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Approximately 10% of individuals latently infected withMycobacterium tuberculosis (Mtb)

develop active tuberculosis (TB) during their lifetime. Although it is well recognized that

T-helper 1 immune responses are crucial for containing latent TB infection, the full array

of host factors conferring protective immunity from TB progression are not completely

understood. IL-22 is produced by cells of the innate and adaptive immune system

including innate lymphoid cells, and natural killer cells as well as T lymphocytes (Th1,

Th17, and Th22) and binds to its cognate receptor, the IL-22R1, which is expressed on

non-hematopoietic cells such as lung epithelial cells. However, recent studies suggest

that Mtb induces expression of the IL-22R1 on infected macrophages and multiple

studies have indicated a protective role of IL-22 in respiratory tract infections. Reduced

concentrations of circulating IL-22 in active TB compared to latent TB and decreased

percentages of Mtb-specific IL-22 producing T cells in TB patients compared to controls

designate this cytokine as a key player in TB immunology. More recently, it has been

shown that in type 2 diabetes (T2D) and TB co-morbidity serum IL-22 concentrations

are further reduced compared to TB patients without co-morbidities. However, whether

a causative link between low IL-22 and increased susceptibility to TB and disease severity

of TB exists remains to be established. This review summarizes the contribution of IL-22,

a potentially under-appreciated key player in natural resistance to TB, at the interface

between the immune response to Mtb and the lung epithelium.

Keywords: tuberculosis, Mycobacterium tuberculosis, interleukin-22, IL-22R1, T lymphocytes, respiratory

infections

INTRODUCTION

A quarter of the human population is infected with M. tuberculosis (Mtb) (1) of which ∼10%
will develop the active and contagious form of tuberculosis (TB) during their lifetime (2).
Various intrinsic and extrinsic factors determine the natural course of mycobacterial infection, and
resistance vs. susceptibility to disease progression. These factors include host genetic susceptibility
(3), virulence of the infecting strain (4) and presence of acquired immune deficiencies such as HIV
infection and type 2 diabetes (T2D) (5). The role of IL-22 during the host defense against Mtb
is poorly understood. The subsequent sections highlight our current knowledge of the protective
function of IL-22 during respiratory tract infections, including TB.
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SOURCE AND TARGETS OF IL-22

IL-22 is produced by cells of the innate as well as the adaptive
immune system including tissue resident innate lymphoid cells
(ILCs), NK cells, macrophages, NKT cells, activated Th1, Th17,
and Th22 cells as well as Tc-cell subsets and γδ T cells (6).
Alveolar macrophages from both humans and mice are also able
to produce and release IL-22 (7). In mice, antigen-specific IL-22
production is driven by Th1 and Th17 cells, but only a small
subset of Th17 cells produce IL-22 in humans. In contrast to
mice, humans have a distinct subset of T helper cells, called Th22
cells, which produce IL-22 and TNFα. Unlike Th1 and Th17
subsets, human Th22 cells, which were initially characterized in
skin neither produce IL-17 nor IFNγ (8). Apart from secreting
IL-22, Th22 cells can also express granzymes, IL-13 and increased
levels of Tbet showing a remarkable plasticity to skew the
immune response toward pro- or anti-inflammatory depending
on the Th1 or Th2 stimulus in vitro (9).

IL-22 binds to its heterodimeric receptor complex consisting
of the IL-22R1 and the IL-10R2 to activate the JAK-STAT
signaling pathways (10). The IL-22R is present on epithelial cells
of the lung, gut and skin, the liver, pancreas, and kidneys. It is
not expressed on hematopoietic cells, neither in resting/naïve nor
activated macrophages, T or B cells, nor the human monocyte
THP-1 cell-line (11, 12). However, three independent studies
reported that Mtb induces expression of the IL-22R1 in infected
macrophages (13–15). The significance of this is discussed in the
next section.

A T cell-derived soluble IL-22 binding protein (IL-22BP),
which shares sequence homology with the extracellular domain
of the membrane bound IL-22R1, acts as endogenous inhibitor
of IL-22 by preventing its binding to the IL-22R1. Activation of
the IL-22 signaling pathway in epithelial cells results in epithelial
tissue proliferation, regeneration, and healing, therefore this
cytokine plays an important role in protection from infection-
induced tissue damage at mucosal surfaces (10). IL-22 induces
expression of the chemokines CXCL1 and CXCL5 in bronchial
epithelia in a Klebsiella pneumoniae infection model (16), but
reduces CXCL8, a neutrophil attracting chemokine, in A459
human lung carcinoma cells (17). Most importantly, IL-22
stimulates the production of antimicrobial peptides such as β-
defensins, the S100 family of peptides, Reg3β and γ, lipocalin-
2, calprotectin and calgranulin A in various cell types (18–21),
thereby controlling bacterial growth and reducing the risk of
secondary bacterial infections after viral injury (22).

