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Due to emergence of new variants of pathogenic micro-organisms the treatment and

immunization of infectious diseases have become a great challenge in the past few

years. In the context of vaccine development remarkable efforts have been made to

develop new vaccines and also to improve the efficacy of existing vaccines against

specific diseases. To date, some vaccines are developed from protein subunits or killed

pathogens, whilst several vaccines are based on live-attenuated organisms, which carry

the risk of regaining their pathogenicity under certain immunocompromised conditions.

To avoid this, the development of risk-free effective vaccines in conjunction with adequate

delivery systems are considered as an imperative need to obtain desired humoral

and cell-mediated immunity against infectious diseases. In the last several years, the

use of nanoparticle-based vaccines has received a great attention to improve vaccine

efficacy, immunization strategies, and targeted delivery to achieve desired immune

responses at the cellular level. To improve vaccine efficacy, these nanocarriers should

protect the antigens from premature proteolytic degradation, facilitate antigen uptake

and processing by antigen presenting cells, control release, and should be safe for

human use. Nanocarriers composed of lipids, proteins, metals or polymers have already

been used to attain some of these attributes. In this context, several physico-chemical

properties of nanoparticles play an important role in the determination of vaccine efficacy.

This review article focuses on the applications of nanocarrier-based vaccine formulations

and the strategies used for the functionalization of nanoparticles to accomplish efficient

delivery of vaccines in order to induce desired host immunity against infectious diseases.

Keywords: nanoparticles, vaccine development, human diseases, targeted vaccine delivery, antigens

INTRODUCTION

In twenty-first Century, infectious diseases have emerged as a serious threat to the health of
millions of people across the globe (1). According to the World Health Organization (WHO)
report for 2016, ∼3.2 million deaths have occurred due to lower respiratory infections and 1.4
million from tuberculosis alone worldwide (2). Over the past few decades, many new infectious
diseases have emerged and few old diseases re-emerged, which were once considered to be no
longer a threat to the human being (3–5). Collectively, these diseases account for millions of deaths
that cause enormous impact on the global socio-economical and health-care sectors. The major
challenges to combat such diseases are that for many of them, there are no effective drugs available.
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One of the plausible approaches could be based on the application
of nanocarrier based vaccination (6). However, there are still no
effective vaccines available against some of the most prevalent
diseases including immune deficiency syndrome (AIDS) and
tuberculosis. This underlines an urgent need for the development
of desired vaccines against these diseases. Some of the important
aspects of any optimal vaccine includes (i) safety, (ii) stability,
and (iii) the ability to elicit durable and adequate immune
response with a minimum number of doses (7–9). Presently,
different generation vaccines such as attenuated or killed whole
organisms (first generation), subunit (second generation) and
RNA or DNA vaccines (third generation) are used to elicit
protective immunity against diseases (10–12). Despite several
advantages of RNA or DNA vaccines such as minimal risk
of infection, ability to elicit immune response against specific
pathogen and cost effective (13); there are a number of challenges
associated with the efficient delivery of these vaccine molecules
to the target sites and the requirement of the prime-boost
vaccination regimens with other immunogenic agents. These
includes premature degradation of molecules and the inability
to translate into a functional immunogen (14). Similarly, protein
based vaccines are used successfully against several infectious
diseases such as Haemophilus influenza type b, diphtheria,
tetanus, acellular pertusis, meningococcus and pneumococcus
(15), however they require an adjuvant to potentiate their
immunogenicity, and also encounter early degradation after
exposure to hostile milieu. Introduced recombinant protein-
based vaccines (e.g., recombinant hemagglutinin vaccine for
influenza) further enhance the immunity toward infection
indicating the applicability of the recombinant technology for
the vaccine production (16). To overcome these hurdles, an
efficient vaccine delivery system is required which not only
delivers the vaccine molecules to the target site to evoke enduring
immune responses but also has minimal side effects and requires
less doses. Moreover, there is an increasing need to develop
new generation composite vaccine molecules that will act as
immunogen as well as an adjuvant. Nanotechnology based
formulations offer numerous advantages for the development
of new generation vaccines. Nanocarrier based delivery system
can protect the vaccines from premature degradation, improve
stability, has good adjuvant properties, and also assists in targeted
delivery of an immunogen to the antigen presenting cells (APCs).
There are several mechanisms by which vaccines can be delivered
to the specific sites using nanocarriers. Vaccine antigens can
be encapsulated within the nanocarriers or decorated on their
surface (Figure 1). Encapsulation within the nanoparticles (NPs)
can protect the antigen from premature protease degradation
and elicit sustainable release, whereas the surface adsorption
facilitates their interaction with cognate surface receptors such
as toll like receptors (TLRs) of APCs (17). Nanocarrier based
delivery systems provide a suitable route of administration of
vaccine molecules and enhance cellular uptake thereby resulting
in robust innate, humoral, cellular as well as mucosal immune
responses when compared with unconjugated antigens. This
review mainly focuses on the potential use of nano delivery
systems as novel vaccine strategies for the induction of innate as
well as adaptive immune responses against infectious diseases.

FIGURE 1 | Schematic representation of the nanocarriers. Antigen can be

conjugated to the nanoparticles surface or incapsulated into core of the

particles. Decoration of the nanoparticles surface with targeting molecules

(e.g., antibodies, Fab-fragments, peptides, etc) could further increase the

delivery of particles into the antigen presenting cells (APCs) to induce innate

and adaptive immune responses.

