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Streptococcus pneumoniae (Spn) is a colonizer of the human nasopharynx (NP),

causing a variety of infections in humans including otitis media, pneumonia, sepsis,

and meningitis. The NP is an immune permissive site which allows for the persistence

of commensal bacteria. Acute or chronic respiratory airway inflammation constitutes

a significant risk factor for the manifestation of Spn infections. The inflammatory

conditions caused by an upper respiratory viral infection or respiratory conditions such

as allergic asthma and chronic obstructive pulmonary disorders (COPDs) are implicated

in the dysregulation of airway inflammation and tissue damage, which compromise the

respiratory barrier integrity. These immune events promote bacterial outgrowth leading

to Spn dissemination and invasion into the bloodstream. Therefore, suppression of

inflammation and restoration of respiratory barrier integrity could contain Spn infections

manifesting in the backdrop of an inflammatory disease condition. The gained knowledge

could be harnessed in the design of novel therapeutic interventions to circumvent Spn

bacterial infections.
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Spn CARRIAGE, DISEASES, AND VACCINES

Spn diseases constitute a major global health problem (1). It is estimated that about one million
US adults contract Spn pneumonia each year, which accounts for 5–7% of annual mortality (2),
and the mortality rate for invasive Spn diseases (IPDs; sepsis and meningitis) is even higher
(3). The vulnerable human populations who are at the highest risk of developing Spn infections
include infants, the elderly, and immunocompromised patients (4, 5); thus, these populations have
a much higher incidence of IPDs (6). Currently available pneumococcal conjugate vaccines (PCVs)
target the bacterial capsule antigens and have contributed to a global reduction in the Spn disease
burden (7). However, the replacement of capsular serotypes has occurred (8, 9), thus requiring an
expansion of the valency of current PCV formulations. Therefore, despite continued vaccination
programs, Spn infections continue to occur and account for significant clinical and economic
burden.

Spn establishes asymptomatic carriage in the NP of about 20–40% of healthy adults, with
even higher frequency in infant and elderly populations (10). Since carriage is a prerequisite
for Spn infections and diseases (11, 12), at-risk populations are more frequently and persistently
colonized by Spn (13, 14). The transition of carriage into disease depends on multiple risk factors
such as age, inflammatory conditions, geographical area, socio-economic conditions, genetics, and
immune system. Additionally, carriage is associated with bacterial dissemination, which leads to
the widespread acquisition of Spn bacteria in the community (14). However, carriage serves as a
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double-edged sword: while it constitutes an indispensable state
for Spn infections, carriage also activates innate and adaptive
immunity in the NP, leading to the generation of a Spn antigen-
specific protective immune response against colonizing Spn
serotypes (15–18). Inmousemodels, Spn carriage has been shown
to trigger a mild inflammatory event resulting in the activation
of Toll-Like Receptor-2 (TLR2) and inflammasome (16, 19).
Additionally, Spn carriage develops antigen-specific antibody and
T-cell responses in mouse and human experimental carriage
models (20).

Currently available Spn conjugate vaccines protect against
invasive diseases by preventing the acquisition of Spn bacterial
carriage of the vaccine serotypes (21). PCVs induce anti-capsular
opsonic antibodies which lead to the elimination of Spn carriage
of vaccine serotypes in the NP (12, 22). However, the elimination
of vaccine serotypes has led to the emergence of non-vaccine
colonizing and disease-causing replacement serotypes (9, 23).
Protein-based Spn vaccines are envisioned to protect against Spn
infections in a serotype-independent manner (24, 25). However,
protein-based Spn vaccines may or may not eliminate carriage
from the NP. Some protein-based Spn vaccines aim to maintain
low-density stable carriage instead of eliminating it (22–24). It
is expected that the maintenance of low-density carriage will
limit bacterial virulence evolution, and, consequently, could
contain the emergence of new capsule serotypes (24). However,
advanced infection models and a substantial amount of data
are required to develop this concept further and understand
the effect of carriage persistence in the at-risk populations. It
should be noted that carriage persistence and its beneficial aspects
may differ from one Spn serotype to another, since Spn has
a vast serotype repertoire with diverse colonization kinetics in
humans and mouse models, and some invasive serotypes are
less effective colonizers (26, 27). Therefore, further studies are
required to establish the duration of stable asymptomatic carriage
specific to each serotype. Given the nature of Spn as a bridge
between a commensal and a pathogen, these factors are essential
to consider for the development of advanced vaccination or
therapeutic strategies that favor the retention of low-density Spn
carriage in the NP. The answers to these questions necessitate the
development of advanced animal infectionmodels thatmimic the
natural Spn infections.

