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Inflammasomes have emerged as critical innate sensors of host immune that defense

against pathogen infection, metabolism syndrome, cellular stress and cancer metastasis

in the liver. The assembly of inflammasome activates caspase-1, which promotes the

maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), and initiates pyroptotic

cell death (pyroptosis). IL-18 exerts pleiotropic effects on hepatic NK cells, priming

FasL-mediated cytotoxicity, and interferon-γ (IFN-γ)-dependent responses to prevent

the development of liver diseases. However, considerable attention has been attracted

to the pathogenic role of inflammasomes in various acute and chronic liver diseases,

including viral hepatitis, nanoparticle-induced liver injury, alcoholic and non-alcoholic

steatohepatitis. In this review, we summarize the latest advances on the physiological and

pathological roles of inflammasomes for further development of inflammasome-based

therapeutic strategies for human liver diseases.
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INTRODUCTION

Innate immune system is well-known as the first line defense against pathogen associatedmolecular
patterns (PAMPs) derived from microbial pathogens (e.g., bacteria, parasites, viruses) and damage
associated molecular patterns (DAMPs) produced by host cells (e.g., cellular stress, cytosolic
DNA, damage) (1, 2). Inflammasomes are critical innate immune sensors involved in maintaining
the cellular health in response to cytosolic pathogens or stress signals (3). Inflammasomes
are cytoplasmic multiprotein complexes typically composed of three components: (i) a sensor
molecule consisting of NOD-like receptors (NLRs), absent in melanoma 2 (AIM2) or pyrin, (ii) an
adaptor protein, and (iii) an effector molecule procaspase-1 (4). Upon stimulation, inflammasome
complexes are assembled to process the cleavage of caspase-1, which activates proinflammatory
cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), and a cytosolic protein gasdermin D
(GSDMD) (5). Cleaved GSDMD forms pores on the plasma membrane, which induces pyroptotic
cell death and permits the release of IL-1β and IL-18 into the extracellular space (6, 7). These two
proinflammatory cytokines and pyroptosis exert both beneficial and deleterious effects in the liver,
which will be discussed in this review.

The liver is a “first past” organ that continually challenged with diverse microbial particles
derived from intestine through the portal circulation. During this process, a large number of
cytosolic pathogens can be sensed by inflammasomes, which are pivotal in evoking adaptive
immunity for complete clearance (8–10). In addition, hepatocytes are susceptible to the infection
of various liver-tropic viruses that leads to the pathogenesis of virus-related liver diseases. The
emerging importance of inflammasomes in response to viral infection points to another area for
the involvement of inflammasomes (11).
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Paradoxically, inflammasomes are essential for liver defense
against pathogens and danger signals, but excessive activation
of inflammasomes promotes the pathogenesis of various liver
diseases (Table 1). Thus, a definitive understanding of the roles
of inflammasomes in the liver is essential for the development of
inflammasome-based therapies.

PHYSIOLOGICAL ROLES OF
INFLAMMASOMES IN THE LIVER

Inflammasome-Mediated Liver Defense
Against Bacterial and Parasitic Infections
Continual exposure to orally-ingested antigens and intestinally-
released microbial products sensitizes the liver to various
bacterial and parasitic infections. Inflammasomes assembled
by NLRs are known as innate immune sensors that detect
cytosolic contaminations or perturbations (36, 37). NLRC4 is
demonstrated to defense against bacterial infections through
detecting bacterial flagellin or two bacterial type III secretion
systems (T3SSs) (38–42). Studies on the liver-tropic pathogen
Chromobacterium violaceum have shown that NLRC4-deficient
mice are more susceptible to infection (27). Activated NLRC4
inflammasome processes the production of IL-18, which primes
NK cell cytotoxicity to clear hepatocyte replication niches (27).
Additionally, exogenous administration of IL-18 is protective
against the infection of C. violaceum and another liver-tropic
bacteria Listeria monocytogenes (27). Although IL-18 therapy
does not fully reduce bacterial burdens to the normal level,
considerable potential still exists in activating NLRC4-IL-18
pathway as a combination therapy to counteract bacteria with
T3SSs or flagellin.