KEY CELLULAR COMPONENTS OF THE
IMMUNE SYSTEM

The immune system is composed of a collection of mobile
cells that traffic throughout the body as well as reside at the
site of entry (i.e., skin, respiratory, gastrointestinal, and genital
tracts) in search of invading pathogens. These cells belong
to two major types of innate and adaptive immune system.
The innate immune cells like macrophages and neutrophils
rapidly respond to the pathogens by recognizing pathogen
surface moieties, phagocytosis, and the elimination of pathogens
through activation of different antibacterial effector functions.
Similarly, two major components of the adaptive immunity i.e.,
T and B-cells are important for the generation of cell mediated
and humoral immune responses, respectively. T cells including
CD4+ helper T cells secrete different cytokines to modulate the
functions of B cells, whereas CD8+ T cells recognize and destroy
virally infected cells. Antibodies produced by the B cells can
further neutralize the invading microbes or clear infected cell
or opsonized pathogens through cell-mediated systems. APCs,
in particular dendritic cells (DCs) and macrophages, migrate
through the body to sample, process and present the antigens to
T-cells to activate cellular immune responses. These cells express
various surface receptors to recognize cognate ligands and danger
signals to trigger activation of different signaling pathways that
eventually lead to the activation of T-cells (18). After sampling
the antigens, DCs migrate from the peripheral tissues into the
draining lymph nodes to activate naive T-cells (19), whereas
macrophages after ingestion of antigens increase their lysosomal
degradative machinery to enhance the antigen presentation to
activate helper T cells.
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TYPES OF NANO-IMMUNO ACTIVATORS

Some NPs are themselves able to stimulate different immune cells
to boost the host immunity. The size, shape and surface chemistry
of NPs (described below in more detail) are important factors
that determine their potential to activate immune responses. In
general, NPs are able to stimulate immune reactions by increasing
the synthesis of defense genes and inflammatory reactions (20).
Various types of NPs like gold, carbon, dendrimers, polymers
and liposomes have the capability to induce cytokine and
antibody responses (21–26). This was observed in the case of
administration of empty PEGylated liposomes, which were able
to elicit IgM response in an in-vivo model. (27, 28). Besides
their potential to deliver various immune stimulators to the
specific sites as well as into the deep tissues where vaccine
molecules alone may not able to reach, these NPs have also been
exploited as adjuvants to augment immunogenicity of vaccine
candidates. Nano-immuno stimulators are the nano scale (20–
100 nm) vaccine particles that can improve the vaccine efficacy
in vivo better than bulk molecules (20, 29). Some of the known
nano-immuno stimulators that have been used for this specific
purpose are inorganic NPs (iron and silica) (30, 31), polymeric
NPs (chitosan, PLGA, PVPONAlk, γ-PGA) (32–37), liposomes
(cholesterol and lipids) (33, 38) and virus like particles (VLPs)
(39, 40). Different types of NPs used to deliver antigens to
give protection against different diseases have been listed in
Table 1.

Inorganic NPs
Some biocompatible inorganic NPs such as gold, carbon and
silica have been exploited in the vaccine delivery studies (50,
79–81). These NPs can be synthesized in various shapes,
size and surface modified forms. Some of the viral antigens
were successfully delivered using inorganic NPs as carriers.
This caused increase in antigen stability by protecting them
from premature degradation by proteolytic enzymes. Delivery
of viral and bacterial antigens using gold NPs was also
found to induce quite robust host immune responses against
influenza, immunodeficiency virus, foot and mouth, and
tuberculosis diseases in mice (51, 52, 82, 83). Encapsulation
of plasmid DNA that encode mycobacterial hsp65 antigen in
gold NPs exhibited significant reduction in the Mycobacterium
tuberculosis, causative agent of human tuberculosis, burden
in infected mice (52, 82). Few studies have used hollow
mesosporous silica, nanotube and spherical forms of carbon NPs
as adjuvants to improve the immunogenicity and delivery of
protein and peptide antigens against viral infections (79, 83, 84).
Silica based NPs contain abundant silanol groups that can be
utilized to introduce specific functional groups on their surface
to gain access for vaccine molecules into target cells (84–86). The
major advantages of inorganic NPs include low production cost,
reproducibility and safety in application.

Polymeric NPs

In recent years, polymeric NPs have received great attention for
their applications in the delivery of a number of vaccines. This
is primarily due to their ease in preparation, biodegradability,