RESPIRATORY INFLAMMATION AND Spn

INFECTIONS

Respiratory conditions involving dysregulated and damaging
airway inflammation constitute a significant risk factor for
the commencement of Spn bacterial infections (28–34).
While baseline inflammation is required for the gradual
clearance of carriage in the NP, hyper and dysregulated
inflammation is implicated in epithelial inflammation
and tissue damage, which compromises airway barrier
integrity and promotes Spn outgrowth and dissemination
to sterile tissues (34–36). Therefore, a carefully orchestrated
inflammatory response is required for the resolution of
airway bacterial infections (37, 38), and defects in the

regulation of inflammation that arise from respiratory
conditions become a contributor to tissue pathology, thus
leading to an increased permissiveness for Spn infections
(Figure 1).

Influenza Virus-Induced Airway
Inflammation and Spn Infections
Airway co-infection with a respiratory virus constitutes the
most significant risk factor for Spn infections (36, 39).
Clinically, over 50% of young children (<2 years of age) are
colonized by Spn and other otopathogens in the NP, and
there is a significant correlation between the development of
bacterial acute otitis media (AOM) and pneumonia with viral
upper respiratory co-infections (40–42). A prior influenza viral
infection in the NP/lung promotes secondary Spn bacterial
infections. Similarly, a concurrent viral infection in Spn-
colonized hosts results in the transition of commensal low-
density Spn carriage into a Spn infection. Traditionally, a majority
of murine influenza-Spn co-infection models introduced Spn
in influenza-infected hosts, allowing Spn to utilize influenza-
mediated airway changes to manifest the disease (43–46). This
model system could be used to study immune mechanisms
implicated in the development of post-influenza secondary
Spn infections. However, since a significant proportion of
humans is colonized by Spn and other otopathogens in
the NP, the introduction of influenza in Spn-colonized mice
also mimics the natural Spn infections (47). The latter
infection condition is more appropriate to study the transition
from commensal colonizer to disease-causing Spn during an
influenza viral co-infection (Figure 1). Therefore, both of
the aforementioned experimental models should be used to
investigate the role of influenza virus in the manifestation of Spn
infections.

Airway co-infection is characterized by complex interactions
between co-infecting pathogens and the host, leading to
the disruption of physical barriers, dysregulation of immune
responses, and delays in a return to homeostasis (48, 49).
Respiratory viruses such as influenza, RSV, parainfluenza, and
adenovirus promote Spn diseases in the setting of a co-infection
(40, 50–54). Influenza virus replication in alveolar epithelia
promotes the recruitment of CCR2hi inflammatory monocytes
(IMs) and upregulates receptors for bacterial adherence (55–57).
IMs act as a double-edged sword; they are required for viral
resolution but are implicated in first-line pulmonary epithelial
and tissue damage, leading to viral spread (56, 58). CCR2-
deficient mice (CCR2−/−) lacking monocytes and monocyte-
derived cells significantly limit lung tissue damage (59).
Additionally, CCR2−/− co-infected (influenza-Spn) mice show
reduced epithelial damage and are able to control Spn invasion
(55). Alveolar macrophages (AMs) are resident phagocytic cells
that provide the first line of defense against bacterial infections
in the lungs (60). AMs are phagocytic, anti-inflammatory
cells which maintain lung sterility and control pulmonary
inflammation by preventing an influx of neutrophils during the
early infection stage (61). An influenza infection promotes the
apoptosis of AMs, leading to an increased permissiveness for Spn
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FIGURE 1 | Transition of Spn commensal colonization to disease. Acute or chronic airway inflammation caused by influenza virus or chronic conditions such as COPD

or allergic asthma promote Spn bacterial outgrowth and compromises respiratory tissue barrier function, which leads to the invasion of Spn bacteria into the

bloodstream establishing invasive infection. Colored dots (green, yellow, red, blue) represent chemokines and cytokines.

bacterial infections (43). The restoration of AMs in influenza-
infected lungs confers resistance to Spn disease (62). Neutrophils
are potent phagocytic cells with known anti-bacterial functions
(63), and they massively accumulate in influenza and influenza-
Spn co-infected mice. Prior reports suggest an impairment
of neutrophil phagocytosis and intracellular reactive oxygen
production in influenza-infected mice (64, 65), and neutrophil
depletion was shown to be associated with an increased severity
for Spn lung infection (64). However, dysregulated neutrophil
recruitment is also associated with damage and pathology in
infected tissues (66). While neutrophils have been shown to have
a protective function in single Spn infections (67), their role in
influenza-Spn co-infections remains unclear.