In addition to participating in liver defense against bacterial
pathogens, inflammasomes are also identified to control parasitic
infections. Canonical inflammasomes process the cleavage of
caspase-1, while noncanonical inflammasomes are implicated in
the activation of caspase-11 (43, 44). Loss of all inflammasome
signalings by knocking out caspase-1/11 leads to higher hepatic
parasitic load and lower survival of mice in response to
Trypanosoma cruzi (T. cruzi) (45, 46). The activation of
caspase-1 is highly dependent on lysosomal cathepsin B,
as pharmacological inhibition of cathepsin B significantly
reduces the production of IL-1β during T. cruzi infection
(45). Furthermore, the lack of IL-1β in caspase-1/11-deficient
mice is accompanied by downregulated hepatic interleukin-
17+CD8+ and interferon-γ (IFN-γ)+CD8+ T cells, implying
that inflammasome-mediated IL-1β is involved in promoting
liver adaptive immunity to control this parasitic infection (46).
This finding is in line with previous studies showing the
importance of IL-1β for the differentiation of Th17 cells and
antigen-driven T cells (47–49). Thus, the interplay between
inflammasomes and adaptive immune system in the defense
against pathogen infection is an interesting aspect for future
investigations.

Inflammasome-Mediated Inhibition of
Hepatitis Virus Infection
Viral infection typically initiates a cascade of innate immune
responses, which restrict viral spread and provoke adaptive

immunity for complete removal of virus. As innate immune
sensors, inflammasomes have a prominent role in defense
against hepatitis virus infections (14, 50, 51). Mice deficient
in caspase-1/11 are more susceptible to mouse hepatitis virus
(MHV) infection, suggesting that inflammasomes as a whole
are protective (51). Further explorations have identified that
inflammasome-dependent cytokine, IL-18, is required for host
defense against MHV, as IL-18 receptor (IL-18R) deficiency
reduces the production of IFN-γ by activated T cells, causing
elevated viral replication and poor survival of MHV-infected
mice (51). Despite evidence for the involvement of IL-18 inMHV
inhibition, many unanswered questions remain, including which
inflammasome mediates the maturation of IL-18 and how this
inflammasome is activated during MHV infection.

Beyond T cells, IL-18 is also involved in promoting the
production of IFN-γ by NK cells (14). Studies performed on
an in vitro model of hepatitis C virus (HCV) replication have
shown that monocytes can detect HCV-infected hepatocytes
and respond by secreting IL-18 in an NLRP3 inflammasome-
dependent manner, which subsequently stimulates NK cell-
derived IFN-γ, causing suppression on HCV (14). This finding
is supported by the observation of a higher expression of IL-
18R on NK cells than other cell populations (27). However, this
protective effect seems to be specific for monocytes, because
macrophage-derived IL-1β amplifies inflammatory responses
during HCV infection (52). Thus, special consideration is
required for inflammasome-related inflammatory responses
when applying inflammasome-based therapies for hepatitis virus
infection.

Inflammasome-Mediated Hepatocellular
Protection Against Oxidative Stress
Oxidative stress induced by excessive reactive oxygen species
(ROS) has emerged as a hallmark of liver injury (53). During
this process, nuclear DNA and mitochondrial DNA (mtDNA)
are released into the cytosol which act as DAMPs to activate
innate immunity (54). Recent progress has been made in
identifying that inflammasomes have a broader role in protecting
hepatocytes from oxidative stress-induced injury by responding
tomtDNA (55, 56). For example, activation of caspase-1 increases
resistance to oxidative stress-induced liver inflammation and
damage during hemorrhagic shock with resuscitation (HS/R)
(55). Follow-up studies have shown that activation of caspase-1
is mediated by AIM2 inflammasome, as AIM2 deficiency reduces
the production of caspase-1 and aggravates hepatocellular
cell death (33). Considering that AIM2 inflammasome is an
intracellular receptor that recognizes dysfunctional DNA, further
investigations have demonstrated that AIM2 interacts with
the immunogenic DNA sensor, high mobility group box 1
(HMGB1), to facilitate hepatoprotective effects (33). Another
interesting finding is that AIM2 inflammasome-mediated
caspase-1 upregulates the expression of beclin-1, which initiates
autophagy to clear damaged mitochondria in hepatocytes,
thus reducing the generation of ROS and degrading damaged
mtDNA (33, 55). Together, these findings suggest that AIM2
inflammasome is on the crossroad of innate immune sensor and
beneficial autophagy to protect against oxidative stress-induced
liver injury. In addition, the emerging importance of hepatocytes
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TABLE 1 | Roles of inflammasomes in the liver diseases.