biocompatibility, reduced cytotoxicity, and the possibility to
fine-tune surface properties as needed (87). Moreover, it is
relatively easy to control the rate of vaccine release by altering
the composition or ratio of co-polymers during the NP synthesis
process (87). The most commonly used polymeric NPs for
vaccine delivery are poly (lactic-co-glycolic acid; PLGA) or poly
(lactic acid; PLA). PLGA NPs have already been tried in the
delivery of a broad range of antigens, including hydrophobic
antigens (34, 35), hepatitis-B virus antigens (54), Bacillus
anthracis (41), tetanus toxoid (35), and ovalbumin (88). The
use of PLGA conjugated antigens exhibited strong immuno-
stimulatory property by inducing cytokine and nitric oxide
production against mycobacteria infection (89). In addition to
synthetic polymers, some natural biopolymers such as alginate,
pullans, inulins, and chitosan have been used as adjuvants
(90–93). Inulin, a known activator of the complement cascade
(94), conferred better protection against hepatitis B and influenza
viruses (92, 93). Similarly, chitosan NPs were demonstrated as
nanocarrier molecules for HBV antigens (55), DNA vaccine
(56), and Newcastle disease vaccine (42). The delivery of PLGA
and chitosan NP conjugated vaccine molecules enhanced the
immune responses at the mucosal site (95, 96). Our recent
study also showed that delivery of M. tuberculosis lipids using
biocompatible chitosan NPs was able to induce significant
humoral as well as cellular immune responses when compared
to lipids alone in mice (43). We also found that intraperitoneal
administration of these conjugates showed better activation
of splenic T-cells. Another study by de Titta et al. has shown
that intradermal administration of CpG conjugated polymeric
NPs increased dendritic cell activation by several fold, exhibited
comparable vaccine efficacy at ∼400 times lower dose, and
also caused enduring cellular immunity in comparison to free
CpG (97). These desired properties along with already known
reduced toxicity and biocompatibility under both in vitro and
in vivo conditions make polymeric NPs plausible candidates
for further preclinical pharmacokinetics and therapeutic
applications (98).

Liposomes

In addition to polymeric NPs, liposomes are the second most
widely explored vaccine and drug delivery vehicle in the
nanomedicine field. The synthesis of liposomes is a spontaneous
process, where hydration of lipids enables the lipid bilayer
formation around an aqueous core (99). So far, different
types of liposomes, including unilamellar or multilamellar
vesicles composed of biodegradable phospholipids (e.g.,
phosphatidylserine, phosphatidylcholin and cholesterol) were
included in the vaccine studies (100). Liposomes deliver vaccines
by fusion with the target cell membrane (101).The structurally
flexible and versatile liposomes are able to encapsulate both
hydrophilic and hydrophobic substances. The hydrophilic
molecules can be incorporated into the aqueous core, while
hydrophobic molecules are encased within the phospholipid
bilayer. Earlier reports have shown that delivery of antigenic
proteins entrapped in multilamellar lipid vesicles elicit strong
T and B-cell responses (102). Similarly antigenic peptides
conjugated to phosphatidylserine (PS)-liposomes were readily
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TABLE 1 | List of antigens delivered by using different nanocarriers for the treatment of different diseases.

Antigen Nanocarrier used Disease References

AGAINST BACTERIAL INFECTION

Antigenic protein Poly(D,L-lactic-co-glycolic acid) nanospheres Anthrax (41)

DNA encoding T cell epitopes of Esat-6 and FL Chitosan Nanoparticle Tuberculosis (42)

Mycobacterium lipids Chitosan Nanoparticle Tuberculosis (43)

Polysaccharides Liposomes Pneumonia (44)

Bacterial toxic and parasitic protein Liposomes Cholera and Malaria (45)

Fusion protein Liposomes Helicobacter pylori infection (46)

Antigenic protein Nanoemulsion Cystic fibrosis (47)

Antigenic protein Nanoemulsion Anthrax (48)

Mycobacterium fusion protein Liposome Tuberculosis (49)

AGAINST VIRAL INFECTION

Antigenic protein Chitosan Nanoparticles Hepatitis B (33)

Viral protein Gold Nanoparticles Foot and mouth disease (50)

Membrane protein Gold Nanoparticles Influenza (51)

Viral plasmid DNA Gold Nanoparticles HIV (52)

Tetanus toxoid Poly(D,L-lactic-co-glycolic acid) nanospheres Tetanus (53)

Hepatitis B surface antigen Poly(D,L-lactic-co-glycolic acid) nanospheres Hepatitis B (54)

Hepatitis B surface antigen Alginate coated chitosan Nanoparticle Hepatitis B (55)

Live virus vaccine Chitosan Nanoparticles Newcastle disease (56)

Capsid protein VLPs Norwalk virus infection (57)

Capsid protein VLPs Norwalk virus infection (58)

Influenza virus structural protein VLPs Influenza (59–64)

Nucleocapsid protein VLPs Hepatitis (65)

Fusion protein VLPs Human papilloma virus (39, 40, 66–68)

Multiple proteins VLPs Rotavirus (69, 70)

Virus proteins VLPs Blue tongue virus (71)

Enveloped single protein VLPs HIV (72–75)

Viral protein Polypeptide Nanoparticles Corona virus for Severe acute respiratory

syndrome (SARS)

(76)

AGAINST PARASITIC INFECTION

Merozoite surface protein Iron oxide Nanoparticles Malaria (30)

Epitope of Plasmodium berghei circumsporozoite

protein.

Polypeptide Nanoparticles Rhodent mamarial parasitic infection (77)

Surface protein from Eimeria falciformis sporozoites ISCOMs Diarrhea (78)

internalized by APCs to potentiate T-helper cell mediated
immune responses (103) and delivery of heat shock protein
encoding vaccine DNA using liposomes elicited strong
protective immunity against fungal infection (104). Because
of their foreseen applications, several liposome based vaccine
nano-formulations have been approved for clinical trials against
intracellular pathogens, including viruses and M. tuberculosis
(105). One such study already demonstrated the potency of
liposomal aerosol carriers in the generation of protective
immunity against M. tuberculosis infection (106, 107). Other
studies have tried a combination of dimethyl dioctadecyl
ammonium (DDA) lipid based liposomes and various
immunomodulators to enhance immunity against influenza,
chlamydia, erythrocytic-stage malaria, and tuberculosis
infections (108–112). In the context of DNA vaccines, lipid-DNA
complexes have been successfully delivered to the lungs of
monkeys (101).