The levels of lung TNF-α elevate during a Spn-influenza
co-infection, and its depletion exacerbates Spn infection (55).
However, TNF-α responses are severely impaired during the
early phase of co-infections (55), leading to a failure to control
bacterial outgrowth and Spn infection. IL-6 limits influenza-
induced inflammation and lung pathology as IL-6-deficient mice
exhibited higher fibroblast accumulation, a lower extracellular
matrix (ECM) turnover, and higher mortality (68). The critical
role of IL-17 receptor (IL-17RA) signaling has been shown
in acute immunopathology of influenza-infected lungs, as IL-
17RA knockout mice had reduced tissue damage, reduced
neutrophil numbers, and increased survival (69). Mucosal
pre-exposure to Th17-inducing adjuvants have been shown
to exacerbate pathology after an influenza infection (70),
further establishing the role of IL-17 responses in influenza
acute pathology. Therefore, an influenza infection promotes
damaging inflammation in the airway, leading to permissiveness
for Spn bacterial infections. A better understanding of the
immune mediators implicated in influenza-mediated tissue
pathology could lead to the development of therapeutic
interventions to contain influenza pathology and subsequent Spn
infections.

Chronic Inflammation and Spn Infections
Spn causes significant morbidity and mortality worldwide in
patients with chronic respiratory diseases, and vaccination is
the most significant tool to contain Spn diseases among allergy
and COPD patients (71). Several recent studies have shown a
clear association between acute exacerbation and the isolation
of bacterial species such as Spn, Moraxella catarrhalis, and
Haemophilus influenzae, among the most frequently associated
bacterial organisms (72). Consequently, Centers for Disease
Control and Prevention (CDC) recommends the use of influenza
and Spn vaccines (PCVs) in people with COPD and asthma
conditions (71).

Allergy, Asthma Airway Pathology, and Spn

Infections
Asthma is a complex chronic inflammatory disease characterized
by airway hyperresponsiveness, reversible airflow obstruction,
and airway inflammation (73). The most common trigger for
asthma is the continuous exposure to allergens, of which fungal
agents are important factors (74, 75), and there is evidence for
the presence of fungal sensitization in patients with asthma (76).
Fungal asthma promotes a Th2-type response that mediates the
production of cytokines such as IL-4, IL-5, IL-13, and IL-33 (77,
78), which leads to the recruitment of complex multi-factorial
leukocyte eosinophils (79, 80). In murine models, Th2 cells play
an important role in eosinophilic inflammation in fungal allergic
asthma. Epithelial cell-derived cytokines such as thymic stromal
lymphoprotein (TSLP), IL-25, and IL-33 promote eosinophilia
by inducing IL-5 production (81). Additionally, dysregulation
of the IL-17F/IL-17RC axis has been shown to predispose
allergic inflammation in murine models of fungal allergic
asthma (82). Besides murine models of fungal allergic asthma,
mouse models using the house dust mite (HDM) also feature
similarities to human allergic asthma, including eosinophilic
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lung inflammation and cytokines primarily associated with Th2-
type inflammation (83). These animal models are used for
evaluating the efficacy of anti-asthma drugs and exacerbations of
bacterial/viral infections.

Allergic asthma consists of diverse immune phenotypes
exhibiting differential lung pathology, remodeling of the
respiratory tract, and mucociliary bronchial clearance (75, 84,
85). These confounding inflammatory immune mechanisms may
promote or resist microbial infections in allergic human and
animal infection models. Eosinophils are generally considered as
major effector cells of asthma, and the eosinophilic response to
viral infection has predominantly been shown to have a negative
effect on human health (86). However, several studies have
shown eosinophils may promote viral clearance and antiviral host
defense. A recent study has shown that pulmonary eosinophilia
linked with fungal allergic respiratory inflammation promotes
antiviral host defenses against the influenza virus by promoting
CD8+ T cell immunity (87). However, other studies have
shown that viral infections exacerbate asthma and thereby
promote bacterial infections (88). Since, influenza infections
are an important determining factor for the development and
exacerbation of Spn infections and a diverse spectrum of
influenza strains cause infections in humans, animal models of
influenza-Spn co-infections utilizing different influenza strains
are required to study the role of asthma inflammation in
influenza-dependent Spn diseases. The relationship between
allergic airway inflammation and Spn pneumonia is not well
understood. Recent studies report that asthma is associated
with an increased risk of invasive Spn diseases (89, 90), and
higher rates of Spn NP colonization, sinusitis, and otitis media
have also been reported among individuals with asthma (91,
92). Additionally, in vivo model systems demonstrated that
allergic airway inflammation was associated with a trend toward
increased extrapulmonary Spn infections, highlighting the role of
allergic airway inflammation in the development of invasive Spn
diseases. Further studies that mimic diverse features of asthma
phenotypes are needed to elucidate the precisemechanisms of the
inflammatory response to Spn infections and the effectiveness of
Spn vaccination in patients with asthma.