Inflammable Physiological roles in liver diseases Pathological roles in liver diseases References

NLRP1 Prevent obesity and metabolic syndrome Remain unclear (12, 13)

NLRP3 Prime NK cell tumoricidal activity to inhibit liver CRC

metastatic growth; prime NK cell IFN-γ production to

suppress HCV replication; module intestinal microbiota to

suppress the progression of NAFLD; trigger pyroptosis of

HCC cells

Induce pyroptosis and activate iNKT cells to promote liver

injury during ALD; amplify inflammatory responses and induce

liver fibrogenesis in NASH;

activate lipogenesis to promote replication of HCV; activate

HSCs to promote liver fibrosis; induce pyroptosis and trigger

hepatocytes injury in response to nanoparticles

(14–17)

(18–26)

NLRC4 Prime NK cells cytotoxicity to counteract the infection of

C. violaceum;

promote liver regeneration after partial hepatectomy and

decrease liver fibrosis

Promote the development of ALD (27, 28)

(29)

NLRP6 Modulate intestinal microbiota to suppress the progression of

NAFLD

Suppress NF-κB and MAP-kinase activation and increase

bacterial burdens in the liver in response to Listeria

monocytogenes and Salmonella typhimurium

(15)

(30)

NLRP12 Attenuate inflammation responses during hepatic

ischemia/reperfusion injury

Suppress phosphorylation of IκBα and ERK and increase

susceptibility to Salmonella

(31)

(32)

AIM2 Activate caspase-1 to protect hepatocytes from redox

stress-induced injury; inhibit the activation of EMT to

suppress HCC metastasis

Exacerbate inflammation in macrophages isolated from

ascitic fluid of patients with cirrhosis

(33, 34)

(35)

CRC, colorectal cancer; HCC, hepatocellular carcinoma; IFN-γ, interferon-γ; HCV, hepatitis C virus; NAFLD, non-alcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; ALD,

alcoholic liver disease; HSCs, hepatic stellate cells; C. violaceum, Chromobacterium violaceum; EMT, epithelial-mesenchymal transition.

(nonimmune cell type) in regulation of the immune response is
another important area for further investigations.

Inflammasome-Mediated Prevention
Against Hepatic Lipid Metabolism
One additional organ-specific feature of liver that makes it
sensitive to inflammasome is that liver serves as the second
largest storehouse of lipid next to adipose tissues (57). Emerging
evidences have indicated that inflammasomes are critical
regulators in suppressing hepatic lipid deposition (58, 59). Mice
deficient in NLRP1 spontaneously develop hepatic steatosis,
and the syndrome is aggravated on high-fat diet (HFD), while
NLRP1MUT (an activating mutation in NLRP1a) mice are devoid
of lipid vacuoles in the liver (12). The anti-obesity ability
of NLRP1 inflammasome appears to be dependent on IL-18,
as knockout of IL-18 reverses its protective effects (12, 13).
In addition, exogenous administration of IL-18 counteracts
steatohepatitis in mice upon HFD, further highlighting the
importance of NLRP1-IL-18 signaling in controlling metabolic
syndromes (12). From the mechanistic perspective, these studies
also raise an interesting question about what is the trigger that
leads to the activation of NLRP1 inflammasome inmetabolic liver
diseases, which needs to be more clearly elucidated.