VLPs (Virus Like Particles)
There are several reports that adequately proved applications of
VLPs as a vaccine carrier, and also their ability to stimulate the
host immune responses (113–115). VLPs are composed of self-
assembled viral membrane that forms a monomeric complex
displaying a high density of epitopes (115, 116). Interestingly,
VLPs can also be engineered to express additional proteins
either by fusion of proteins with the particles or by endogenous
expression of multiple antigens (113, 117). It is also possible
to chemically couple non-protein antigens and small organic
molecules onto the viral surface to produce bioconjugates with
VLPs (118, 119). Due to these distinct features, VLPs can provide
protection not only against virus, but also against heterologous
antigens (116). A specific immune response was successfully
generated after the delivery of an antigen using virus capsid
protein SV40 in mammalian cells (120). VLPs were also found
to increase the immunogenicity of weak antigens. For example
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Salmonella typhimembrane antigen, influenza AM2 protein and
H1V1 Nef gonadotropin releasing hormone (GnRH) assembled
VLPs produced strong antigen specific humoral as well as cellular
immune responses (121, 122). It is presumed that the use of VLP
based nanoformulations could enable the antigens to achieve
conformations resembling to native antigen structure, thus it may
result in better stimulation of the host immune response (122).

Dendrimers

Dendrimers are three dimensional, mono-dispersed and
hyperbranched nano structures that are made up of a mixture of
amines and amides. Few studies have explored the application
of dendrimers in the delivery of different antigenic molecules.
The most commonly used dendrimers for vaccine delivery are
polypropyleneimine (PPI) and polyamido amine (PAMAM)
dendrimers. A single dose of dendrimer encapsulated multiple
antigens was found to produce strong antibody and T-cell
responses against Ebola virus, H1N1 influenza, and Toxoplasma
gondii (123). This generation of robust immune response was
found to be due to efficient uptake of dendrimers by the host
cells. Similarly a significant increase in the vaccine efficacy of
HIV transactivator of transcription (TAT) based DNA vaccine
was observed due to enhanced cellular uptake of PMAM
dendrimer (124). Hence, the possibility to tailor the dendrimers
to attain certain biological and physico-chemical properties,
and also the feasibility to conjugate several ligands to the single
molecule have made dendrimers promising candidates for
the development of new generation vaccines with enhanced
immunogenic properties.

DELIVERY OF IMMUNE STIMULATORS
USING NANOCARRIERS

Cytokines
Cytokines are known as important signaling molecules secreted
by different cells in response to external stimuli. Some of
the cytokines are able to activate immune cells to generate
protective immunity against several diseases. However, cytokines
are mostly susceptible to early degradation that subdue their
participation in the generation of host immunity. Moreover,
uncontrolled release of cytokines as immune responders may
sometimes lead to harmful side effects (125). To overcome
these limitations, several studies have attempted to synthesize
engineered nanocarriers to achieve effective and controlled
delivery of cytokines to the target sites. This approach was
found to reduce their toxicity, improve circulation time and
antigen specific T-cell responses in comparison to free cytokines
(126, 127). Incorporation of granulocyte macrophage colony
stimulating factor (GM-CSF) and interferon alpha (IFN-α)
into nano-carriers exhibited great application in cancer therapy
(128, 129). Nano-carrier conjugated cytokines also showed great
potential in the treatment of infectious diseases. For example,
IL-12 encapsulated microspheres induced strong protective
immunity against tuberculosis (130). This effect was due to
production of high antibody titers as a result of sustained and
controlled release of IL-12 from the microspheres in immunized
mice (130).

Toll Like Receptor Agonists
Like cytokines, several toll-like receptor (TLR) agonists were
also explored as immune activators to augment immune
surveillance mechanisms. Different immune effector cells such
as macrophages, B-cells and DCs express different types of TLRs,
which are known to interact with specific pathogen associated
molecular patterns (PAMPs). These specific interactions
eventually initiate downstream signaling cascades to ensure
the elimination or generation of immunity against pathogens
(131, 132). Conjugation of TLR specific agonists on nanocarriers
helps to target the molecules to specific immune cells and
therefore reduce the possibility of systemic biodistribution. One
such study has shown that conjugation of TLR-7/8 agonist on
nano polymers caused efficient internalization by APCs and also
prolonged the T cell responses (133). Administration of NPs
loaded with vaccine peptide antigen and TLR-7 and 9 ligands
were also found to induce strong memory and effector CD8+

T-cell response (134). Another study has shown that conjugation
of TLR-8 agonist to a polymer nanocarrier increased activation
and maturation of naive DCs due to selective endocytosis and
prolonged release of an immunogen by the nanocarrier inside
DCs (135). Moreover, intradermal injection of CpG and antigen
encapsulated polymeric NPs were rapidly drained into the lymph
nodes to activate DCs (97). These studies indicate that NPs can
be used as a tool to appropriately target presentation of antigens
to T and B-cell rich lymphoid organs.