IL-22 AS IMMUNE-MODULATOR TO
INHIBIT MYCOBACTERIAL GROWTH

In addition to the well-described effect of IL-22 on epithelial
cells the recent reports that Mtb induces expression of the IL-
22R1 on macrophages, the primary host immune cells targeted
bymycobacteria, is particularly intriguing. Treerat and colleagues
report IL-22R1 positive macrophages by immunohistochemistry
in granulomas of HN878 infected mice, but whether this
positive signal is due to HN878 induced IL-22R1 expression on

macrophages or through ingestion of IL-22R1 positive epithelial
cell debris by the lung macrophages remains to be confirmed
(15). Two previous studies report a modest induction of IL-22R1
expression on macrophages after stimulation with Mtb H37Rv
and Erdman by flow cytometry (13, 14). Upregulation of the
IL-22R1 in infected macrophages may be a host-mechanism to
combat the infection, as there is growing evidence that IL-22 can
modulate mycobacterial growth within macrophages.

In initial experiments Dhiman et al. observed that Mtb-
infected human monocytes induce production of IL-22 by co-
cultured autologous NK cells in a IL-15 and IL-23 dependent
manner. This NK mediated IL-22 production resulted in
reduction of intra-macrophagic bacteria and was reversed
through neutralization of IL-22 suggesting that the mycobacterial
growth inhibition is at least in part attributable to IL-22
(13). In subsequent experiments by the same group exogenous
addition of recombinant IL-22 (rIL-22) to infected macrophages
promoted phagolysosomal fusion and reduced bacterial burden
(23). The anti-mycobacterial activity of IL-22 was mediated
through increased expression of the anti-microbial peptide
calgranulin A and siRNA knock down of calgranulin A abrogated
the IL-22 dependent mycobacterial containment in monocyte
derived macrophages (23). An additional mechanism by which
IL-22 may contribute to reduction in mycobacterial burden is
the observed increased TNFα production by Mtb-infected bone
marrow-derived macrophages when pre-treated with rIL-22 (15),
however this mechanism requires confirmation through TNFα
neutralization experiments.

An unusual observation that a subset of CD4+ T-cells in Mtb-
infected humans andmacaques retain IL-22 at the cell membrane
instead of secreting it was reported by Zeng et al. who speculated
that a membrane-bound IL-22 may enjoy longer half-life. The
authors show that IL-22+CD4+ T cells reduce intra-macrophagic
mycobacteria by direct cell-to-cell contact, however whether the
anti-mycobacterial effect is indeed mediated by direct interaction
of membrane-bound IL-22 on T cells with the IL-22R1 on
macrophages remains to be corroborated with additional data
(14).

The responsiveness of macrophages to IL-22 has also been
shown in a different context, where IL-22 modulates cholesterol
efflux from macrophages (24). This may have implications for
control of mycobacteria, which catabolize host sterols to sustain
a persistent infection (25). A summary of our current knowledge
of the actions of IL-22 is shown in Figure 1.

THE ROLE OF IL-22 IN EXPERIMENTAL
ANIMAL MODELS OF LUNG INFECTION

In an experimental murine model of Streptococcus pneumoniae
rapid accumulation of IL-22 producing ILC3 in the lungs were
observed and associated with protection from lethal infection
(26). IL-22(−/−) mice had greater streptococcal burden compared
to wild-type mice and administration of rIL-22 reduced bacterial
burden (27). Similarly, reduction of IL-22 production by
depletion of ILCs in a Pseudomonas aeruginosa murine model
induced lung injury was associated with reduced survival (28)
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FIGURE 1 | Schematic illustrating the effect of IL-22 on the epithelium, macrophages and neutrophils.

pointing toward a host-protective role of IL-22 in both lung
infection models. Interestingly, antibody-based neutralization of
IL-22 led to increased neutrophilic infiltration and susceptibility
to P. aeruginosa (29). This observation is consistent with the
finding that IL-22 reduces expression of the neutrophil attracting
chemokine CXCL8 from lung epithelial cells (17) and therefore a
lack of IL-22 likely increases CXCL8, which in turn may drive the
neutrophilic infiltration.