COPD Airway Pathology and Spn

Infections
COPD is a heterogeneous entity that includes a variety
of obstructive diseases that differ considerably on their
mechanisms of action and responses to treatment. COPD
is characterized by smoke-induced hypersecretion of mucus
and emphysema in the pulmonary gas exchanging units (93).
COPD and asthma are two distinct diseases with significantly
different mechanisms of chronic inflammatory reactions (94). In
COPD, the inflammation-associated changes are demonstrated
predominantly in small airways and lung parenchyma, and
result in tissue destruction with progressive, irreversible airflow
restriction. The main changes in asthma are found in larger
airways and may cause their intermittent and usually reversible
obstruction (95, 96). Airway and alveolar epithelial cells play
a central role in COPD inflammation (93). Epithelial cells are

the primary source of proteolytic enzymes and chemoattractants
responsible for the recruitment of immune effector cells
implicated in the amplification and persistence of airway
inflammation (93), and nitric oxide has been shown to be the
most representative biomarker in exhaled air, originated from
respiratory epithelium (97). Dendritic cells and macrophages are
key innate immune effector cells in COPD inflammation (98).
Activated macrophages and dendritic cells release inflammatory
cytokines implicated in COPD pathology, such as TNF-α, IL-6,
IL-8, IL-1β, and TGF-β (93, 98). Recent studies also implicate
the pathogenic role of IL-17, since IL-17RA-deficient mice were
protected from airway inflammation and fibrosis in COPD-
like models (99). Additionally, lymphocytes and neutrophil
recruitment in the inflamed airway/lungs further promote airway
damage (61). The persistent inflammation in COPD allows for
pathological airway and vascular remodeling, which involves the
deposition of an extracellular matrix in sub-epithelial layers and
hypertrophy of smooth muscles, leading to the thickening of
airway walls and the narrowing of bronchial lumen. Therefore,
COPD-mediated pulmonary pathology compromises tissue
barrier integrity, which leads to an increased permissiveness for
bacterial infections (100).

Spn plays an important role in causing acute exacerbations
in patients with chronic respiratory diseases (101). A number
of Spn serotypes have shown to be associated with colonization
and exacerbations in COPD patients (72, 101–103). Currently
available Spn vaccines could cover almost 50% of the Spn
serotypes in COPD patients (72). However, due to the evolution
of non-vaccine Spn serotypes and the limitation of currently
available Spn vaccines, understanding the role of COPD
inflammation in the development of Spn diseases is central
to designing an intervention to prevent Spn colonization and
diseases. Pulmonary inflammation, mucociliary dysfunction, and
airway remodeling are central components of COPD-mediated
immune pathology, implicated in the permissiveness of airway
infections (104). The tracheobronchial mucilliary movement is
central to maintaining the sterility of the lower respiratory
tract by transporting bacteria trapped in mucus toward the
pharynx. COPD causes mucociliary dysfunction, thus results
in the promotion of persistent airway bacterial colonization
(105, 106). Therefore, anti-inflammatory therapies intended to
improve mucociliary clearance have the potential to modulate a
pulmonary defense against microbial pathogens.

CONCLUSION

Despite currently available vaccines, Spn continues to colonize
human populations, and Spn carriage thus represents a
significant medical problem. Airway tissue damage and hyper-
inflammation is one of the most significant risk factors for the
transition of Spn carriage into a disease. An acute or chronic
inflammatory condition caused by airway viral infection or
conditions such as COPD and asthma are major risk factors
for the manifestation of Spn diseases, and CDC recommends
the use of seasonal influenza and Spn vaccines in these human
populations. A carefully orchestrated inflammatory response

Frontiers in Immunology | www.frontiersin.org 4 October 2018 | Volume 9 | Article 2275

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sohail et al. Pathogenesis of Streptococcus pneumoniae

is required for the resolution of airway bacterial infections,
and defects in the regulation of inflammation that arise from
respiratory conditions become a contributor to tissue pathology,
thus leading to an increased permissiveness for Spn bacterial
infections. Traditionally, a majority of murine infection models
employed in the investigating of Spn diseases typically used Spn
single infection conditions. These mice models used infection
inocula in low or high volumes intended to develop colonization
or a pneumonia infection. However, a significant shift has
occurred with the development of mouse infection models
mimicking the natural infections of Spn bacteria. Influenza-
Spn co-infection models are increasingly being used to study
the role of viral-induced acute airway inflammation in Spn
infections. Similarly, mouse models of chronic inflammation
such as allergy or COPD provide a platform to study Spn
infections in conditions similar to natural bacterial infections.
Therefore, the utilization of risk factors in murine infection
models will lead to a better understanding of the dynamics

of microbial interplay and the inflammatory mechanisms

implicated in Spn infections. The knowledge gained could be
harnessed in the design of novel therapeutic interventions
to circumvent Spn bacterial infections in at-risk human
populations.
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