Nucleic Acids
The genetic molecules such as DNA, plasmids and RNA can
also act as immuno-stimulants. Due to these characteristics,
in addition to less risk to cause disease particularly in
immunocompromised individuals, these genetic materials are
considered as promising candidates for the development of
next generation vaccines. After administration, the plasmid
vector translocates to the nucleus to initiate transcription
of recombinant genes using the host cellular machinery. A
recombinant DNA segment encoding HspX-PPE44-esxV fusion
antigen of M. tuberculosis showed great potential as a new
tuberculosis DNA vaccine candidate (136). A similar type of
study has been conducted in the past where the vaccination
of DNA or RNA constructs expressing mycobacterium antigens
were capable of inducing humoral as well as cellular immune
responses (137). Likewise, plasmids harboring genes encoding for
viral antigen have been encapsulated into alginate nanocarriers
and targeted against viral infections (138).

IMPORTANCE OF PHYSICOCHEMICAL
PROPERTIES IN DESIGNING
NANO-IMMUNO FORMULATIONS

In order to improve their delivery and vaccine characteristics,
different approaches have been practiced to conjugate vaccine
molecules to different nanocarriers. Vaccine molecules can be
surface conjugated, encapsulated or surface adsorbed with the
nanocarriers. Antigen adsorption on the nanocarrier is simply
based on the presence of a charge or hydrophobic interactions
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between NPs and the candidate molecule (139, 140). This type
of interaction is usually non-covalent, which may lead to rapid
dissociation of antigens from nanocarriers depending upon the
external milieu such as pH, ionic strength, temperature, and
the antigen hydrophobicity. On the other hand, encapsulation
and chemical conjugation of antigen to nanocarriers is more
stable due to strong interactions and chemical bond formation
between the target molecule and the nanocarrier. Further,
antigens can also be encapsulated into nanocarriers by simple
mixing reaction during the synthesis. In this case, the antigens
are released only after partial or complete dissociation of the
nanocarrier (141). These processes have already been used with
silica and gold NPs (142). Similarly, chitosan and dextran
sulfate NPs were used for the preparation of cationic and
anionic antigenic formulations. Some viral antigens are known
to bind to both positive as well as negative charged NPs
through immobilization process and hydrogen bonds (143).
The immobilization process depends on the charge, pH, ratio
of NPs and antigens, and the protein partition coefficient
between the solution and the colloid (143). Several antigens were
successfully delivered to the target sites by chemical conjugation,
adsorption and encapsulation to soft nanocarriers like VLPs,
liposomes and immune stimulating complexes (ISCOM) (144–
147). ISCOMs are a class of adjuvant formulations that consist
of saponins, cholesterol and phospholipids in specific ratios.
Antigens can be formulated into ISCOMs directly (148) or
after the surface modification (149, 150). Since ISCOM particles
are negatively charged, direct conjugation of most of the
soluble proteins is a limiting factor. Nanocarriers can augment
immunogenicity of a molecule. For example, influenza antigen
H1N1 conjugated chitosan NPs and Yersinia pestis F1-antigen
coated gold NPs (AuNPs) produced higher levels of antibody
and cytokine responses in comparison to mice administered
with unconjugated antigens (151).This was found to be due to
stabilization and increased immunogenicity of vaccine antigens
due to conjugation with NPs.

Another important aspect in the development of nano-
immuno formulations is that they improve antigen delivery and
presentation (152). In this context, NP shape, size and surface
charge are key factors that affect NP circulation, biodistribution,
bioavailability and specificity by crossing biological barriers.
Besides these factors, particle geometry such as surface to
volume ratio plays an important role in the determination of
immunogen release and degradation kinetics (153, 154). Here,
the importance of different physicochemical parameters such as
size, shape, surface area, porosity, hydrophobicity, hydrophilicity
and crystallinity in the interaction between NPs and the target
cell is discussed.

Size
The size of NPs determines the mode of cellular uptake and
specificity (155, 156). PLGA NPs of large size (1, 7 and 17µm)
showed reduced internalization rate in comparison to smaller
NPs (300 nm) (157). The size of NPs also determines the cellular
specificity and migration. Smaller NPs (20–200 nm) were readily
endocytosed by the resident DCs, whereas larger size (500–
2,000 nm) NPs were effectively taken up by the migratory DCs
(158). NPs of less than 200 nm size were drained into the lymph

nodes (159), while particles up to 20 nm range were suitably
transported to the APCs (152, 160). Notably, NP curvature also
affects the cellular interaction and phagocytosis rate (161). NPs of
150 nm diameter and 450 nm height showedmore cellular uptake
as compared to the particles having 1,200× 200 nm size. Of note
the size of NPs was also found to influence the activation of
signaling pathways. A study has demonstrated that smaller NPs
are able to alter the cell signaling processes more efficaciously
than the large NPs (31).

Surface Charge
Vaccine loaded NPs can also be targeted to specific sites by
modifying the NP surface charge. Delivery of such NPs at
appropriate sites elicit strong immune responses against antigens.
NP surface charge is responsible for the interaction with congnate
surfacemolecules present on the target cells. This was exemplified
from the observation that cationic polysterene NPs were
efficiently internalized by the APCs in comparison to neutral
surface charged NPs. This may be due to electrostatic interactions
between the cationic NPs with anionic cell membranes (162, 163).
Interestingly, pulmonary instillation of cationic and anionic NPs
showed similar endocytosis rate in macrophages and draining
lymph nodes, however cationic formulations showed more
expression of Ccl2 and Cxc10 chemokines that caused more
recruitment and maturation of CD11b DCs in comparison to
anionic NPs in the lung (125, 156). Similarly, neutral silica-silane
shell polymer NPs were less effective in the activation of innate
immune cells (128). These studies clearly indicate appropriate
surface modifications of NPs may help to generate stronger
immunological responses against specific infection.