Neutrophilic proteases were previously shown to cleave the
IL-22R1 on human bronchial epithelial cells and impair IL-
22-dependent β-defensin expression, potentially contributing
to pathogen replication (30). Administration of rIL-22 or
neutralization of IL-22BP resulted in a decrease in lung damage
and increased survival (29). Interestingly, P. aeruginosa has
developed an immune-evasion strategy by secreting a serine
protease which cleaves IL-22 resulting in its degradation, thereby
weakening tissue repair and the anti-microbial defense (30).
It will be interesting to investigate whether Mtb has acquired
similar immune-evasion strategies and possesses proteases which
cleave IL-22 and thus impair the IL-22R signaling pathway and
host tissue repair. A murine model of Haemophilus influenzae
infection further confirmed the beneficial effects of IL-22
observed in P. aeruginosa infected mice, where IL-22(−/−) mice
had increased bacterial burden and administration of exogenous
IL-22 boosted bacterial clearance and limited lung tissue damage
(31). IL-22 secretion by Th17 cells is crucial for control of
the Gram-negative pulmonary pathogen K. pneumoniae and

promotion of lung epithelial cell proliferation (16). IL-22 also
reduces lung inflammation during influenza A virus infection
and protect against secondary bacterial infection (22). In
summary, there is evidence from various lung infection models
that IL-22 plays a protective effect on host mucosal surfaces,
whereas the effect of IL-22 on bacterial clearance appears to be
pathogen-specific.

Mycobacterial infection models using IL-22(−/−) mice have
yielded conflicting results. IL-22(−/−) mice infected with both
high and low dose H37Rv had comparable pro-inflammatory
cytokine profiles in the lung as wild-type C57BL/6 mice with
exception of increased IL-6 and reduced MMP-9 and CXCL-
10 (32). Recruitment of macrophages and granulocytes to the
lung were similar between IL-22(−/−) and wild-type mice and
there were no significant differences in bacterial burden and
survival. Similar to the studies in IL-22(−/−) mice, administration
of an IL-22 neutralizing antibody to wild-type mice 12 weeks
post-infection did not compromise survival or alter bacterial
burden (33). However, the timing of anti-IL22 administration
may be crucial as the P. aeruginosa infection model suggests that
elevated IL-22 concentrations prior to infection are important
for conveying the protective effects (29). The Mtb infection
studies in IL-22(−/−) mice by Behrends and colleagues were
carried out with H37Rv and different results were obtained
when the knock out mice were infected with HN878 (15).
Mtb HN878 infection induced IL-22 production via a TLR2
and IL-1β-dependent pathway and in this model IL-22 plays
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an important role in recruitment of myeloid cells to the lung
(15). IL-22(−/−) mice were more susceptible and exhibited
higher bacterial burden during the chronic stage of HN878
infection 100 days post-infection, whereas no differences in
susceptibility were observed during the acute phase 30 days post-
infection. Therefore, these data suggest that susceptibility of IL-
22(−/−) mice to mycobacteria is largely driven by the infection
stage (acute vs. chronic) and the mycobacterial strain (H37Rv,
Erdman vs. HN878). Strain specific differences in eliciting an
IL-22 response have also been shown in PBMCs from TB
patients stimulated with cell wall extracts from Mtb HN878,
which resulted in greater production of IL-22 compared to
H37Rv cell wall extracts (15). In addition, as the timing of
exogenous administration of IL-22 appears to be important from
other infection models, further studies in IL-22(−/−) mice with
administration of IL-22 prior to Mtb infection are required. Such
studies are however complicated by the short half-life of IL-22
and its off-target effects on mucosal tissues other than the lung.

In a non-human primate model, Mtb infection resulted
in reduced IL-22 mRNA expression in peripheral blood but
increased expression in the lymphocytes of the lungs, bronchial
lymph nodes, and the spleen (34). These observations from
primates are consistent with human studies where elevated
IL-22 protein was found at the site of disease in human
broncho-alveolar lavage fluid (BALF) (35–37) as well as increased
percentages of IL-22+ CD4+ T cells in BALF compared to blood
(38). Although elevation of IL-22 in primates was associated with
severe TB, it is not clear whether IL-22 production is induced
as a consequence of enhanced inflammation to counteract
immunopathology or directly contributes to pathology itself. IL-
22 producing T cells were also observed in BALF from Mtb-
infected compared to un-infected primates and were visualized in
TB granulomas by immunohistochemistry (39). Furthermore, IL-
22 expression was also found in lung and lymph node granulomas
of Mycobacterium bovis infected cattle (40). Interestingly, in this
species IL-22 was shown to be one of the dominant surrogates
of protection from bovine TB after M. bovis Bacille-Calmette-
Guerin (BCG) vaccination (41). Whether IL-22 is a surrogate of
protection from human TB remains to be established.

