the right movie.
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