Shape
Beside size and surface charge, NP shape is also a critical
determinant in the cellular interaction, intracellular trafficking
and the rate of antigen release inside the host cells (79, 141).
Spherical gold NPs were actively internalized by bone marrow
derived dendritic cells in comparison to rod shaped particles of
similar dimensions (33, 34), and that spherical NPs were able
to induce strong immune response than cube or rod shaped
NPs (164). Another study reported that worm-like particles were
impaired in phagocytosis as compared to spherical NPs (151).
These distinctions were ascribed to the differences in contact
area between NPs and the target cell membrane. The shape of
NPs also determines the localization of NPs inside the host cells.
This was demonstrated by the fact that although nano rods and
nano sheets were internalized via clathrin mediated endocytosis,
nano rods were particularly delivered to the nucleus while nano-
sheet were retained in the cytoplasm (146, 147, 155). This is an
important aspect in the context of improving antigen processing
and presentation to T-cells. It is well established that enhanced
antigen processing and presentation can be achieved if the
candidate molecules are delivered to the lysosomal compartment
of the cells.

Hydrophobicity
Hydrophobicity of NPs plays a significant role in the interaction
with soluble proteins and immune cells through recognition of
hydrophobic moieties (165). Previous studies have shown that
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hydrophobic polymeric NPs are strong inducers of cytokines
and co-stimulatory molecules than hydrophilic polymeric NPs
(53, 105, 166). Exposure to hydrophobic NPs showed enhanced
activation of DCs by inducing the expression of CD86 co-
stimulatory molecules when compared with hydrophilic ones.
Similar observations were reported in other innate immune cells,
in which hydrophobic NPs were able to activate these cells
by up-regulating the expression of proinflammatory cytokine
encoding genes (102), and also facilitated opsonization process
by increasing the adsorption of immunoglobulins on the cell
surfaces (103). However, other studies have reported that
polyethylene glycol coating (PEGylation) reduced the interaction
of NPs with immune receptors (50, 80). This property is
considered useful in the prevention of non-specific adsorption
of proteins on NPs and thereby prevent their up-take by APCs
(50). Such non-specific adsorption of proteins and their uptake
by phagocytic cells can also be preventing by the incorporation of
an alkyl linker between the PEG and thiol moieties on NPs (80).

Surface Modification
Surface modification of NPs alters ligand specificity and
interaction with APCs (160). Conjugation of CD47 molecules
on the surface of NPs modulated the down-stream signaling
cascades and also reduced NP internalization by phagocytic cells
(131). Functionalization of NPs with TLR-7, TLR-8, and TLR-
9 agonists increased cytokine production and the expression of
immunoregulatory genes (132–134). Similarly, conjugation of
poly (methyl vinyl ether-co-maleic anhydride; PVMA), TLR2,
and TLR4 agonists, and galactose polymer to NPs were shown
to activate the complement pathway as a result of stable binding
to C3b complement factor (139, 142). Further, lipoprotein-
like NPs showed LPS scavenging activity, thereby resulting
in the inhibition of TLR-4 dependent inflammatory responses
(140). Overall, these studies strongly demonstrated that tuning
of physico-chemical properties of NPs could be used as a
fundamental tool to target vaccine molecules to specific sites to
induce desired immune responses.

IMPLICATIONS OF THE NANOCARRIERS
IN THE VACCINE DEVELOPMENT

Emerging studies have proved that nanocarriers can be useful
mediators in the development of vaccines against various
diseases. In this context, it is important to develop NP
formulations that can deliver immunogens to APCs especially
DCs to induce effective antigen-specific T-cell responses
(Figure 2). Several nanocarriers have been shown to specifically
activate DCs to effectuate anti-tumor or anti-viral immune
responses (167–170). Zhu et al. proposed that nano-TiO2

and Fe3O4-TiO2 particles could function as a useful vector
to promote vaccine delivery in immune cells (168). Co-
incubation of nano-TiO2 and Fe3O4-TiO2 with DCs resulted
in an increased production of TNF-α, and also upregulated
the expression of CD80, CD86 and MHC class II molecules
through the NF-κB signaling pathway (163). In this way,
immunization efficacy of various NP formulations such as
erythrocyte membrane-enveloped poly(D,L-lactide-co-glycolide)

(PLGA) NPs for antigenic peptide (hgp10025-33) and TLR-
4 agonist, VLPs expressing RSV glycoproteins, chitosan-
coated EphrinA1-PE38/GM-CSF, and several others have been
improved (171–177). NPs can also control cell polarization and
differentiation. Branched polyethylenimine-superparamagnetic
iron oxide NPs (bPEI-SPIONs) promoted Th1 polarization of
DCs (178). Another study by Sehgal et al. showed that NPs can
also be used to target subsets of particular immune cells. They
have shown that simultaneous targeting of DC subsets (i.e., DC-
SIGN+ and BDCA3+DC) by NPs synergistically stimulated the
activation of T cell-mediated immunity when compared with
targeting of each DC subset separately (170).