Another two inflammasomes, NLRP3 and NLRP6, have also
been reported to negatively regulate the progression of non-
alcoholic fatty liver disease (NAFLD) (15). NLRP3- or NLRP6-
deficient mice develop exacerbated hepatic steatosis with a
microbiome dysbiosis on either HFD or methionine-choline-
deficient diet (MCDD) (15). Interestingly, the microbiome
dysbiosis in NLRP3−/− or NLRP6−/− mice can be transferred
to co-housed wide type (WT) mice and is strongly correlated
with the severity of hepatic disorders (15). A possible explanation

is that exposure to HFD or MCDD alters the gut microbiota
composition and function, which increase the translocation
of bacterial products into the liver, thus aggravating hepatic
steatosis and inflammation, termed “gut-liver axis” (60–62).
NLRP6 inflammasome is recognized as a potent modulator for
maintaining gut homeostasis (63). One group of microbial-
derived metabolites triggers the activation of NLRP6-caspase-1
axis and subsequently leads to the proteolytic processing of IL-
18 (63). IL-18 not only elicits anti-microbial peptides synthesis
to control the composition of the gut microbiota, but also
upregulates interleukin-22 signaling to promote wound healing
(63, 64). The uncovered interactions between inflammasomes
and hepatic lipid metabolism provide novel therapeutic targets
for the treatment of hepatic steatosis.

Inflammasome-Mediated Suppression of
Hepatic Tumor Growth
NLRP3 inflammasome has been recognized to be important
for tumor control by directly activating pyroptotic cell death
or secreting death-inducing cytokines (65). Evidence of NLRP3
inflammasome in suppressing hepatic tumor growth comes
from the study showing that colorectal cancer (CRC) metastatic
liver tumor burden is exacerbated in NLRP3-deficient mice
(16). The tumor-suppressive effect of NLRP3 inflammasome
on liver CRC metastasis is highly dependent on IL-18, which
promotes the maturation of hepatic NK cells and primes FasL-
mediated cytotoxicity (16, 17). This study provides insight
into the innate immunity circulation between CRC-induced
activation of NLRP3 inflammasome in kupffer cell- and NK
cell-mediated cytotoxicity. In addition to priming tumoricidal
activity of hepatic NK cell, NLRP3 inflammasome also induces
caspase-1-mediated pyroptosis to control the proliferation of
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hepatocellular carcinoma (HCC) cells (66). Downregulated
expression of NLRP3 inflammasome in HCC tissues correlates
with the aggravation of carcinoma, while reconstitution of
NLRP3 inflammasome dramatically reverses the malignant
phenotype of HCC (67). These findings highlight the significance
of NLRP3 inflammasome in preventing hepatic tumor growth,
but it also exerts pro-carcinogenic effects for gastric and prostate
cancers, indicting the protective role of NLRP3 inflammasome in
cancer development may be organ or cell specific (65).

PATHOLOGICAL ROLES OF
INFLAMMASOMES IN HEPATIC DISEASES

Alcoholic Liver Disease (ALD)
ALD is triggered by excessive alcohol consumption that can
progress from fatty liver to severe cirrhosis, liver failure and HCC
(68). The involvement of NLRP3 inflammasome in ALD has
been demonstrated by a robust expression of NLRP3, caspase-
1 and IL-1β in alcohol-fed mice, while liver inflammation and
steatosis are dramatically attenuated in NLRP3−/− or caspase-
1−/− mice (18). The proinflammatory cytokine IL-1β leads to
the recruitment of invariant natural killer T (iNKT) cells, which
promotes the influx of neutrophils for exacerbated hepatitis (19).

Beyond regulating IL-1β activation, NLRP3 inflammasome
also facilitates the occurrence of pyroptosis (20). It has been
confirmed that the pyroptosis determinant protein GSDMD is
activated in the liver of mice suffering ALD (69). Adenoviral
expression of cleaved GSDMD in hepatocytes aggravates the
severity of liver inflammation and damage. Interestingly, one
type of miRNA, miR-148a, has recently been demonstrated
to suppress pyroptosis in ALD (70). The hepatocyte specific
expression of miR-148a by lentivirus delivery directly inhibits the
interaction between thioredoxin-interacting protein and NLRP3,
leading to attenuated pyroptosis and decreased incidence of ALD
(70). These reports provide evidence that NLRP3 inflammasome
is pathogenic in the development of ALD, however, the trigger
that initiates the activation of NLRP3 remains to be determined.