IL-22 IN HUMAN LATENT AND ACTIVE TB

In humans Mtb induces a distinct antigen specific IL-22+ CD4+

T cell population with central memory phenotype, which was first
identified in antigen stimulated whole blood from mycobacteria
exposed individuals (35). People with latent TB infection (LTBI),
who have not progressed to active TB, have significantly higher
frequencies of these Mtb specific IL-22 producing CD4+ cells
compared to active TB patients (42), which is consistent with the
increased frequencies in IFNγ-producing Th1 cells during LTBI
vs. TB. It is likely that both the Th1 and Th22 cell populations in
addition to Th17 cells contribute to protection from progression
to TB. Furthermore, a single nucleotide polymorphism in the
promoter of the IL-22 gene, which is associated with higher
Mtb-antigen specific IL-22 production from PBMCs is over-
represented in controls compared to TB patients suggesting

that it is associated with reduced susceptibility to TB (43).
Some studies report higher serum concentrations of IL-22 in
individuals with LTBI compared to TB patients (44–46), whereas
other studies do not show significant differences in circulating
IL-22 concentrations (42). These different observations may be
due to the ethnic background and Mtb strains prevalent in the
respective study cohorts.

At the site of disease however, several studies consistently
report increased concentrations of IL-22 in BALF from TB
patients compared to controls and higher IL-22 concentrations
at the site of disease vs. peripheral blood (35–37), which may be
due to migration of antigen specific IL-22 producing T cells to
the site of disease, the lung. In patients with TB pleurisy, IL-22,
and IFNγ were also elevated in pleural fluid as were antigen-
specific IL-22 producing CD4+ T cells (47). In patients with
extra-pulmonary TB-associated pericardial and pleural effusions
IL-22 concentrations correlated with MMP-9 expression (36).
However, whether IL-22 contributes to immunopathology or is
produced to counteract immunopathology was not established
in this context, although MMP-9 production has been linked
to improved epithelial barrier function in the gut (48) and
it is possible that IL-22 and MMP-9 are induced in order to
promote healing rather than being drivers of immunopathology.
Successful TB treatment restores antigen-specific IL-22 responses
by reducing the frequencies of CD19+CD1d+CD5+ regulatory
B cell, which were shown to suppress IL-22 production (49).

In patients with Mycobacterium avium complex (MAC)
infection, low IL-22 concentrations in BALF were associated
with a neutrophil dominant inflammatory response, radiological
severity and progression to pulmonary MAC disease, whereas
individuals high IL-22 concentrations in BALF had greater
percentages of lymphocytes and less disease severity (50).
This finding is consistent with the observation that IL-22
regulates neutrophilic infiltration as shown in an animal
model of lung infection (29). Collectively these data
point toward an important role of IL-22 in mycobacterial
infection and highlight the need to further define its role in
progression from latent to active TB as well as in treatment
outcomes.

IL-22 IN TB-DIABETES CO-MORBIDITY

The threat of TB and diabetes (T2D) comorbidity to TB control
programs is well recognized, but the underlying mechanisms
contributing to increased susceptibility of T2D patients to TB and
the increased risk of poor treatment outcomes in patients with
TB-T2D comorbidity are poorly understood (51, 52).

T2D patients with LTBI have lower frequencies of Mtb-
specific Th1, Th17, and Th2 responses compared to normo-
glycemic individuals with LTBI. Once T2D patients develop
TB they exhibit higher circulating concentrations of Th1 and
Th17 cytokines compared to TB patients without T2D (52).
Despite this increased production of Th1 and Th17 cytokines,
which are important for protective immune responses to Mtb,
TB-T2D patients are more likely to fail treatment and relapse
after initial cure (53). Interestingly, IL-22 is the only cytokine
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found at lower concentrations in serum of TB-T2D patients
compared to TB patients without co-morbidities (44, 46),
but a causative link between low IL-22 serum concentrations
and risk of poor treatment outcomes is far from established.
Interestingly, Kumar et al. reported that T2D patients with LTBI
had higher IL-22 serum concentrations compared to individuals
with LTBI and no T2D (45). Although this appears puzzling, it
is possible that latently infected T2D patients with high basal
concentrations of IL-22 are less likely to progress to active
disease.

A study based on a high fat diet mouse model of T2D
showed that the induction of IL-22 from CD4+ cells is impaired
in obese mice in response to challenge with the intestinal
pathogen Citrobacter rodentium, making them more susceptible
to infection. This defect was restricted to IL-22 producing T cells
and IL-22 secretion by ILCs was not affected (54). Administration
of rIL-22 not only improved mucosal host defense, but also
many of the metabolic symptoms including hyperglycemia and
insulin resistance in this and another murine T2D model (54,
55). This further raises the question whether IL-22 may be
useful as adjunct host-directed therapy in the context of TB-
T2D.

CONCLUSIONS

IL-22 is a key regulator of immunity and inflammation at
mucosal surfaces including the lung. Current evidence suggests
that an optimal amount of this cytokine prior to infection can
contribute to containment of bacteria and to protection from
excessive tissue damage. The contribution of IL-22 and Mtb-
specific IL-22+ T cells in protection from progression to TB in
presence and absence of T2D co-morbidity in humans and the
importance of this cytokine in TB treatment response requires
further studies.
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