Preclinical studies by different research groups have
successfully demonstrated the efficacy of NP based vaccines in
the induction of specific immune responses against tuberculosis
(42, 179–182). Feng et al. developed a NP-based recombinant
DNA vaccine that consists of Esat-6 and fms-like tyrosine kinase
3 ligand enveloped with chitosan NPs (42). Intramuscular prime
vaccination followed by nasal boost of this recombinant DNA
vaccine remarkably enhanced T cell responses inMycobacterium
tuberculosis challenged mice (42). Another study has shown that
pulmonary administration of M. tuberculosis Ag85B antigen
and CpG adjuvant conjugated polypropylene sulfide NPs (NP-
Ag85B) induced M. tuberculosis specific polyfunctional Th1
responses and also reduced the lung bacterial burden (183).

TARGETED DELIVERY OF
NANOPARTICLES CAN ACTIVATE INNATE
AND ADAPTIVE IMMUNE RESPONSES

Innate Immunity
Macrophages and monocytes are highly heterologous cells that
are distributed throughout the body. Macrophages process and
present the antigens to elicit adaptive immune response. Due
to their intrinsic phagocytic nature, macrophages can be easily
targeted by surface engineered NPs, in which cognate ligands
agonist to macrophage receptors can be conjugated on the
NP surface (Figure 1). As discussed above several physico-
chemical parameters of NPs such as size, surface charge,
hydrophobicity, surface topography, and material composition
can be optimized to facilitate the interactions between NPs and
macrophage receptors (184–186). The rate of NP endocytosis
also depends upon the type of cell surface receptors and the
ligand conjugated to the NP surface. For example, NPs targeted
via mannose and Fc receptors were rapidly internalized as
compared to scavenger receptors (187). Endocytosis of IgG
and anti-F4/80 antibody coated NPs showed more uptake rate
and retention time inside the macrophages without affecting
the cell viability (188, 189). Also, positively charged NPs
interact more strongly with negatively charged phospholipid
components of the cell membrane (190). Hyperactivation of
some inflammatory cells can also be restricted through controlled
release of stimulants using NPs. Upon activation, neutrophils
can secrete variety of cytokines and hydrolytic enzymes in
response to infection (191). Prolonged neutrophil activation
often leads to acute inflammation and tissue damage at the
localized site. Therefore, controlled release of molecules is
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FIGURE 2 | Targeted delivery of antigenic molecules using surface engineered nanoparticles into the antigen presenting cells (APCs). Endogenously generated

antigens are presented in complex with class I major histocompatibility complex (MHC I) on the membrane of APCs to CD8+ T lymphocytes. Following the interaction

between MHC I and T-cell receptor (TCR) in presence of co-stimulatory molecules and cytokines the activated CD8+ cells kill the infected cells by inducing

cytotoxicity. Also the antigens are presented on the APC surface by class II MHC molecules to the helper (CD4+) T cells. Subsequently, CD4+ cells activate B-cells

that produce anti-microbial antibodies. Upon stimulation the adaptor proteins MyD88 (myeloid differentiation marker 88) and TIRAP (TIR domain containing adaptor

protein) colocalize with TLR (toll-like receptor) allowing for activation of the NF-κB pathway and leading to the production of pro-inflammatory cytokines.

necessary to prevent the hyperactivation andmassive recruitment
of neutrophils. It has been reported that bovine serum albumin
(BSA) NPs were able to modulate the functions of neutrophils
following their internalization. Intravenous injection of anti-
inflammatory peptide encapsulated polymeric NPs reduced
neutrophil recruitment and subsequently hyperinflammation to
prevent further tissue damage (192). The use of NPs to deliver
vaccine/drugs in a controlled fashion is now considered as an
attractive approach to develop therapeutic strategies against a
range of acute and chronic inflammatory diseases (193).

Adpative Immunity
T and B-cells of the adaptive immune system express a repertoire
of receptors to recognize a range of antigens. Activation or
suppression of T-cell immunity can determine the fate of a
disease. A number of NP based therapeutic strategies have been
developed to regulate T-cell activity against viral, bacterial, or
fungal infections. For example, antiviral siRNA or retroviral
drug encapsulated lipid NPs or dendrimers were effectively
delivered to CD4+ T-cells to block HIV replication. This caused
a significant reduction in HIV titer when compared with the use
of non-encapsulated retroviral drugs (191, 194). T-cell activation

also depends up on the type and size of NP used for the delivery of
antigen. Liposome encapsulated antigens were better presented
to CD4+ T cells by APCs (195, 196) and delivery of 200 nm ova
conjugated NPs increasedMHC class I and II expression and also
produced a higher percentage of antigen specific CD4+T cells as
compared to 30 nm ova conjugated particles (197).

B cells are able to recognize and respond to the microbial
surface antigens through B-cell receptors (198). Activation and
clonal expansion of antigen specific B-cells using engineered NPs
have been exploited for the development of vaccines against
different diseases (Figure 2). Encapsulation of antigen in virus
like particles (VLPs) was able to induce strong and durable
humoral responses when compared with the administration
of exposed vaccine molecules (199). The potency of immune
responses also depends upon the mode of antigen presentation
to the target cells. Surface conjugated immunogenic proteins
and peptides were able to activate B cells much stronger than
encapsulated antigens (200). A single dose of PLGA NPs with
surface displayed ovalbumin (OVA) elicited strong antibody
responses in vivo as compared to free OVA (201, 202). NPs
can also be used to activate specific immune responses. A
study has shown that peptide conjugated carbon nanotubes
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showed significant antigen specific IgG response in comparison
to peptide or adjuvant alone (83).