Nonalcoholic Steatohepatitis (NASH)
NASH is a progressive type of NAFLD with chronic hepatic
damage and inflammation (71). The hepatocellular damage is
associated with toxic effects induced by accumulated lipids,
such as saturated fatty acid (ceramide and palmitate) and
cholesterol crystals (72). Emerging evidence has accumulated
that NLRP3 inflammasome is activated by these toxic lipids
as a pathogenic mechanism for the development of NASH in
murine models (21, 73–76). Increased levels of NLRP3, GSDMD
and IL-1β are observed in the liver of patients with NASH
(77). Beyond amplifying inflammatory responses, activation of
NLRP3 inflammasome also promotes liver fibrogenesis during
NASH, as blockade of NLRP3 improves NASH pathology by
simultaneously suppressing liver inflammation and fibrosis (78).
The latest research has demonstrated the importance of GSDMD-
mediated pyroptosis in the process of NASH, as GSDMD−/−

mice develop remarkably attenuated steatohepatitis compared
to WT mice, further confirming the detrimental role of NLRP3
inflammasome signaling pathway in NASH (77).

One potential negative regulator of NLRP3 inflammasome
during NASH is autophagy (79). Defective autophagy causes
the accumulation of dysfunctional mitochondria and increased
production of ROS, which is required for the activation of
NLRP3 inflammasome (80, 81). In contrast, induction of
autophagy by ezetimibe dampens NLRP3 inflammasome activity
and ameliorates hepatic lipid accumulation and inflammation
on MCD (82). All these findings imply the beneficial role
of autophagy in NASH via the suppression of NLRP3
inflammasome.

On the contrary to the above studies suggesting that NLRP3
promotes NASH, an experimental research has shown that
NLRP3 deficiency leads to increased bacteremia and aggravated
NASH (15). These diverse functions of NLRP3 have been
explained by the evidence of different activities of NLRP3
inflammasome in different organs during NASH (83). In the
liver, expression of NLRP3 inflammasome is upregulated and
responsible for the pathogenesis of NASH, but downregulated
in the gut that protects against alteration of intestinal bacteria
(83, 84). These observations suggest that liver-specific blockade
of NLRP3 inflammasome is necessary to afford improvement
in liver inflammation and steatosis but devoid of gut microbial
dysbiosis.

Viral Hepatitis (Hepatitis B and C)
Hepatitis viruses preferentially infect hepatocytes and cause liver
inflammation with high mortality, among which approximately
90% are attributable to chronic infection induced by hepatitis B
virus (HBV) and HCV (85). Several studies suggest that NLRP3
inflammasome is the central player in the pathophysiology of
viral hepatitis (22, 86, 87). The hepatic expression of NLRP3,
caspase-1 and IL-1β are significantly higher in patients with
active untreated chronic HBV than those in chronic remission
(86). In addition, a strong correlation is demonstrated between
levels of IL-1β and severity of liver inflammation inHBV patients,
implying that NLRP3-mediated IL-1β is the potential driving
force of HBV-induced viral hepatitis.

NLRP3 inflammasome is also identified in HCV infection
by the observation of an upregulated expression of NLRP3
signaling pathway in monocytes and macrophages with HCV
(87). During HCV infection, NLRP3 inflammasome can serve
as either a beneficial or a detrimental role. On one hand,
kupffer cell has been identified as the primary cell source of
IL-1β in chronic HCV patients, and the production of IL-
1β by kupffer cell is associated with amplified inflammatory
responses (52). In addition, NLRP3 inflammasome stimulates
lipid droplet formation in hepatocytes, which promotes the
morphogenesis and replication of HCV, thus contributing to
the pathogenesis of liver diseases (22). On the other hand,
NLRP3-mediated activation of IL-18 in monocytes stimulates
the production of IFN-γ to prime resistance to HCV infection
(14). These observations suggest that NLRP3 inflammasome
derived from macrophages, hepatocytes and monocytes exerts
different functions, which requires in-depth investigations for the
potential link of NLRP3 inflammasome activation between these
cells in HCV infection.
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Nanoparticle-Induced Liver Injury
The optimal physicochemical properties of nanoparticles make
them widely used for disease diagnosis, imaging, and treatment,
but their clinical applications are greatly hampered by fulminant
hepatitis and liver injury (88). Tremendous efforts are being
made to clarify the underling mechanisms, and recent studies
have identified that NLRP3-mediated pyroptosis serves as a
critical pathogenic factor in the liver injury induced by multiple
nanoparticles, including rare-earth oxide (REO), quantum dots
and mesoporous silica (23–26). For example, REO treatment
activates NLRP3 inflammasome, leading to the occurrence of
pyroptosis and secretion of IL-1β in kupffer cells, both of which
are suppressed by GSDMD knockdown (24). Coating REO with
a small peptide RE-1 inhibits NLRP3 activation via reducing
ROS generation and calcium influx, thus attenuating REO-
elicited inflammation, further confirming the pathogenic role of
NLRP3 in REO-induced toxicity (23). Detailed insights into the
mechanism have shown that the sustained activation of NLRP3 in
response to REO is mediated by lysosomal damage and massive
release of cathepsin B (24). Collectively, these studies implicate
the involvement of NLRP3 inflammasome-mediated pyroptosis

in nanoparticle-induced liver injury, which may provide novel
strategies for controlling nanoparticles-mediated adverse effects.

Liver Fibrosis
Liver fibrosis is a pathogenic result of chronic liver diseases,
such as ASH and NASH, and characterized by deposition of
extracellular matrix (ECM) (89). Hepatic stellate cells (HSCs) are
the primary cells for the storage of ECM, and multiple functional
changes of HSCs can be caused by NLRP3 inflammasome,
including suppression of chemotaxis, upregulation of collagen
and transforming growth factor-β (90, 91). These functions
are confirmed by the study that knocking in NLRP3 induces
the activation of HSCs and subsequent accumulation of ECM
proteins, while fibrogenesis is not reversed by IL-1Ra therapy,
indicating that some other regulators of NLRP3 inflammasome
pathway instead of IL-1β promote fibrogenesis (20).

In addition to the direct effect on innate immunity, NLRP3
inflammasome has an essential role in shaping adaptive immune
responses in liver fibrosis. In particular, IL-1β promotes the
differentiation of Th17 cells to secret interleukin-17 (IL-17),
which is a critical proinflammatory cytokine in amplifying

FIGURE 1 | The pathogenic roles of NLRP3 inflammasome in liver diseases. Gut-derived PAMPs, such as lipopolysaccharide (LPS), activate nuclear factor kappa B

(NF-κB) signaling pathway, promoting the expression of pro-IL-1β, and pro-IL-18. The NLRP3 inflammasome in the liver is activated by serious danger signals, such

as cholesterol crystals, ethanol, and REO nanoparticles. Excessive alcohol consumption stimulates the generation of ROS, which facilitates the cleavage of TXNIP and

contributes to assembly of NLRP3 inflammasome. The activation of NLRP3 inflammasome in response to HCV infection requires the recognition by Toll-like receptor-7

(TLR-7) and clathrin-mediated endocytosis. Pyroptosis features GSDMD pores on the membrane, allowing the release of IL-1β and IL-18 into the extracellular space.

NLRP3 inflammasome cooperates with TNF-α and IL-17 contributing to the pathogenesis of liver fibrosis.
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inflammation responses and perpetuating liver fibrosis driven
by NLRP3 inflammasome activation (92). Collectively, NLRP3
inflammasome pathway appears to be central to the pathogenesis
of liver fibrosis, and this uncovered link may open avenues for
novel therapeutics for liver fibrosis.

CONCLUSION

In summary, inflammasomes are central components of
innate immune system that protect liver from pathogen
infection, metabolism syndrome, oxidative stress and tumor
growth, however, excessive immune responses mediated by
inflammasomes may promote the pathogenesis of various liver
diseases. The dual functions of inflammasomes pose a challenge
in designing inflammasome-based therapies. Therefore, it
is important to better understand the precise mechanisms
underlying the activation of inflammasomes. To date, the
pathological role of NLRP3 inflammasome in liver diseases have

been extensively studied (Figure 1). Future investigations need to
elucidate the hepatic importance of other inflammasomes, which
may hopefully provide new targets for the treatment of liver
diseases.
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