NANOPARTICLES CAN BE USED TO
INCREASE CROSS ANTIGEN
PRESENTATION

In general, antigens captured by APCs from the extracellular
environment are targeted to the endo-lysosomal compartments,
where they are first processed into peptides and then loaded
onto class II MHC molecules before presentation to CD4+

helper T cells. However, cytosolic antigens are loaded on MHC
class I molecules and presented to CD8+ T-cells, which are
crucial for the clearance of viral and intracellular infections
(203). It is reported that some fraction of antigens delivered
through NPs are trafficked to cytosolic vacuoles of APCs
and presented by MHC class I molecules (203–205). The NP
mediated cross antigen presentation was first demonstrated in
antigens conjugated to iron oxide polymer NPs (206–209). In
addition, inorganic and polymeric NPs have also been used
for antigen delivery to cytosol (210–212). In this context,
lipid NPs were shown to induce CD8+ T cell expansion by
efficient antigen cross presentation against viral infection in
in-vivo models (102, 213). Similarly, invariant natural killer T
cells (iNKT), which are a special subset of T-cells, recognize
lipid antigens presented by CD1d cells. PLGA NPs conjugated
with α-galactosylceramide glycolipid, an iNKT cell stimulant,
increased cytokine release as well as expansion of antigen
specific CD8+ T cells (214). The cross antigen presentation
also depends upon the particle-antigen linkages. It has been
shown that disulfide bonding between NP and antigens caused
release of antigens into the endosomal compartment and also
enhanced CD8+ T cell formation as compared to non-degradable
linkers (215, 216). Similarly, pulmonary administration of
NPs efficiently enhanced cross antigen presentation, which
resulted in at least 10-fold more effector CD8+T cells in
lungs (217).

NANOPARTICLES AS ADJUVANTS TO
GENERATE IMMUNE RESPONSES IN
LYMPHOID ORGANS

Adjuvants are known to enhance and prolong the immune
responses against antigens. Delivery of adjuvants and antigens
using NPs have been found useful to prolong their exposure
in the lymphoid organs such as lymph nodes to generate
robust immune responses. This is especially important for
small adjuvant molecules, which are rapidly cleared from the
bloodstream. NPs with a size ranging from 10–100 nm can
penetrate the extracellular matrix and travel to the lymph nodes
where they can be internalized by the resident macrophages
to activate T-cell responses (218–220). The bio-distribution of
NPs also depends upon the route of administration and size.
It was observed that larger particles accumulated near the site
of NPs and were subsequently endocytosed by the local APCs
(160), whereas the smaller NPs drained to the blood capillaries
(158, 218). PEG coated liposomes of 80–90 nm diameter

showed higher accumulation in lymph nodes after subcutaneous
administration as compared to intravenous and intraperitoneal
administration (221).

CONCLUSIONS

The nano-immuno formulations can improve the
antigen stability, targeted delivery and also enhance their
immunogenicity properties. Most soluble antigens cannot be
efficiently endocytosed by the APCs and hence are poorly
effective in inducing protective immunity. The immunogenicity
of such soluble vaccine antigens can be improved by conjugating
them with nanocarriers that can facilitate the recognition
and uptake by APCs. This strategy has already been proved
effective for inducing/increasing the immunogenicity of
poorly immunogenic antigens, such as polysaccharides
of pneumococcal vaccines (222). In the last few years,
the application of nanotechnology in the field of immune
engineering is growing rapidly with a number of new carrier
synthesis strategies. Furthermore, novel nano formulations also
contain immunostimulatory molecules to enhance the adjuvant
properties of the nanoparticles. Co-encapsulation of the TLR
agonists [e.g., CpG, poly(I:C)] (77) or imiquimoid (78) into
dextran or chitosan NPs, respectively enhanced receptor-based
recognition of the nanovaccines with subsequent cell activation.
The recent study by Margaroni et al. showed that vaccination
with poly(D,L-lactide-co-glycolide; PLGA) nanoparticles with
Leishmania infantum antigens (sLiAg) and surface-modified
with a TNFα-mimicking eight-amino-acid peptide (p8) induced
significant protection against parasite infection in BALB/c mice
accompanied by activation of CD8+ T cells and increase in IFNγ

production (223).
Additionally, NPs can be tailored for non-invasive

administration and prolonged delivery of the vaccine antigens
to a specific location, thus providing the possibility for
formulation of the single dose vaccine. Several studies clearly
demonstrated the efficacy of the non-invasively administered
vaccines such as intranasal application of influenza nano
vaccine (224), chitosan NPs with hemagglutinin protein of
H1N1 influenza virus (225), Streptococcus equi proteins (226),
hepatitis B surface antigen (pRc/CMV-HBs) (227) and plasmid
encoding a multi-epitope protein against M. tuberculosis
(pHSP65pep) (228) or antigen 85B (229) were used to provide
protective immunity against infections. These considerations can
improve the progress of ongoing strategies in the development
of nanoparticle-based vaccines. In future, development of
nanovaccines will address not only the possibility to induce the
immune response but also the anti-infective therapeutic activity
of NPs thus representing the feasibility to apply multifunctional
particles for the treatment of diseases.
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